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Abstract— In this paper, we address the problem of trajectory
planning while simultaneously reacting to the presence of
pedestrians for an autonomous car on urban roads. Past work
limits jerk, velocities and acceleration for smooth trajectories,
without considering reactive behaviors such as responding
to pedestrians. Other systems based on collision avoidance,
plan paths around obstacles and pedestrians in unstructured
environments. In this paper, we present an integrated trajectory
generation and tracking system. Our system simultaneously
considers both parameter and reactive constraints for smooth
trajectory and updates it in real-time.

We present a novel online method for planning trajectories
to follow a given urban path while honoring traffic regulations
such as stop signs at intersections. We update the trajectory
to safely avoid pedestrians on the road by slowing down or
stopping. Our method has closed form solutions, runs at 20
Hz, and is efficient and reliable for use in online planning. We
have confirmed this with a test vehicle and pedestrians with
over 100 hours of testing under driverless operation.

I. INTRODUCTION

An autonomous ground vehicle operating on roadways
typically plans trajectories with the goal of minimizing
navigation time. It is common to employ a path-velocity
decomposition to separate the twin tasks of Path and Tra-
jectory Planning, so that these tasks can be run sequentially
or in parallel. Path Planning computes the optimal path while
Trajectory Planning computes a time-parameterized velocity
profile appropriate for the scenario.

Trajectory computation for traveling on the path is often
guided by passenger comfort. For human passengers, it is
widely believed that high levels of jerk (time derivative of
acceleration) and high acceleration and velocity values are
prime contributors to ride discomfort. The intended speed,
acceleration, and time derivatives of position are also subject
to constraints due to legal speed limits, engine dynamics,
desired side-slip limits, traction availability, and rollover
risk. Lot of work has been performed on optimizing these
constraints for highways and country roads [1]–[4]. Similar
work performed by Bianco et al [5]–[9] sets the travel
time a priori and optimally minimizes jerk without hard
limitations or direct jerk control. Other work on optimizing
these constraints on urban roads [10], [11] doesn’t consider
reactive behaviors such as responding to pedestrians and
other dynamic objects in the scene.
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Fig. 1. Showing car used in our experiments.

The set of possible paths to the destination is typically
restricted by constraints such as available travel lanes, and
obstacles including pedestrians. Many systems in the litera-
ture plan paths around pedestrians, stop for them, or produce
a warning [12]–[16]. These systems make an assumption
that alternative paths around obstacles are available. Such an
assumption may not always be valid in an urban scenario.
Planners that optimize human comfort by modifying the path
to go around obstacles [17], [18] do not feature stopping
as a well-integrated behavior. In this paper, we describe
a trajectory generation system that satisfies the constraints
for human comfort while being reactive to the presence of
pedestrians on the road. We enforce hard upper limits on jerk
without requiring that travel time be known for planning.

Our autonomous car should travel autonomously from
start to destination while honoring traffic laws and avoiding
pedestrians on the roadway. At stop signs, it should stop and
wait for an appropriate amount of time. The car should also
stop, slow down for pedestrians at the intersections as well as
jay walking pedestrians. Further, the pedestrians can be static
or moving. Pedestrians on the sidewalks should be ignored
by the car.

In this paper, we present a deterministic autonomy frame-
work for pedestrian-aware ground vehicles with a novel
method for planning longitudinal trajectories. Our method
segments the path using both kinematic and dynamic con-
straints. Each segment is then planned sequentially by choos-
ing a piecewise constant jerk profile. We intelligently choose
a jerk profile from a set of analytically solved profiles such
that acceleration is continuous and within limits throughout
the entire path. The resultant trajectory plan is sampled to
provide a reference for real-time vehicle control.

Section II describes the architecture of our system and
interacting subsystems. Section III describes the high-level
Path Manager that calls the trajectory planner to exhibit re-
active behavior and stop for pedestrians on the road. Section



Fig. 2. Primary system components. The Path Manager and Trajectory
Planner components (in green) are presented herein.

IV describes trajectory planning to generate a trajectory that
satisfies maximum velocity, acceleration and jerk constraints.
Once the trajectory is formulated, we send the reference
signal to the controllers that govern steering, braking, and
engine speed. This is trajectory tracking and is discussed in
Section V, followed by results and conclusions.

II. SYSTEM ARCHITECTURE

Our system architecture is shown in Figure 2. We have
three major components: a High-Level Planner, a Low-Level
Planner, and a Software Controller. The High-Level Planner
is referred to as the Path Manager, and performs decision-
making as well as governs operation of the low-level planner.
Its primary functions are:
• Stop the vehicle at stop signs and wait until the associ-

ated intersection is clear before continuing.
• Reactively reduce speed or stop altogether for pedes-

trians which pose a collision risk, then continue when
they are clear.

• Govern the Trajectory Planner.
The Low-Level Planner is also referred to as the Trajec-

tory Planner, and is responsible for quantifying the actions
dictated by the Path Manager. Its primary functions are:
• Compute medium-range trajectories for a given path.
• Revise trajectories to react to pedestrians.
• Sample the current trajectory for input to the controller.
The Software Controller governs engine speed, braking,

and steering. It takes as an input a trajectory sampled at 10
Hz spanning 2 seconds, beginning at the moment of data
transmission. This short-term trajectory is oriented in the
vehicle body frame. This paper focuses on the Path Manager
(Sec. III) and the Trajectory Planner (Sec. IV and Sec. V).

Beyond these major components, our system has four
primary input components: Navigation Filtering, Pedestrian
Detection, a Path Planner, and a Map. For Navigation Filter-
ing, we use an ADMA-G commercial automotive GPS/INS
system. It receives RTK corrections via cell modem. It
outputs global position, global heading, body frame velocity
and body frame acceleration to centimeter level accuracy.

Pedestrian Detection is performed via a camera and Li-
DAR system based on [19], [20]. The pedestrian detector
outputs a bounding box for each pedestrian as shown in
Figure 3. The pedestrian position is computed in the vehicle
body frame, and subsequently transformed to the global

Fig. 3. Showing detected pedestrian by the computer vision system

frame to be related to the planned path. It is assumed that no
unique identifier is available to differentiate one pedestrian
from the other in a single epoch, or to correlate the same
pedestrian between epochs.

We assume access to a lane level Path Planner. For
example, this can be a service similar to Google Maps except
that it provides a lane level route instead of a road level route.
We assume that the path planner operates independently from
the trajectory planner and tracker. Using the path planner,
we obtain a path along lane centers from the vehicle’s
current location (computed by the navigation filter) to the
user specified destination. This plan is output as a set of
global waypoints.

We also assume a High-Resolution Digital Map with lane
centers, stop signs, crosswalk geometry, and turning curves
at intersections. This map provides the location of stop signs.
We also have an In-Out Algorithm implemented via polygon
intersection that can be used to ignore safe pedestrians
Pedestrians that are on sidewalks, behind planned stops, and
off-path crosswalks.

III. PATH MANAGER

The Path Manager performs trajectory planning over an
incremental window within the full path. This is done by
breaking the planned path into smaller sub-paths at each
stop location which are known a priori, as shown in Fig.
5. Trajectory planning is then performed for each sub-path
incrementally as the vehicle progresses.

Prescribed initial and end conditions for the position,
speed, and acceleration must be honored. All planning is
longitudinal; that is, speed profile generation is the primary
focus. We assume that the control subsystem ensures that the
vehicle follows the prescribed path. This allows all planning
to be done in a Frenet (rather than Cartesian) frame for
simplicity. The Frenet axis which runs along the length of the
planned path is denoted by s, and all planning is performed
in the s-axis. Differences along this axis (∆s) correspond
to distances the car will actually travel. Mapping back to
Cartesian coordinates (necessary for trajectory tracking) is
well-discussed in the literature.

Our Path Manager is implemented as a discrete state
machine, depicted in Fig. 4. In the absence of pedestrians, the
path manager cycles between NORMAL and PSTOP states.
In NORMAL state, the path manager sends the first subpath
to the trajectory planner, which then plans and executes it,
coming to a stop at the end of the subpath. In PSTOP mode,
the path manager waits for a pre-set time duration before
returning to NORMAL mode, where the next subpath is



Fig. 4. State Transition Diagram for Path Manager. System transitions
from NORMAL to PSTOP mode at each stop sign. In the presence of a
pedestrian the system transitions to RSTOP.

Fig. 5. Dividing the path into sub-paths at stop signs. The Trajectory
Planner is serially called for each sub-path shown in different color.

executed. When pedestrians are present, the transition from
PSTOP to NORMAL is delayed until no pedestrians are
detected in the range denoted by ∆sresume as shown in Fig.
6(c).

All detected pedestrian locations are compared against the
high-resolution digital map. Off road pedestrians are not con-
sidered. Each pedestrian location is perpendicularly projected
onto the path to determine the travel distance separating them
from the car. Pedestrians that are on a different subpath than
the vehicle, or behind the vehicle are disregarded (i.e., sped <
sveh). All the remaining pedestrians pose potential collision
risk. However, only the closest pedestrian is considered for
RSTOP.

The distinction between momentarily braking for a pedes-
trian that quickly leaves the roadway and coming to a full
stop needs no separate logic. They follow the same state
transition, and since all trajectory plans are smooth, riders are
rarely aware of the change. There is a brief waiting period
before resuming NORMAL mode from RSTOP to ensure no
tracking errors in pedestrian detection.

When a pedestrian is detected, the nominal distance
needed to stop, ∆sRSTOP , must be computed given the
vehicle’s current location, speed, and forward acceleration.
This serves as a dynamic buffer between the pedestrian and
the vehicle. In order to calculate ∆sRSTOP , a hypothetical
trajectory plan is created (but not implemented). A 3-phase
profile using the vehicle’s current state as initial conditions
and vf = 0 is created, and the resultant distance then

(a) In NORMAL mode, RSTOP is now triggered.

(b) RSTOP diagram showing bounds for revising the RSTOP
trajectory.

(c) PSTOP diagram showing bounds for reverting to
NORMAL mode.

Fig. 6. Graphical representation of static and dynamic thresholds used to
trigger state transitions.

becomes the nominal required stopping distance.
Note that a static buffer distance, ∆sbuf is added to ensure

safety and comfort. RSTOP is triggered when ∆savail 6
∆sRSTOP +∆sbuf and the actual available stopping distance
∆savail = sped − sveh is computed. Planning and executing
the trajectory for coming to a halt is detailed in Sec. IV-C.

This procedure is repeated when the nearest pedestrian
location changes by a value more than some static buffer
∆sreplan < ∆sbuf compared to the location for which the
current RSTOP planned. Normal operation is resumed when
the distance between the vehicle and the closest detected
pedestrian satisfies sped − sveh > ∆sresume + ∆sRSTOP .
The static resume buffer should be set such that ∆sresume >
∆sbuf +∆sreplan. These quantities are depicted graphically
in Fig. 6. Nominal parameter values are: ∆sbuf = 8.5m,
∆sreplan = 1.0m, ∆sresume = 12.5m.

IV. TRAJECTORY PLANNING

The task of Trajectory Planning is to take a set of scalar
waypoints in the frenet frame from the Path Manager, and
compute a series of constant jerk intervals for longitudi-
nal motion. The resulting trajectory should minimize time,
and satisfy all the constraints on speed, acceleration, and
jerk. Integrating piecewise constant jerk over time yields
acceleration which is piecewise linear over time, a speed
which is piecewise quadratic over time, and position which
is piecewise cubic over time.

A. Path Segmentation

In this section, we describe our approach to fitting appro-
priate jerk profiles to complex sub-paths. We first break each



sub-path into segments where the constraint values can be
considered constant. Then each segment can be compared to
a library of possible jerk profiles to find a good match. Each
segment is defined by the vector b = [vi, ai, L, vm, vf ], with
parameters initial speed, initial acceleration, total distance,
speed limit, and the final speed, respectively. Additionally,
the desired positive and negative acceleration am = [a+m, a

−
m]

and the desired positive and negative jerk jm = [j+m, j
−
m]

are defined for each segment. For this work, they are set
constant for all segments. However, this functionality enables
behaviors such as more sedate driving in a school zone or
when traversing small areas with lower friction coefficients,
such as patches of ice or gravel detected via camera. A sub-
path is then a set of N segments, each of which is defined by
a set of parameters bk, am,k, and jm,k where k = 1, ..., N
and can be solved individually in sequence.

The segmentation process proceeds as follows:
1) Ceiling Calculation, where vm, am, and jm are found

for every point in the given sub-path.
2) Clustering, in which sub-path points are grouped se-

quentially and the segment boundaries are determined.
3) Consolidation, in which a single b, am, and jm is

selected for each segment.
The Ceiling Calculation is a minimax problem. Each of

the 9 scalars in b, am, and jm is a minimum of several
maxima computed from an arbitrary set of constraints. For
instance, acceleration constraints may include a set of limits
derived from friction coefficients at every point along the
sub-path.

For the purposes of developing a simple example appli-
cation, two constraints are used for vm: legal speed limit
SL and lateral acceleration limit amax

y . Lateral acceleration
constraints are translated into longitudinal speed constraints
using the approximation:

vm,w(ay) =
√
|amax

y /κw| , w = 1, ...,W (1)

where W is the number of waypoints in the sub-path, and κw
denotes the path curvature at each point. For each sub-path
point, the value vm,w(amax

y ) denotes the speed necessary to
obtain the limit lateral acceleration amax

y .
This information is used to choose the segment bound-

aries in the Clustering step. A prudent choice of segment
boundaries is arguably a critical piece of the trajectory
planning process. We choose a simple univariate heuristic
which effectively identifies curves in the roadway using only
the speed ceiling. Each time vm,w < SL becomes true, a
curve is begun, and a segment boundary is drawn. Each time
vm,w = SL is again true, the current curve is ended, and
another segment boundary is drawn.

Figure 7 shows the result of this Clustering algorithm. We
start with a sub-path similar in structure to the green sub-
path in Fig. 5. This sub-path is broken up into five segments
as shown in Fig. 7(a). The three segments shown in blue
correspond to more straight portions, and the two shown in
red correspond to more curved portions.

In the consolidation step, a single set of b, am, and
jm must be calculated for each segment using the values

(a) The result of dividing a single sub-path into separate
segments. The clustering algorithm used here sets segments
boundaries before and after curves. The sub-path segments in
red indicate areas where the longitudinal speed required to
adhere to lateral acceleration limits is below the legal speed
limit of 11.1 m/s (25 mi/hr).

(b) An example of how the sub-path’s segment boundaries are
determined, as well as how vm is consolidated to determine
the speed ceiling for each segment. The x-axis corresponds
to distance along the subpath above. The legal speed limit of
11.1 m/s (25 mi/hr) is shown in cyan. The longitudinal speed
required to adhere to lateral acceleration limits is shown in red.
The resultant speed ceiling (vm) is shown in blue.

Fig. 7. Dividing a subpath into segments and determining speed ceilings
for each segment.

corresponding to the waypoints comprising the segment. The
principle task is to find a value of vm for each segment
using the values from segmentation, SL and vm,w(amax

y ).
The value of the speed ceiling for segment k is chosen to
be:

vm,k = min
(
SLk,vm(amax

y )|k
)

(2)

where SLk is the vector containing the values of the legal
speed limit at every way-point in segment k. The vector
vm(amax

y )|k contains the values of the speed limit from
lateral acceleration at every way-point in segment k. While
not time optimal, choosing the minimum of these values over
the entire segment ensures that no constraints are violated.
As a result, many of the curves have a constant speed. For
the sake of simplicity, the values of a+m,k, a−m,k, j+m,k, and
j−m,k are initially set constant for the entire path, using values
from [21]–[23]. Once vm,k are set for every segment in the



1: procedure SEGMENTBOUNDARYSPEEDS(vm)
2: vp ← vm . Initialize targets as ceilings
3: vp,0 ← vi . Set starting speed to current
4: vp = [vp, 0] . Add final speed of 0
5: for i = 1, ..., N − 1 do
6: if vm,i+1 > vm,i then
7: vp,i+1 ← vm,i+1

8: else
9: vp,i+1 ← vm,i

10: end if
11: end for
12: end procedure

Fig. 8. Algorithm to set speed boundary conditions for interior segments.
Having consolidated the waypoints into a set of path segments, the max-
imum allowable speed for each segment, vm,i is known. This algorithm
uses the set of vm for all segments to choose the highest allowable start
and end speeds for each path segment.

subpath, boundary conditions are set to ensure that speed
is continuous between segments. Acceleration continuity is
addressed later. The algorithm in Fig. 8 is used to compute
the vector vp and each segment k is solved using:

vi,k = vf,k−1 = vp,k (3)

The values of ai and vi for the first segment are set to
the value currently reported from sensor data. Since the final
acceleration is set to zero for all profiles, each subsequent
segment begins with ai = 0. For the final segment, setting
vf = 0 is prudent unless the scenario demands otherwise.

Now that all segments within the subpath have been
parameterized, they are solved sequentially. A jerk vs. time
profile is fit to each segment using the algorithm described
in the next sub-section.

B. Fitting Jerk Profiles to each Segment

To introduce the process of computing a jerk profile for
each segment, consider the case where a vehicle needs to
travel an arbitrary distance ahead. Starting from an initial
speed, the vehicle needs to accelerate to a traveling speed,
maintain that speed for some distance, then brake to a stop
at a prescribed end location. Figure 9 shows this trajectory
over time.

Final forward acceleration is set to zero. A profile with
M constant jerk phases (7 in this case) can be generated by
solving for the time intervals [∆t1, ...,∆tM ]. As we show
later, am, and jm must sometimes be modified to obtain
non-negative possible time intervals. To enable this, ranges
of acceptable longitudinal jerk and acceleration amax

m =
[a+,max

m , a−,max
m ] and jmax

m = [j+,max
m , j−,max

m ] are set
according to the relation in Eqs. 4 and 5. In the simplest
case, one value for each of the quantities expressed in these
relations is chosen for the entire path.

a+,max
m > a+m > 0 > a−m > a−,max

m (4)

j+,max
m > j+m > 0 > j−m > j−,max

m (5)

Fig. 9. 7-phase constant jerk profile along the curvilinear distance axis.
All values needed to completely parameterize a single path segment for
trajectory are labeled here.

The 7 phase solution is time optimal as it drives the car
at the speed limit. However, sometimes the distance is too
small to reach the speed limit, or the boundary conditions are
different, such as going from a specific speed to a stop. We
define four other basic profiles to cover all feasible values
in b, and our algorithm judiciously chooses the appropriate
profile. For instance, if L is too short or vm is too high, then
it will not be possible to ever reach vm with realistic values
of am and jm. All impossible scenarios are automatically
ruled out (e.g., end speed above speed limit, traveling speed
of zero, negative speeds in b, etc). Traveling backward (i.e.,
in reverse gear) is not supported in this work. To find closed-
form solutions for [∆t1, ...,∆tM ], given b, am, and jm, a
symbolic solver is used The five jerk profiles in our Jerk
Library are:

1) 7-phase: This profile, with ∆ti as shown in Figure
9, is always attempted first. All time steps have a single
solution, enabled by the fact that the initial and end con-
ditions are known, and the two peak accelerations and two
jerk magnitudes are provided as configuration parameters. In
the case where ∆t2 or ∆t6 are negative, accel-jerk tuning
must be employed. The 7-phase profile can be expressed as
(j1 > 0, j2 = 0, j3 < 0, j4 = 0, j5 < 0, j6 = 0, j7 > 0).
When ∆t4 is negative, the total segment length L is too
short to reach top speed of vm, so a 6-phase profile must be
used.

2) 6-phase: In the case mentioned above, the speed limit
is too high for a solution to exist for a 7-phase profile. The
middle travel period ∆t4 is removed, so that the vehicle
increases speed and then immediately decreases speed. The
peak speed, in this case, has a solution that cannot be
manipulated directly. Without this known value, the problem



(a) 6-phase profile (b) 4-phase profile

(c) Reversed 4-phase profile (d) 3-phase profile

Fig. 10. 6, 4, Reversed 4 and 3-phase profiles, displayed as speed vs.
position along path.

becomes under-defined, so ∆t2 and ∆t5 each have two so-
lutions: one negative and one positive. The positive solution
is chosen. In the case where both solutions are negative,
accel-jerk tuning is attempted. The 6-phase profile can be
expressed as (j1 > 0, j2 = 0, j3 < 0, j4 < 0, j5 = 0, j6 > 0)
Should that yield no positive time intervals, one of the two 4-
phase profiles then becomes appropriate, since L is not large
enough to accommodate accelerating past the end speed. If
vi > vf , then a 4-phase profile is attempted. However, if
vi > vf , then a reversed 4-phase profile is attempted.

3) 4-phase: When vi < vm ' vf , the vehicle should
increase speed, then maintain that speed for the distance re-
maining in the segment. The 4-phase profile can be expressed
as (j1 > 0, j2 = 0, j3 < 0, j4 = 0)

4) Reversed 4-phase: When vi ' vm > vf , it would
be nonsensical to immediately brake. The initial speed is
maintained for a period before applying the brakes. The
reversed 4-phase profile can be expressed as (j1 = 0, j2 <
0, j3 = 0, j4 > 0)

5) 3-phase: A change from one speed to another. All of
the above profiles are composed of some combination of a 3
phase profile and a j = 0 phase. This presents a difficulty in
that either L or vf may be enforced, but not both (there is
no solution to enforce both). As such, this profile is chosen
only for a segment in which it is impossible to completely
arrive at the end speed given the initial conditions. When
these discrepancies in the feasible vf for a segment arise,
the corresponding value in vp is updated so that the new
conditions may be accounted for in the subsequent segment.
The 3-phase profile can be expressed as (j1±0, j2 = 0, j3∓
0)

For each of the profiles, it is possible that the chosen values
of am and jm is not feasible, resulting in a negative time
interval for one or more phases. In many cases, modifying
am and jm such that they still lie within amax

m and jmax
m will

remedy this. Specifically, jerk may be increased while peak
acceleration is decreased. This process is referred to herein
as accel-jerk tuning. If no acceptable values are found within
the valid ranges of amax

m and jmax
m , a different jerk profile

must be chosen.
To decide which profile to employ, a cascade approach

is used. Analytic values of time intervals are evaluated for
each profile by plugging in new values of am and jm until

all time intervals are positive and real. The order in which
they are attempted is: 7 → 6 → 4 / 4R → 3. The routines
for fitting a profile to a given b,am, jm to a segment using
this cascade approach is referred to as a Jerk Library.

At this point, the subpath has been divided into segments
and an analytically derived plan has been fit to each segment
individually. Now a unified reference trajectory must be
constructed by stitching these together. For each segment
with M jerk phases, the following values are computed,
which correspond to the instants at which jerk changes:
• M time durations ∆tref . These must be added to the

last time value from the previous segment to translate
them into reference time.

• M jerk values j(tref ), which may be appended directly
to the preceding jerk values.

It is now possible to integrate j(t) to determine an instanta-
neous trajectory at any moment in time.

C. Reactive Stop Trajectories

The procedure for planning NORMAL mode trajectories
is separate from that used to compute RSTOP trajectories.
For RSTOP trajectory, a 3-phase profile is used, with end
conditions vf = 0, af = 0 and initial conditions set to the
current state of the navigation filter. While it would seem that
the 3-phase segment solving procedure described in Sec. IV-
B can be applied to reactive stopping, this is not the case. As
was mentioned previously, only one of [L, vf ] may be rigidly
enforced for a 3-phase profile, but not both, since no closed-
form solution exists for that case. Normal planning enforces
L to avoid skewing segment boundaries within each subpath.
However, reactive stopping requires that vf be enforced, and
that we solve for L. Reformulating a new 3-phase jerk profile
accordingly is a simple matter for the symbolic solver.

Now appropriate values of a−m and j−m must be chosen
to completely parameterize the trajectory. For calculating
∆sRSTOP , the same set of values from normal planning is
used and the distance traversed in the resultant trajectory
is reported as the current value of ∆sRSTOP . This is
the procedure for computing the dynamic, speed-dependent
distance required to stop at any epoch.

Once the path manager triggers RSTOP, the trajectory is
then recomputed with increasingly higher absolute values of
a−m and j−m until ∆sRSTOP 6 ∆savail. Should one of the
values a−m or j−m required to fulfill this condition exceed the
limits a−,max

m or j−,max
m , then limit braking parameters are

set such that a−m = a−,max
m and j−m = j−,max

m , and the user
is alerted.

The path must now be truncated for mapping back to
Cartesian coordinates. Within the trajectory tracker, all por-
tions of the path leading up to the location of RSTOP
triggering are removed, as well as the portions after the
location which corresponds to sveh+∆sRSTOP . The vehicle
now begins sampling from this trajectory and executes a
smooth reactive stop.

The time at which the trajectory plan must be referenced
is not always known. The solution to this problem is known
as trajectory tracking, and is discussed in the next section.



Fig. 11. Showing projection of the current position of the car shown by
green triangle to s coordinate system. Each circle represents a node, and
the lines between them are links. The orange dots indicate future trajectory
samples which are sent to the controller.

V. TRAJECTORY TRACKING

After planning has been performed, a reference signal
must be regularly supplied to the control system in order
for the vehicle to carry out the plan. The primary difficulty
here is that the trajectory plan has been developed in the
s-frame using a reference time which has an unknown drift
relative to real time. As such, we must find a way to look up
the coordinates of the vehicle within the reference trajectory
using information typically available for autonomous cars. A
minimal set of such information includes position, velocity
vector, heading, and acceleration in the body frame. It is
assumed that the vehicle controller will need samples of a
small window into the future trajectory to pilot the vehicle.

The general idea is to project the vehicle’s current position
onto the path, and then find the cumulative distance along
the path between the start point and the projection point. The
Cartesian vehicle position is thus mapped onto the path at
a Frenet position which corresponds to the vehicle’s current
reference time. Once this reference time is obtained, it may
be used to look up position, speed, acceleration, and jerk
along the curve of the path over the future time window.
From there it is a matter of simple geometry to transform
these values into the coordinate system of the path and,
subsequently, any other coordinate system which may be
needed.

Several algorithms exist to find the optimal projection of
the target vehicle’s present kinematic state (position, velocity
and acceleration vectors) onto the path. Such procedures
are referred to as map matching in the literature. A simple
approximation is to perpendicularly project the vehicle’s
position onto a series of lines running between each pair
of adjacent points in the path (this will be referred to as
a link, and is depicted in Fig. 11). Projections which lie
outside of the link’s two constituent path points are snapped
to the nearest one. The projection which is closest to the
vehicle’s actual position is then assumed to be the correct
path projection rp. Any number of modifications can be made
using heading, velocity vectors, and previous information to
allow this method to be extended to complex overlapping
paths or self-intersections.

Choice of an algorithm to obtain the current position of
the vehicle along the length of the path sveh is influenced
by the form of the path plan. We assume that the path is
linear between waypoints to significantly reduce the compu-
tational effort. So sveh at any epoch is the sum of the link

Fig. 12. Planned speed and longitudinal acceleration vs. measured values

lengths behind its perpendicular projection rp. However, the
error in this approximation approaches zero as the spacing
between path points approaches zero. Other, more accurate,
approximations which work well include cubic splines, arc
splines, and Bezier curves, which have solutions for closest
point projection and arc-length calculation [24]–[26].

Now the reference time corresponding to the vehicle’s
location tveh is needed to look up vx(tveh), ax(tveh), and
jx(tveh). Additionally, it is also needed to sample s(t) at
intervals ahead of the vehicle. Since it is known that s(t)
is piecewise cubic, reference time as a function of vehicle
position along the path, t(s), may be approximated as cubic
using a spline. To get the knots, s(t) is sampled at ∆t =
0.01sec. This yields two vectors s′ and t′ which are then used
to create a univariate cubic t(s) spline. Evaluating t(sveh)
then yields the current reference time.

To summarize, in the last three sections we described
breaking an urban path into sub-paths. We explained the
computation of velocity and jerk profile for segments within
sub-paths that honor constraints for speed, velocity and
acceleration as well as reactively slow down or stop for
pedestrians on the urban path. We then described how our
trajectory plan is supplied regularly in real-time to the
autonomous car controller.

Fig. 12 shows planned speed and acceleration for the sec-
ond sub-path between the two stop signs in Fig 5 (highlighted
in green). Overlayed on top are measured values of both
quantities for a single autonomous driving run, both of which
track quite well (the RMS speed error is 0.55 m/s, though
this is largely dependent upon the controller) . Note that
they are not smoothed or bias-corrected, thus the acceleration
is quite noisy. Relatively high jerk and acceleration are
used to compensate for significant damping effects and time
constants in the controller. The controller used in this work
was originally tuned for interstate driving, so its behavior
at low urban speeds has not been optimized leading to
significant steady state acceleration errors.

VI. SUMMARY

In this paper, we have presented a novel real-time method
for planning longitudinal trajectories in an autonomous car to
follow an urban path with online updates to avoid pedestrians
on the roadway by slowing down or stopping. We built a



robust stopping model as part of Trajectory Planner reliably
integrated with the Path Manager. We can travel along a
desired path, stop at stop signs, stop for pedestrians in
the roadway, and continue after they leave. Our system
gracefully handles complex cases that were not explicitly
programmed, such as follow pedestrians if they continue
walking on the road away from the car. Our system works
with multiple pedestrians as we only react to the closest
pedestrian ahead of us.

We make three contributions in this paper. First, we present
an integrated trajectory planner that simultaneously limits
jerk, velocity and acceleration to pre-set desired values while
being responsive to the presence of pedestrians. Second, our
trajectory planner has closed form solution and is suitable
for online implementation on a car, unlike systems requiring
solutions to nonlinear optimizations. Finally, we have con-
firm the efficiency and reliability of our trajectory planner
on a test vehicle with over 100 hours of testing under
fully autonomous driving conditions on urban roads with
pedestrians in random locations.

In future, we would like to handle other roadway traffic,
perceiving and reacting to other vehicles. We would also like
to perceive and stop for stop signs and red-lights, rather than
using map information.
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