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Abstract— Navigating a car at intersections is one of the
most challenging parts of urban driving. Successful navigation
needs predicting of intention of other traffic participants at
the intersection. Such prediction is an important component
for both Advanced Driver Assistance Systems (ADAS) and
Autonomous Driving (AD) Systems. In this paper, we present
a driver intention prediction model for general intersections.

Our model incorporates lane-level maps of an intersection
and makes a prediction based on past position and movement
of the vehicle. We create a real-world dataset of 375 turning
tracks at a variety of intersections. We present turn prediction
results based on Hidden Markov Model (HMM), Support
Vector Machine (SVM), and Dynamic Bayesian Network (DBN).
SVM and DBN models give higher accuracy compared to HMM
models. We get over 90% turn prediction accuracy 1.6 seconds
before the intersection. Our work advances the state of art in
ADAS/AD systems with a turn prediction model for general
intersections.

I. INTRODUCTION

Recent studies show that 45% of injuries and 22% of
roadway fatalities in US are intersection related [10]. The
primary factor in these accidents is the driver’s inability
to correctly observe a signal, stop sign, or another traffic
participant at the intersection. Advanced Driver Assistance
Systems (ADAS) that build a model of surrounding cars to
predict collisions and warn the driver when there is high
collision risk are desirable.

Each intersection has unique characteristics such as its
shape, number of intersection legs, road turn types, and
number of lanes. While most previous work built intersection
models at specific intersections [12] [5], our work builds a
general driver intention prediction model that works at any
intersection. Applications of our model include Intersection
Movement Assist (IMA) and Left Turn Assist (LTA). In-
tersection Movement Assist warns the host vehicle when
it is not safe to enter an intersection due to high collision
probability with other vehicles. Left Turn Assist warns the
host vehicle when it is not safe to make a left turn at
the intersection due to high collision probability with other
vehicles.

Collision detection at intersections is a challenging task.
Time-To-Collision (TTC) [8] assumes constant vehicle veloc-
ity to predict collisions. TTC works well for straight roads,
and fails to detect collision for curved lanes and intersections.
This is because the collision depends on the lane and the
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Fig. 1. Collision depends on the lane and the layout of the road. As
shown in (a) there are 32 possible collisions at the intersection including
rear ending. As shown in (b) for a specific configuration of two cars only
a couple of these possibilities are relevant (best seen in color).

geometry of the road. The vehicle lane restricts the vehicle’s
turning options, and the geometry of the road indicates more
realistic potential trajectories. Hence, it is essential to use
accurate lane-level maps with localization and a technique
to predict motion of other cars to avoid collisions and safely
navigate the intersection.

In an intersection there are 32 ways to get into a col-
lision [6] as shown in the Figure 1(a). Given a specific
configuration of two cars and intended routes, only a couple
of these cases are relevant. For example, for one car turning
left and the other car going straight, there is only one possible
collision as shown in Figure 1(b). To predict a collision at
an intersection, we need to know:
• The lane for traffic participants at the intersection.
• Traffic participant intention to go straight, left or right

at the intersection.
Given these pieces of information, one can estimate the

potential collision location and time.
The intersection layout is incorporated via a high reso-

lution lane-level map of the intersection. There are several
reasons to use lane-level maps in our model: firstly, the
complex structure of intersection can be reduced to a lane
model; secondly, the traffic rules at the intersection can
be incorporated in the lane model; thirdly, the lane allows
computation such as inside/outside lane, distance to center-
line; lastly, the lane-level maps provide a driver friendly
visualization. In this paper, we propose a driver intention
model based on intersection layout encoded via high reso-
lution maps and features of the vehicle such as its location
and velocity.

In the next section we describe related work, and our
problem formulation. We then describe statistical models
for driver intention prediction including Hidden Markov
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Model (HMM), Support Vector Machine (SVM), and Dy-
namic Bayesian Network (DBN). We then discuss our data
collection and how we create a real-world driving dataset
at a variety of intersections with lane-level maps. We then
describe our experiments, classification features, results and
conclusions.

A. Related Work

Existing research work on driver intention prediction fo-
cuses on freeway scenarios, due to its relative simplicity.
More recently, driver intention prediction at intersections has
been an important topic of interest in autonomous driving.
Many models have been proposed in literature, including
HMM [12], Gaussian Process [7], DBN [9] [4], SVM [1],
Case-Based Reasoning [5], to name a few.

Streubel and Hoffmann [12] presented a prediction frame-
work based on HMM and examined the variation of model
parameters. Their HMM model is similar to ours, and we
also use the velocity, acceleration and yaw of vehicles as
features to train three individual HMM models. However,
ours incorporates lane-level map at general intersections,
while their model is limited to a specific intersection. Laugier
et al. [7] used a two layer HMM and Gaussian process to
estimate and predict collision risks and likely behaviors of
multiple agents in road scenes. Possible trajectories can then
be sampled from a Gaussian process.

Rossler [11] localized the host vehicle using an En-
vironment Model (EM) to take the current sensor data.
They present a similar lane model as ours to model the
road network with road, lanes, and intersection entities. The
driver model contains both Macroscopic behavior (MaB) and
Microscopic Behavior (MiB). MaB defines roads before and
after the intersection and is formulated as a graph with road
element as nodes and transition probabilities on the edges.
MiB is a more detailed view and defines behavior in terms
of lanes rather than roads. High level prediction considers
decisions such as intention to turn left or stopping at red
light. Low level prediction considers trajectories and speed
profiles.

Aoude et al. [1] designed a threat assessment module
based on SVM and random trees. SVM was used as the
learning method for intention prediction, while random Trees
were applied to evaluate the threat of errant drivers. In [5],
Graf et al. introduced the concept of Case-Based Reasoning
(CBR) with context information for a specific intersection.
With CBR, a solution for the current situation is found by
adapting it to the most similar case.

While most existing works are based on a specific intersec-
tion, in this paper, we propose a general intention prediction
framework in which a variety of learning approaches can
be used. Our implementations of HMM, SVM, and DBN
demonstrate the effectiveness of our proposed framework.

B. Problem Formulation

Given a sequence of observations for a vehicle, such as
GPS and CANbus data, and a road map with lane boundaries,
we build statistical models for human intention. Our goal is

to predict driver intention for other traffic participants (e.g.
cars turning right/left or going straight at an intersection). We
assume vehicle-to-vehicle (V2V) communication to identify
and transfer data between self car and other traffic partici-
pants. We further assume that the self car path is known. An
alternative to V2V communication is vision or laser sensors
with object recognition. Velodyne sensor with 3D maps is
often used for localization with DGPS sensors providing
ground truth to cm accuracy.

The problem of driver intention prediction can be usu-
ally formulated as classification problem or as time-series
analysis problem. We consider it as a classification problem,
and extract features with a fixed number of dimensions
from sequential observations for a classifier, such as SVM.
The sequential observations can be further modeled and
interpreted with unobserved (hidden) states using time-series
analysis methods, such as Hidden Markov Model and Dy-
namic Bayesian Network.

II. STATISTICAL MODELS FOR DRIVER INTENTION
PREDICTION

To predict the driver intention (right turning, left turning,
and straight going) at an intersection, both classification-
based approaches and dynamic inference-based methods are
tested in our real-world driving tracks dataset.

A. Hidden Markov Model (HMM)

HMM can be used to represent a dynamic process ob-
served through Markov Chains. It is based on an assumption
that the observation sequence Y = [y1,y2, . . . ,yt ] is deter-
mined by a discrete hidden state sequence Q= [q1,q2, . . . ,qt ].
The variables used in our formulation are described in a
later section. HMM is a suitable learning model, as one can
divide a turning at the intersection into several stages with
discrete hidden states. For example, a right turn process can
be described by an HMM with 5 hidden discrete states:
approach the intersection, start turning, do right turning,
finish turning, and drive away from the intersection. One
can use a similar process for left turn and going straight.

Two procedures are needed in HMM: learning and eval-
uation. In learning stage, given a set of observation se-
quences, the parameters of state transition probability matrix
πππ = {πi j}M×M and the distribution of observations p(yt |qt)
need to be learnt with M hidden states. For each HMM,
we assume that p(yt |qt) has a Gaussian Mixture Model
(GMM) distribution with parameter set θθθ . Because there is
no closed form of the estimation of πππ and θθθ , we apply
the Baum Welch algorithm to approximate the optimal
solution. The Baum Welch algorithm is an Expectation-
Maximization (EM) algorithm. The expectation step provides
the expectation of the log-likelihood given the current system
states and transition probabilities, and the maximization step
adapts the model parameters to maximize the expectation
of log-likelihood. By iteratively applying the expectation
and maximization steps, the maximum likelihood estimations
of πππ and θθθ can be approximated. In evaluation stage, we
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calculate the probability of a given observation sequence y1:t
that is created by a HMM hmm(πππ,θθθ), i.e., p(y1:t |hmm(πππ,θθθ)).

In our HMM-based classification method, we build three
individual HMMs for right turn hmm1(πππ1,θθθ 1), left turn
hmm2(πππ2,θθθ 2), and going straight hmm3(πππ3,θθθ 3), and apply
the Baum Welch algorithm to learn the parameters πππ i and
θθθ i (i = 1,2,3) for each HMM. Given a new sequence of
observation y1:t , we classify it into three potential driving
behaviors with the Maximum a Posteriori (MAP) rule:

i = argmax
i={1,2,3}

p(hmmi(πππ i,θθθ i)|y1:t)

∝ argmax
i={1,2,3}

p(y1:t |hmmi(πππ i,θθθ i))p(hmmi(πππ i,θθθ i)) (1)

where p(hmmi(πππ i,θθθ i)) is the prior probability for each turn
class. Assuming p(hmmi(πππ i,θθθ i)) has uniform distribution,
we have

i = argmax
i={1,2,3}

p(y1:t |hmmi(πππ i,θθθ i)) (2)

B. Support Vector Machine (SVM)

We also use a supervised learning method, support vector
machine (SVM), for classification. The features used are
described in a later section. SVM offers a robust and efficient
classification approach for driver intention prediction by
constructing a hyperplane in a higher dimensional space.
The hyperplane provides a separation rule with the largest
distance to the “support” training data of any class. We use
the toolkit of LIBSVM for training the SVM for our three-
class classification problem [2]. For the details of SVM and
more information about LIBSVM, we refer the interested
readers to the papers [2] [3].

C. Dynamic Bayesian Network (DBN)

While both HMM and SVM can be applied to predict
driver intention at the intersection in a manner of classi-
fication, we further propose a Dynamic Bayesian Network
(DBN) approach for driver intention inference. Motivated
by the fact that driver intention at an intersection can be
reflected by the driving tracks through controls of vehicle
(e.g., braking, accelerating and steering), our proposed DBN
approach infers the driver intention considered as a latent
state I from the observations of position and velocity of the
vehicle over time. In addition to the driver intention I (a
discrete variable including straight driving, right turning and
left turning), other hidden states include the position and
velocity of vehicle (s and v), the control variables of vehicle
(the acceleration a and the change of driving direction ∆α),
and the driving lane index L. Denote by s = [sx,sy] the x and
y coordinate and v = [vx,vy] the velocity. Note that only the
state of the position s and velocity v are observed, denoted
as ŝ and v̂, respectively. To simplify the notation, we define
the variable vector y = [sx,sy,vx,vy] for the observation state
of Y , the variable vector o= [ŝx, ŝy, v̂x, v̂y] for the hidden state
of O, and the variable vector c = [a,∆α] for the hidden state
of C. The graphical model of our proposed DBN is shown
in Fig. 2.

Fig. 2. The graphic model of the proposed DBN. Denote by I the driver
intention, L the lane index, Y the observed position and velocity of O, and
C the vehicle controlling.

In Fig. 2, the nodes represent random variables and the
arcs represent the conditional independence. While Y , O
and C are time-dependent continuous variables, both driver
intention I and driving lane index L are discrete variables and
are assumed to be constant when the vehicle drives through
the intersection. More specifically, the lane index L indicates
the lane from which the vehicle drives into an intersection.
Compared to the HMM, DBN represents the distribution
p(y(t),o(t),c(t)|y(t − 1),o(t − 1),c(t − 1),L, I) in a more
compact way. We assume that the likelihood of observation
given the hidden states has a Gaussian distribution:

P(y(t)|o(1 : t),c(1 : t),L, I) = P(y(t)|o(t))

=
1

2πσsσv
exp
{
−||s− ŝ||2

2σ2
s
− ||v− v̂||2

2σ2
v

}
(3)

where the operator ||x|| denotes the Euclidean norm of a
vector x. The position and velocity of the vehicle can be
updated:

sx(t) = sx(t−1)+ vx(t−1)∆T +wx
sy(t) = sy(t−1)+ vy(t−1)∆T +wy
||v(t)||= ||v(t−1)||+a(t−1)∆T +wa
∠v(t) = ∠v(t−1)+∆α(t−1)+wα

vx(t) = ||v(t)||cos(∠v(t))
vy(t) = ||v(t)||sin(∠v(t))

(4)

where we have wx ∼ N (0,σ2
x ), wy ∼ N (0,σ2

y ), wa ∼
N (0,σ2

a ) and wα ∼ N (0,σ2
α). The dynamic process of

control variables c(t) = [a(t) ∆α(t)] are very important
because these hidden states reflect the driver intention I
directly with specific turning restrictions from the lane L.
Given the states of vehicle o(t−1) and c(t−1) at time t−1,
the lane number L, and the underlying driver intention I, the
control variables at time t are sampled from the conditional
distribution of p(c(t)|c(t−1),o(t−1), I,L). Due to the fact
that the control of vehicle is usually determined by the
position of vehicle in a lane through which the vehicle drives
into the intersection, we have

p(c(t)|c(t−1),o(t−1), I,L) = p(c(t)|c(t−1),x(t−1), I)
(5)
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where x(t− 1) = [dintersection dcenter α] in which dintersection
is the distance to the intersection, dcenter is the distance
to the lane center, and α is the angle of vehicles driving
direction relative to the lane direction. Given o(t−1) and L
at time t−1, the features x(t−1) can be calculated. For each
class of turning (i.e., I is given), we assume the distribution
p(c(t)|c(t−1),x(t−1)) satisfies a Gaussian mixture model
(GMM). The parameters of these GMMs and variances σ2

x ,
σ2

y , σ2
a and σ2

α are estimated offline by using Expectation-
Maximization (EM) method.

To infer the unknown hidden states, we employ particle
filter approach to approximate the posterior distribution of
hidden states p(I,L,Ct ,Ot |Y1:t−1,C1:t−1,O1:t−1). Compared
to the classification methods, such as HMM and SVM
presented in previous sections, the proposed DBN is an
online inference approach. Meanwhile, because the driving
lane L is conditionally dependent on the intention I, the
knowledge of available turning option for a lane can be
incorporated into our learning model.

Compared to the HMM and SVM approaches, the pro-
posed DBN method offers many advantages: firstly, because
the lane index is inferred, we can easily incorporate the
traffic rule (i.e., the allowed turning options from that lane)
to infer driver’s intention, thereby improving the prediction
performance; secondly, when the observation of turning
signal of one vehicle is available, we can easily extend our
DBN model by connecting the observation of turning signal
to the hidden state of driver’s intention directly, which helps
in the inference of driver’s intention.

III. EXPERIMENTS

In our experiments, we evaluate the performance of HMM,
SVM and DBN models with our collected dataset. We use
80% driving tracks for training and the remaining 20% tracks
for testing.

A. Intersection Driving Data Collection

We collect driving tracks at intersections using a high
resolution GPS. We use NavCom GPS with Inertial Plus IMU
system. The intersections in our dataset include 5 three way
T-junctions and 1 four way intersection. Of these 3 have red
lights and the other 3 are stop signed intersections. Some of
the intersections in our dataset do not have 90 degree turns
making our dataset very challenging.

We use accurate lane-level maps provided by Zenrin in
our work. Fig. 3 gives examples of straight driving at two
different intersections with extents of lanes on the roads.
We adopt the lane model of [11] to model the complex
structure of intersections. In our lane model, the intersection
consists of roads as ways, and the roads are composed
of lanes. Each lane of an intersection is indexed with an
identifying number. Based upon the Zenrin map, the turning
lanes are automatically built to connect two lanes at the
intersection using semi-automated scripts. Fig. 4 shows an
example of Zenrin lane data overlaid on Google map data
and Figure 5 shows the generated turning lane center-lines
at the intersection.

Fig. 3. Examples of two driving tracks in a lane-level map in our real-world
dataset

Fig. 4. Lane-level Zenrin lane boundary data overlaid on Google map (best
seen in color)

The driving tracks collected in our dataset include Canbus
data (velocity, acceleration), and GPS/IMU data (position,
car orientation) using 1 car. We collect a total of 403 turning
tracks through intersections. Because of errors in the GPS
device, such as missing time stamps and drifting, some GPS
tracks are found to have errors. We eliminate some of the
tracks with major errors, leaving us with 375 tracks from
the experiments. The summary of GPS error in our dataset
is shown in Table I.

TABLE I
GPS ERRORS

GPS Error Number Used in
of errors experiments

Missing Points 3 no
Off by 10s of meters 15 no
Track drifting with time 7 no
U turn 3 no
Bad Time 21 yes
Small or medium drift 9 yes
Track crosses intersection 8 yes
Incorrect lane 4 yes
Track Discontinuity 2 yes

B. Feature Extraction for Classification

We extract five features that are used in HMM and SVM
learning models for classification:

1) Distance between vehicle and lane center dcenter;
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Fig. 5. Generated lane center-line data at the intersection (best seen in
color)

2) Distance to the intersection dintersection;
3) Angle of vehicle’s driving direction relative to the lane

direction α .
4) Velocity of vehicle v .
5) Acceleration of vehicle a.

Fig. 6 shows the features of dcenter and α along with the
distance to the intersection dintersection for left/right/straight
driving at all intersections. A positive value of dcenter indi-
cates that the vehicle drives on the right side of lane center,
and a negative value of dcenter indicates the vehicle drives on
the left side of lane center. Also a value of α is positive when
the vehicle drives to the right of the lane and is negative when
it drives to the left of the lane. The point with dintersection = 0
is the point that the vehicle drives into the intersection. Both
dcenter and α indicate the turning movement. For example, if
turning left, the vehicle is usually more likely located in or
towards to the left side of lane, i.e., there is negative dcenter
or negative α . If driving straight, both values of dcenter and
α would be close to zeros. We show the average distance
between vehicle and lane center dcenter approaching and
leaving the intersection in Fig. 7, the average yaw rate α in
Fig. 8, and the average speed and acceleration in Fig. 9 and
10, respectively. The distinguishing feature characteristic for
different turning types leads to high recognition performance
using various statistical learning methods.

Our CANBus data is at a much sparser sampling rate than
GPS data which is collected at 150 Hz. Hence, we compute
velocity and acceleration from GPS positions using Savitzky
Golay filtering. We perform smoothing using a 3rd degree
polynomial.

C. Results

The prediction performance is measured at various stages
as a vehicle approaches an intersection. Results are pre-
sented at 2.8 m before intersection (dintersection = 2.8 m),
at intersection (dintersection = 0 m), and 2.8 m and 5.6 m
after intersection (dintersection = −2.8 m and dintersection =
−5.6 m). For each stage, we train separate models and
obtain performance metrics using the corresponding model
only. The DBN approach makes use of the traffic rule for

Fig. 6. Features used for classification. On the left are the plots of distance
between vehicle and lane center dcenter vs. distance to the intersection
dintersection. On right are plots of angle of vehicle α vs. dintersection. Zero
value on x axis occurs at the intersection with negative values being past
the intersection.
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Fig. 7. Average distances to lane center for right turning, left turning and
straight going.

inference while both HMM and SVM approaches do not.
The prediction performances at different distance level are
shown in Table II. The results show that SVM can obtain
the best prediction performance 2.8 m before intersection and
at intersection and DBN is the best 2.8 m and 5.6 m after
intersection. It also shows that one can always obtain better
prediction when the vehicle drives closer to the intersection
and farther away from the intersection. The average number
of choices at intersections is 1.85. So if we guess randomly
we get 54% accuracy.

We also analyzed the error cases before and after the
intersection. One of the reasons for these errors is the vehicle
has not turned when we make the prediction. This may be
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Fig. 8. Average yaw angle for right turning, left turning and straight going.
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Fig. 9. Average speed for right turning, left turning and straight going.

caused by stop line placement at the intersection, and GPS
errors.

IV. CONCLUSIONS

In this paper, we have built a general model to predict
driver’s turning intention at various intersections, which can
be used for Intersection Movement Assist (IMA) and Left
Turn Assist (LTA) in intelligent vehicle and autonomous
vehicle driving in urban area. In our general model, the
features that refer to the road layout are extracted by in-
corporating lane-level road map. Three different statistical
learning approaches, including HMM, SVM and DBN, are
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Fig. 10. Average acceleration for right turning, left turning and straight
going.

TABLE II
ACCURACY IN PERCENTAGE FOR DRIVER’S INTENTION PREDICTION

USING HMM, SVM, AND DBN

Distance HMM SVM Dynamic
relative to without Bayes
Intersection vel/acc Net
2.8 m before 79.1% 90.6% 88.4%
at intersection 77.0% 93.8% 92.0%
2.8 m after 84.6% 96.5% 97.0%
5.6 m after 90.8% 96.8% 97.4%

examined in our collected real-world driving tracks. We get
over 90% turn prediction accuracy 1.6 seconds before the
intersection. and accuracy of 93.8% at the intersection using
SVM.

Our work incorporates lane geometry via high resolution
maps and advances the state of the art in ADAS/AD systems
by building a turn prediction model that works at general
intersections. In the near future, we will examine the predic-
tion performance with the turning indicator and lane index
information incorporated into the statistical models.
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