[Proposal] Discovering domain-specific, sentiment-driven text-visual detector in microblog images

Presentor: Aaron Kung
Rongrong Ji
Motivation

• Microblog data often contains multimedia data
• Text data in microblog is usually
 – Extremely sparse
 – With strong sentiment orientation
 – > We cannot use traditional joint text-image methods
• We wish to incorporate such text data with images to derive representative properties in an image-tweet
• No such works associating social media text and image have yet been proposed
Project Goal/Contribution

• Goal 1: Develop a method to extract meaningful and interpretable sentiment-driven text-visual detectors from texted images in microblogs
 – Qualitatively show the detectors are describable
 – Empirically show that the detectors provide more compact and effective representation for sentiment analysis

• Goal 2: Release the first microblog text-image dataset for different domains and corresponding text-visual detectors
Challenges

• **Challenge 1:** How to derive joint text-visual attribute in social media under the notion it’s
 – Biased with personal opinions?
 – Noisy and sparse text?

• **Challenge 2:** How to make such text-visual attribute human-interpretable?

• **Challenge 3:** How to determine top k text-visual attributes from a set of candidates?

• **Challenge 4:** Are there occasions where such attributes are useful over existing methods?
Framework

Preprocessing
- Data collection, labeling

Training
- Derive candidate text-visual attributes
- Rank candidate attributes
- Representative text-visual attributes for the training domain

Testing
- Sentiment Analysis
- Used as detectors for other CV tasks
Framework

- **Preprocessing**
 - Data collection, labeling

- **Training**
 - Derive candidate text-visual attributes
 - Rank candidate attributes
 - Representative text-visual attributes for the training domain

- **Testing**
 - Sentiment Analysis
 - Used as detectors for other CV tasks

(Twitter data is lexically distinct under different emotional state and different topics)

- Select datasets from domains with balanced sentiment
- Manually label instances according to sentiment polarity
Framework

Preprocessing

Data collection, labeling

Derive candidate text-visual attributes

Representative text-visual attributes for the training domain

Rank candidate attributes

Training

Sentiment Analysis

Used as detectors for other CV tasks

Testing

• Associating text-visual attributes using information graph formulation
• Each joint attribute is equivalent to mining frequent subgraphs
• Use common frequent subgraph algorithms to find candidates
Framework

Preprocessing

Data collection, labeling

Derive candidate text-visual attributes

Rank candidate attributes

Representative text-visual attributes for the training domain

Training

Sentiment Analysis

Used as detectors for other CV tasks

Testing

- There are any structurally similar subgraphs (approximately isomorphic)
- We eliminate similar subgraphs and obtain a diverse and representative list of attributes
Framework

Preprocessing

Data collection, labeling

Derive candidate text-visual attributes

Rank candidate attributes

Representative text-visual attributes for the training domain

Training

Testing

Sentiment Analysis

Used as detectors for other CV tasks

• Joint modality detectors should work well in text mining tasks as well as in visual mining
• The attributes should be compact and efficient
Data Collection

- **Data Source:** *Twitter/Twicaps*
 - Each instance is a tweet with corresponding image URL (flickr, twitpics, yfrog, etc.)
 - Every instance has a corresponding image

- **Domain selection**
 - Many domains are extremely unbalanced in emotion (e.g. movies)
 - Filter by hashtags or keywords to get a group of instances with more evenly balanced emotions based on six basic human emotions (anger, happy, surprise, etc.-through manual checks)
 - Select domains (each about 1000-10000 instances):
 - Weather (lightning, sky, rain)
 - Location specifications (place, event, meeting, room)
 - Neutral expressions (crazy, hell, insane)
 - Scenery expressions (dark)
 - Sensory expressions (hot, cold, burn, freeze)
 - Politics (Obama, Romney)- internal evaluation only
Data Labeling

- Labeling resource: Manual/Mechanical Turk
- Labeling workflow:

 - Pos/neg/neutral
 - Happy/angry/sad

Label types depend on the domain

- Discard
- Golden Standard
- Labeled Dataset
Text/Visual Attribute Generation

• Text attribute generation (feature value-freq):
 – Bag of words text attributes commonly used in Twitter sentiment classification [1,2,3]
 – BoW features (Unigram) + other features
 • # of capitalized characters
 • # of pos/neg emoticons
 • # of hashtags, URL
 • BoW is empty: label “null”

• Visual attribute generation (feature value-sparse [0,1]): use general Classmes detectors[4]
Sub-goal: Discover joint modal attributes

• Fundamental concepts
 – Text attributes are used in assistance
 – Low frequency data attributes should be less important
 – High frequency attributes without label distinction is not informative
 – High frequency attributes with label affinity should be given more weights
Idea 1: Generate information graph

• Each feature should be considered as a node: text-unigram; image-visual attribute

• An edge between two features reflects how likely both occur in affinity to a given sentiment label for an instance
Idea 1: Generate information graph

- There should be a function that maps each instance to a graph $f(i)$, $\mathbb{R}^n \rightarrow G(N,E)$
- Node for attribute a_i $N(a_i) = 1$ (exists) iff a_i occurs in the instance or present in detector
- Edge weight E_{ij} is defined:

$$E_{ij} = \begin{cases}
 f(i, j) & \text{if } x > \delta \text{ and } i \neq j \\
 0 & \text{otherwise}
\end{cases}$$

where i, j are features

$$f(i, j) = \frac{L_k \times \log g_k(i)}{\sum_p L_p \times \log(g_p(j))} \times \frac{L_k \times \log g_k(j)}{\sum_p L_p \times \log(g_p(j))}$$

where k denotes the instance considered, L_k is the label of the instance, $g_k(i)$ is the feature function on feature i in instance k.

And feature function g: (N_i is a normalizing factor on word i)

$$g_i = \begin{cases}
 f_i / 0.5 & \text{if feature } i \text{ is visual} \\
 f_i / N_i & \text{otherwise}
\end{cases}$$
Idea 2: Mining Frequent Subgraphs

• Given a graph representation of the dataset: **find frequent subgraph structures that most commonly occur among all graph instances**

• Frequent subgraph:
 – Shows relationship between features of different modality and corresponding strength
 – Explicit association
Idea 2-Mining Frequent Subgraphs

• Why not other alternatives-
 – Graph partition on a single aggregate graph: we are looking for important+diverse+overlapping sets of attributes (but graph partition looks for diverse+non-overlapping sets of attributes)
 – Sparsity-enforced factorization (Sparse PCA): PCA focuses more on variance maximization in subspace construction (but we are looking for frequent attributes, and don’t necessarily need to reconstruct the vector space)
Idea 2: Mining Frequent Subgraphs

Graph Database → Frequent Patterns → Graph Patterns

F(g) = support function

gSpan[5]: Conceptually, build a DFS search tree for candidate substructures to examine
Idea 2: Mining Frequent Subgraph

- Alternatively, we can increase support by first clustering text/visual attributes

- Then each cluster is mapped to a new node and do frequent subgraph mining afterward
Idea 3: Selecting Representative Subgraphs

• **Input:** a set of attributes
• **Output:** most relevant attributes

Boosted Attribute Selection

- $F = \{\text{empty}\}$, output attribute set
- $\delta = \text{model improvement threshold}$

Sort the set S of candidate attributes in canonical order

Let additive model $M = \text{null}$, and the model is defined by attributes and corresponding weights

For each attribute A in S:

- Train weak model using only A
- Learn $w_A = \text{boosted weight of } A \text{ given current } M$

$$M_{\text{new}} = M_{\text{current}} \cup \{A, w_A\}$$

if accuracy($M_{\text{new}}(D)$) – accuracy($M_{\text{current}}(D)$) > δ:

$$F = F \cup \{A\}$$

return F
Sub-goal: Empirical Evaluation of Detectors’ Effectiveness

• Evaluation 1: **Qualitative expression of text-visual detectors given specific domain**

• Evaluation 2: **Efficiency of detector generation**

• Evaluation 3: **Using detectors as compact features for sentiment analysis**
Evaluation 1

• Select certain domains and print text-visual detectors and top returning instances:

• Goal: the results should be visually interpretable
Evaluation 2

• Use the derived set of detectors as features to solve the task of **sentiment analysis**
• Evaluation runs: K-fold CV on each data
• Problem formulation: Bi/Ter-nary sentiment classification (pos/neg/neutral)
• Classification Model: SVM
Transforming attribute to feature vector

• Each instance = $G_i(V_i, E_i)$
• Each detector = $G_d(V_d, E_d)$
• Feature vector for instance i and detector d:
 $F(i,d) = (V_{d1} * V^i_{d1}, ..., V_{dn} * V^i_{dn}, ..., E_{d1} * E^i_{d1}, ..., E_{dk} * E^i_{dk})$

 – V_{d1}-V_{dn} are matching vertices from 1~n for subgraph detector d
 – E_{d1}-E_{dk} are matching edges from 1~k for subgraph detector d
Evaluation 2

• Comparing methods:
 – Pure BoW features:
 • Textual attributes
 • Visual attributes
 – Early fusion of BoW features
 • Append text/visual attributes to a feature vector
 • (Multiple kernel learning)
 – Late fusion of BoW features-average
 – Proposed: append multiple detectors into single feature vector
 • Append detectors without weighting
 • Append detectors with weighting
Evaluation 2

• Comparing number of detectors used and corresponding performance
 – Number of detectors vs prediction accuracy

• Goal: There should be a reduction of total features while providing reasonable results
 – Denoising
 – Evaluating relevance of attribute
 – Improvement is needed here
Evaluation 3

• Run time evaluation: with original visual attributes, we need to check every detector for every instance
 – Check: runtime at testing phase using all detectors
 – Check: runtime using extracted text-visual detectors with varying number of detectors

• Goal: factors of speedup using partial text-visual detectors
Evaluation 3

• To show that it is necessary to provide a separate set of detectors for each domain

• For each domain of twitter-image data, plot the heatmap of constantly present categories
(Evaluation 4)

• Run **object category recognition** task on a selected subset of Twitter-based image tweets

• Comparing methods

 – Baselines (method-wise):
 • GIST features for SVM
 • MKL

 – Baseline (detector-wise): SVM (Classmes)

 – State-of-art: LP-β

 – **Proposed:**
 • SVM on bimodal detectors
 • Boosted model on bimodal detectors (graph boost)
(Evaluation 4)

• Comparing criteria:
 – Feature size
 – Training/testing runtime
 – Classification accuracy
 – Detector size selection vs performance
Sub-goal: Application

• Application 1: Added function to Rongrong’s app, where we can query by domain and return sentiment-ranked tweets and attributes

- Rock, !, :), Cool, Bright, Exciting, Hot
- Monitor, ink, photo, news
- Freezing, Depressing, Bore, Hungry
Sub-goal: Application

- Application 2 (if time permits): In addition to domain query, we also include time granularity to see if there are differences in discovered detectors under drifting sentiment concepts.

Politics

2011-2012
- Obamacare
- Tax
- Recession
- Greece

2012-
- President
- Election
- Romney
- Obama
Timetable for Executables

- 8/14-8/18: Data labeling, idea implementation, manual verification via evaluation 1, preliminary checking on evaluation 2/3
- 8/18-8/24: Detailed experiments on evaluation 2 and 3, examining different parameters and contrast performance under different domains
- 8/24-9/6: @Kyoto, further consolidation on evaluation 1, 2, 3
- September: Application, drafting ideas
- Deadline?