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1 Introduction

Contemporary computer networks are heterogeneous; even a single network consists
of many kinds of processors and communications channels. Networks are also
inherently decentralized; capability is scattered across the system. But few system
design methodologies embrace or even acknowledge these complexities. New
methods and approaches are required if next-generation networks are to be
configured, administered and utilized to their full potentials. In our research at the
MIT Media Laboratory we are building systems that use mobile software agents to
manage complex real-world networks. In this chapter we describe a strategy for using
a collection of cooperating mobile agents to solve routing problems for dynamic,
peer-to-peer networks.

Information networks continue to increase in size, complexity and importance.
More and more devices are connected to computer networks, from desktop computers
to cellular telephones, Web servers to pagers, television set-top boxes to smoke
detectors. As connections proliferate, network topologies necessarily become more
and more dynamic. Devices may move from place to place, or maintain intermittent
connections, or change their relationships to the network and their peers on the fly.
Networks must be flexible enough to allow these devices to communicate with each
other in a variety of ways and across a variety of substrates. For example, physical
links currently in widespread use include Ethernet, cellular radio, short-range infrared,
and analog modem (to name a few).

The problem of configuring such dynamic and heterogeneous networks is difficult
at several levels. Researchers in this domain face hard problems of packet routing,
service coordination, and infrastructure security. In many cases, conventional
centralized approaches to network management are inappropriate, unable to serve
large, diverse, mutable collections of computers.

The routing tables of conventional network systems, for example, are usually
generated in a centralized (and often human-mediated) manner. In this paper we
present a contrasting model, a dynamic, wireless, peer to peer network with routing
tasks performed in a decentralized and distributed fashion by mobile software agents
that cooperate to accumulate and distribute connectivity information. Our agents
determine system topology by exploring the network, then store this information in
the nodes on the network. Other agents use this stored information to derive multi-hop
routes across the network. We study these algorithms in simulation as an example of
using populations of mobile agents to manage networks.
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2 Managing Networks via Populations of Mobile Agents

2.1 The Importance of Decentralization

We believe that complex networks require decentralized management structures. The
aggregation of control inherent to centralized systems makes it very difficult for such
networks to scale upwards in size.  Centralized management tools depend, by
definition, on restricting important decisions to one or a few nodes. These special
nodes become performance bottlenecks as they are required to serve an increasing
numbers of clients. In addition, failure of the controlling nodes (or the inability, for
whatever reason, of other nodes to communicate with them) poses serious difficulties
to participants in centrally managed networks.

For similar reasons, designing centralized architectures that can readily adapt to
changes in network usage is at least as difficult as designing them to scale well.
Because the “intelligence” in a centralized network resides in a small number of
specialized nodes, most devices on the network will be capable of only a limited range
of behaviors. Asking devices with limited, hard-wired behavior to adjust themselves
in response to changing circumstances – to use a different back-off algorithm,
perhaps, or to structure their packets in a new way – will usually be impossible.

Finally, there is a fundamental incompatibility between centralized design
frameworks and inherently distributed real-world networks. A cellular telephone
system serves as a good example. The nodes in a cell-phone network are numerous,
mobile, and have constantly-changing service requirements. Both the topology of
connectivity and the local relationships between nodes are highly fluid. Yet, current
cellular networks ignore this complexity as much as possible: all communications are
managed by a static grid of monolithic servers (cell towers). Contemporary cellular
systems are highly centralized.

All of the interesting dynamics in a cellular system revolve around the behavior of
individual telephones, yet almost all of the investment, intelligence, and overhead in
these systems is concentrated in the cell tower infrastructure, exterior to the phones
themselves. As a result, cellular systems can only offer a very limited range of
services, remain expensive to scale (with regards to both coverage area and device
density), and make relatively poor use of bandwidth.

We suggest a different model of network design, a decentralized approach to
managing networks. Instead of a centralized infrastructure for managing connectivity,
we propose using populations of cooperating, mobile software agents to maintain
routing information across dynamic networks. Our approach is to push the
intelligence traditionally centralized in a few controlling nodes out into the network as
a whole, and to embed that intelligence into a flexible, adaptive software framework.

2.2 Mobile Agents

Mobile agents are a novel way of building distributed software systems.  Traditional
distributed systems are built out of stationary programs that pass data back and forth



across a network. Mobile agents, by contrast, are programs that themselves move
from node to node: the computation moves, not just the attendant data. Mobile agents
in our work are defined by five important properties:
1. Agents encapsulate a thread of execution along with a bundle of code and data.

Each agent runs independently of all others, is self-contained from a programmatic
perspective, and preserves all of its state when it moves from one network node to
another. This is “strong mobility” as defined in (Baumann, 1997)

2. Any agent can move easily across the network. The underlying infrastructure
provides a language-level primitive that an agent can call to move itself to a
neighboring node.

3. Agents must be small in size. Because there is some cost associated with hosting
and transporting an agent, agents are designed to be as minimal as possible. Simple
agents serve as building blocks for complex aggregate behavior.

4. An agent is able to cooperate with other agents in order to perform complex or
dynamic tasks. Agents may read from and write to a shared block of memory on
each node, and can use this facility both to coordinate with other agents executing
on that node and to leave information behind for subsequent visitors.

5. An agent is able to identify and use resources specific to any node on which it finds
itself. In the simulation presented in this chapter, the nodes are differentiated only
by who their neighbors are (and agents do make use of this information). In a more
heterogeneous network, certain nodes might have access to particular kinds of
information – such as absolute location derived from a global positioning system
receiver – that agents could leverage.

2.3 Flexible Systems

Using small, self-directed, mobile agents as building blocks allows us to design a
network architecture that is flexible in several ways.  First, because of the
fundamentally distributed nature of collections of agents, our architecture can scale
upwards in size quite gracefully. Second, because agent populations can change over
time, new usage contexts and models can be accommodated. Finally, because all
system interaction is mediated by agents, multiple network management strategies can
coexist and co-evolve.

2.3.1 Network Size
Mobile agents serve as simple distributed building blocks for constructing system-
level functionality. It is possible, at least in theory, to design a system using a small
number of simple agents so that the interactions between agents is well-specified and
so that the pattern of interactions between agents remains stable even as more blocks
of the same kind are added. The development of design heuristics that are applicable
to mobile agent systems is one long-term goal of our research.

One specific rule of thumb (or hypothesis about system design) that has emerged
from our research is the following: explicit localization of interaction makes a
networked system easier to understand and can reduce or eliminate performance
bottlenecks and common points of failure. For example, individual agents in our
model are simple and self-contained, and their interaction is restricted to local
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manipulation of shared memory. The simplicity of our building blocks makes it easy
to conceptualize systems in which large numbers of agents work together across a
network of many nodes.

While an analysis of scalability is not the main focus of the experiments presented
in this chapter, we have observed that the systems we design using restricted,
localized communications models are more comprehensible and stable than those we
have designed around more open, “sockets-and-messages” frameworks. It is worth
noting that a common way of organizing a large networked system is to partition it
into hierarchies smaller sub-networks. By contrast, our approach can be thought of as
structuring communications using a large number of limited, overlapping spheres of
activity, rather than a few discrete partitions.

2.3.2 Usage Models
It is very difficult to design a conventional network that adjusts well to either
changing usage patterns over short time scales or to evolving needs and circumstances
over the long haul. In contrast, a mobile agent based system can be reconfigured on
the fly, in response to new situations or demands, and with or without human
intervention.

System-level behavior can be incrementally altered by varying the size and
composition of an agent population, adding new agents dynamically to reinforce
weaknesses or balance priorities.  Human managers can adjust the network, and
agents themselves can adapt to changing circumstances. Well-written agents can be
self-regulating, dying off or spawning copies of themselves as the situation dictates.
Specific sets of agents can be delegated to monitor aspects of the system, altering the
mix of other agents in the population, as needed. Finally, drastic revision of
capability, such as patching a security hole or rolling out a new feature all across the
network, can be accomplished by flushing the system and flooding it with a new
population of agents.

To elaborate, populations of network agents dedicated to maintaining routing and
connectivity information can specialize in several distinct ways:
1. Agents can specialize with regard to usage patterns across the network. For

example, management agents could enact economic incentives to encourage certain
traffic patterns (Gibney, 1998). Or specific agents might dedicate themselves to
maintaining very low-latency routes, though they would need to use a
disproportionate amount of bandwidth to do so.

2. Specialized agents could work to manage requirements in specific areas of a
network. For example, a certain part of a LAN with a great deal of video traffic
could deploy agents that construct and maintain high bandwidth connections.

3. Agents can adapt the network infrastructure to changing needs over time. For
example, the cost of using a relatively dormant gateway could be reduced so that it
handles more traffic. Or at times of peak traffic, the population could be weighted
towards less-complex, low-overhead routing agents that mostly “harvest”
connectivity information from the environment, rather than explicitly constructing
connections (Poor, 1997).

4. Agents can specialize on behalf of specific users. An individual is likely to have a
pretty good idea of his or her communications needs, and should be able to carry



around a collection of agents optimized to negotiate or create personal
connectivity.

2.3.3 Network Management
As several of the above examples suggest, various management models integrate quite
elegantly into systems built around mobile agents. For example, applying simple
economic metrics to each agent’s movement (or, more subtlely, thinking of
information exchanges that enable communications as transactions) provides a
decentralized framework within which particular kinds of communication can be
encouraged, required, restricted or accounted for accurately.

Each agent must be given tools that allow it to make contextually-specific
decisions about how to use finite resources. Cost-based routing algorithms, for
example (Davie, 1996) are a well-understood way to optimize multi-hop traffic across
a network. Other metaphors have also been proposed, such as the pheromone
following of social insects (Schoonderwoerd, 1997) (Bonabeau, 1998)
(Schoonderwoerd, 1999, chapter 13 of this book). The flexibility of a mobile agents
architecture would allow multiple models such as these to coexist; perhaps messaging
agents with different needs would route themselves using information from different
management agents, and the owners of those messages would be billed accordingly by
the owners of the various management ecologies.

2.4 Cognitive Tools For Systems Design

It is worth trying to separate the purely technical advantages of a system built out of
mobile agents from the cognitive leverage that the mobile agents metaphor can
provide to designers and programmers. Certain attributes – most notably the extreme
run-time flexibility – of mobile-code architectures stand on their own as advances in
systems capabilities. Most of the attributes described above, however, are as much
arguments about systems designers as about systems design.

As networks become more and more complex, finding abstractions that allow us to
think about them in useful ways becomes more and more important. Mobile agents, as
discrete pieces of code with clearly-defined functionality and privileges, are an
appropriate and powerful tool for use in thinking about, specifying, and writing
programs for networks of computers.

The mobile agents approach can be thought of as a metaphoric extension of object-
oriented programming, useful to engineers designing network systems in the same
way that component software tools are useful to developers of complex desktop
applications. A mobile agent encapsulates not only data and code, but an “agenda” –
some intentionality, an unfolding thread of execution – into a small package. This
encapsulation gives systems designers a way of creating building blocks for networks.
With these building blocks it is possible to find ways of thinking about systemic
behaviors that embraces changes in network size, congestion, usage patterns and user
needs.
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2.5 Related Work

Mobile agents are an active and exciting research topic, especially as contemporary
tools such as Java make mobile agent systems relatively simple to implement. A
number of general arguments exist as to why the mobile agent approach is potentially
useful (Chess, 1997) (White, 1996).  Much research has focused on performance
enhancement from resource distribution, but we believe that the most interesting and
novel possibilities of mobile agent architectures lie in their adaptive nature and
inherent flexibility (Baldi, 1997) (Halls, 1997).

Much of the work applying mobile agents to systems infrastructure has taken place
under the umbrella of active networking (Tennenhouse, 1997). Our work is closely
related to that of the active networks researchers; we share a concern with the
dynamic characteristics of network systems and a desire to explore the possibilities of
movable bits of code in a network context. Our simple message agents behave much
like active packets, using computational resources of each successive node on which
they find themselves to choose a route.

There are several threads of research on using mobile agents situated in a
telecommunications network to manage connectivity and load balancing. Appleby and
Steward’s work is an early paper suggesting using mobile agents with AI-like
strategies to dynamically load-balance a telecommunication network (Appleby, 1994).
Follow-up work using a design inspired by ant behavior (Bonabeau, 1998) extends
these ideas in a new direction, using markers in the network environment as a means
of indirect inter-agent communication (“stigmergy”).

2.6 Why Not Mobile Agents?

A few potential disadvantages to designing networks with mobile software agents
should be noted. We see this short list as a blueprint for future research rather than a
set insurmountable obstacles.

2.6.1 Efficiency
Computational cycles are expensive and network bandwidth is precious. Messages
which route themselves will consume more computational resources than statically-
routed packets. And management and infrastructure agents will consume a share of
bandwidth as well. Given this, it is perhaps difficult to justify these newer approaches
as they seem more costly than those we use now.

However, contemporary engineering approaches already have difficulty dealing
with dynamic networks (Perkins, 1997), and this will only become more apparent as
our networks become increasingly complex and heterogeneous. Efficiency, from this
perspective, is largely determined by how well an architecture deals with a broad
range of ever-changing demands. A mobile agents approach offers a rich set of tools
at design time and great flexibility during the in situ lifetime of a system, stacking the
deck in favor of architects, implementers and maintainers faced with the difficult task
of engineering reliable, dynamic networks.

Another way to think about network efficiency is as a set of necessary tradeoffs
between finite resources. For example, because compute time has fallen in price more



rapidly than connect time it is common to trade cpu cycles for bandwidth by
compressing data before sending it across a network and decompressing it upon
receipt. Architectures in which packets route themselves across our current multi-hop
networks are too expensive to see widespread use at the moment. But if cheaply
available silicon continues to outpace fiber, the benefits of self-routing messaging
agents will come to outweigh their diminishing relative costs.  Similarly, if mobile
management and infrastructure agents can do a good enough job maintaining dynamic
connectivity in a wireless network, then such a system could prove more efficient than
a rigid, centralized system that must waste a certain amount of bandwidth in order to
provide a certain level of service. The infrastructure agents could be thought of as
harvesting bandwidth, rather than simply consuming it!

2.6.2 Security
Second, moving bits of executing code from computer to computer raises a number of
serious questions about security. We are very concerned with building secure systems,
and are working to understand the particularities of securing our networks.

Mobile agents present three broad classes of security problems: protecting hosts
from agents, protecting agents from hosts, and protecting agents from each other. The
problem of protecting hosts from agents has attracted the most attention from
researchers. We believe that standard cryptographic techniques (such as code signing)
combined with sandbox- and permission-based models of security (such as those
present in Java 1.2). (Oakes, 1998) are sufficient to design an execution environment
that protects a computational host.

The other two problems of mobile agent security – protecting agents from their
hosts and from each other – have enjoyed less attention. We are actively involved in
research to protect agents from each other by extending existing host security models.
And there is a growing body of research on protecting agents from hosts by executing
encrypted code (Tschudin 1997). Although these constitute open areas of research,
progress is being made. Furthermore, in some scenarios it may be possible to avoid
these security problems entirely, by carefully delineating trusted terrain within a
network.

Finally, it is worth noting that the fundamental difficulties we all face regarding
information security are inherent in the spread of relatively open networks. As the
advantages to having access to such networks generally outweigh the risks, we must
all deal with questions of how to protect ourselves from both malicious attackers and
poorly-written software, no matter what kinds of systems we design.

2.6.3 Provability
A third concern is that the “ecological” approach of building network behaviors from
collections of cooperating agents is difficult to model mathematically, and as a result
is difficult to reason about deterministically. We might call this the “unprovability”
problem, and given how important contemporary software can be not only to
productivity but to life and limb, it is a serious one. We typically do not want to build
systems that are unreliable or unpredictable.

However, it should be noted that it is extremely difficult to reason about any real-
world networked system, no matter what its design, because networks of computers
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are irreducibly unreliable. Whenever it is possible that any participant in a network is
potentially unreachable, is malicious, or is pathological (any of which are always
possible), it becomes impossible to reason provably about the behavior of that system
(Fischer, 1985) We believe that the mobile agents frameworks we are developing will
become aids to reasoning about robustness and fault-tolerance, rather than additional
impediments to such analysis.

The remainder of this chapter presents results obtained by simulating mobile agent
populations within a wireless, peer to peer network. These results support the
contention that using mobile agents to manage networks has merit, as well as provide
a thorough analysis of one particular solution to an important network management
problem, maintaining connectivity of routing maps.

3 Experimental Model

For our experiments we have defined a simple model of a dynamic wireless network
and implemented a simulator to study that model.  Our model is motivated by real-
world wireless networks we are designing at the Media Lab, which consist of large
numbers of small, low-power nodes scattered throughout our building. These nodes
vary a great deal with respect to computational power, capabilities and usage – some
are wearable computers, some environmental sensors or actuators, some are
“gateways” attached to desktop computers, and some simply provide location-specific
information to their peers. But they all share the characteristic that in order to reduce
power consumption and maximize the use of a single channel they are limited to
relatively short-range communication. This means that any message intended for a
recipient outside the immediate vicinity will require multiple hops to reach its
destination.

The simulation we describe here is perforce quite simplified compared to a real,
hardware implementation of such a network. However, we believe our model is
realistic enough to provide guidance for designing real systems, and that our
experiments have general applicability to dynamically changing, decentralized
networks. This chapter extends a previous set of experiments in using mobile agent
populations to perform routing, reported in (Minar, 1998). The model presented here
is more complex than that presented in our earlier work; we expect to be able to
directly apply the lessons from this set of experiments in the construction of real
dynamic, multi-hop, RF networks.

3.1 Nodes

The results we present derive from a simulation of a dynamic, peer to peer network.
For our experiments, we chose a scenario consistent with related work by our
colleagues at the Media Lab (Poor, 1997). The nodes in our system are conceived as
low-power, relatively short-range, radio-frequency transceivers distributed throughout
a two-dimensional space. In our simulation the total network diameter is roughly 20



hops, so nodes must cooperate in a peer to peer fashion to route packets across the
network. The average packet in such a system requires multiple hops to travel from
source to destination; therefore, resident mobile agents need to move around the
network in order to effectively gather data about the whole system.

Individual nodes move slowly through simulated space, following random vectors,
so that radio links form and break as the nodes move in and out of range of each other.
As a result, the network topology is quite dynamic. We do assume, however, that
physical links are reliable, bidirectional, and easily detectable. Every node knows who
its neighbors are.

Each node in our system owns a simple routing table. Each node keeps a list of per-
node routing information. For each other node in the world, the table stores what node
to first send a packet to. So to route a packet to an arbitrary node, a message only
needs to do a lookup in its current node for the destination, and then move to the
neighbor that is indicated, repeating as necessary. It is important to note that these
routing tables are not updated by the nodes themselves. The nodes are completely
passive; they rely on mobile agents to update their tables.

We chose a network density to match our best estimates of the capabilities of low-
power, single-channel RF devices, such as might be found in future personal
accessories or as part of home wireless networks. Network size was chosen as large as
was feasible for our data collection, 250 nodes. All of our experiments were
performed with the same configuration and movement paths of nodes. A snapshot of
the node placements at a typical time is presented in Figure 1.

Figure 1: Snapshot of Simulated Network
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3.2 Agents

In our system the nodes are “dumb”: they run no programs of their own, they simply
host agents and provide a place to store a database of routing information. The mobile
agents embody the “intelligence” in the system, moving from node to node and
updating routing information as they go. Routing agents have one goal: to explore the
network, updating every node they visit with what they have learned in their travels.

Routing agents discover edges in the network by traversing them.  Each routing
agent keeps a history of where it has been. When an agent lands on a node it uses the
information in its history to update the routing table on its host as to what possible
routes might be, by writing the best routes the agent knows about into the node's table.
Each agent's memory for history information is quite small: our baseline is 25 entries.
Because the agents must carry their histories with them as they move, the size of the
history window is an important parameter: the longer the history, the higher the
overhead of moving the agent. Our experiments investigate tradeoffs between history
size and system performance.

The system as a whole relies on the cooperative behavior of a population of agents.
The population size is an important parameter: the more routing agents, the higher the
overhead. Agents in a population don't communicate directly with one another. The
algorithms presented here don't even read information from the node's routing tables –
they only write to them – making their own decisions about where to go based on
their personal history (or, in the case of the random agent, on “whim”). Though
system performance is dependent on the behavior of the all of the agents, the
individual routing agents are blind to each other. The subject of inter-agent
cooperation was treated in our previous paper describing this system (Minar, 1998),
and we will return to this work for future experiments.

Our model is implemented as a simple, discrete event, time-step based simulation.
Every step of simulated time an agent does three things. First, the agent looks at all
the neighbors of the node it is on and makes a decision about to where to go next.
Second, the agent moves itself to the new node, learning about the edge it travels.
Third, it updates the routing table of the node it now occupies, using its own recent
knowledge of the network.

We test two algorithms for how an agent chooses to move. One algorithm is a
“random” agent that simply moves to a randomly chosen reachable node at each
opportunity. This agent provides a base of comparison for more directed algorithms.
We also tested an “oldest-node” agent that preferentially visits the adjacent node it
last visited longest ago (or never visited, or doesn't remember visiting). This agent
uses its history to try to avoid backtracking. Intuitively, it performs its task more
efficiently by not repeating its own work.

3.3 Experimental measurements

Our simulation system consists of 1600 lines of Java code implementing a discrete
event scheduler, a graphical view, a data-collection system, and the simulated objects
themselves: network nodes and mobile agents. For our experiments, we repeatedly run



this simulator over various parameters. We measure system performance for the two
different agent algorithms at varying history and population sizes.

Our measure of system performance is the average connectivity of the network
after it has converged to its mean behavior. This number is calculated as follows. In
our model, we designate 9 of the 250 nodes to be special “gateway” nodes. In a
wireless network, these might be nodes that are wired to a larger network, maybe the
local LAN or an Internet link. To measure connectivity we count the fraction of nodes
in our system that have a valid route to at least one gateway. This measure is a
reasonable aggregate of overall connectivity at any given time, as it models how many
nodes have access to the “outside” world.

We run each of our iterations for 300 time steps. For all of our parameter settings,
the simulation converges to its mean behavior at time 100 or well before. Therefore,
we take as a measure of performance the average fraction of connectivity for all nodes
from time 150 to 300. In addition, we report the maximum and minimum connectivity
observed over that time period in order to convey an idea of the stability of the
system. To factor out randomness in the initial placements of the agents, we report
these numbers averaged over a set of 238 different runs of the same parameter set.
All of our experiments were conducted with the same initial node placement and node
movements.

4 Results

A summary of our results is printed in the appendix; what follows is a detailed
description of our analysis.

4.1 First result: performance of a system over time

The first question we investigated is how does the connectivity of the network
change during the course of a single simulation. We examined our baseline system –
100 oldest node agents with history length 25 – measuring the connectivity of nodes
at each time step. The time series in Figure 2 shows the result: the heavy line is the
average time series over all 238 runs, grey lines are a randomly selected set of 16
individual runs.

As the reader can see, the system starts out at zero connectivity: the initial
condition is no knowledge. However, the network quickly gains connectivity as the
agents move around collecting information. There is a small hiccough around time 20
(presumably the result of a major change in graph topology) but the agents quickly
work around that and rise up to 0.8 connectivity by time 40. From then until the end
of our simulation at time 300, the connectivity fluctuates around 0.8 as the network
changes dynamically, and the agents adjust the routing tables accordingly.

We define the convergence point for the purposes of further measurements to be
time 150; this is well after the time series of connectivity flattens out for all of our
runs. The mean connectivity from time 150 to 300, then, is calculated to be roughly
0.792 – we take this mean as the characteristic performance of the system consisting
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Figure 2

of 100 oldest-node-agents with a history size of 25. In addition, the average
connectivity remained between 0.73 and 0.84 during that time span; this is the
performance interval of this system.

This particular example is representative of our time series data in general. All of
our runs start with 0 connectivity, quickly climb to some characteristic equilibrium,
and then remain there until the end of the run. Therefore, in the rest of this chapter we
will report simply the final mean connectivity number, along with maximum and
minimum connectivity values registered after convergence.

There are two significant results in this first experiment. First, it demonstrates a
basic concept: a population of agents can maintain a reasonable rate of connectivity
(in this case, 80%) across the simulated network. Second, the population maintains
this connectivity rate with reasonable stability. The system converges quickly, after
which there is some fluctuation in connectivity but never large swings.

4.2 Analysis of agent algorithm and parameters

With a basic framework for analyzing the behavior of our system in place, we can
explore the effects of various choices for system parameters on performance. We alter
three main variables independently: the number of agents, the history size of each
agent, and the type of routing agents used (random or oldest node). We varied these
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results around a baseline of 100 agents with history size 25. The results are presented
in Figure 3.

4.2.1 Agent type
The most apparent result is the effect of agent type on the performance of the system.
In both graphs and at every parameter setting, oldest node agents perform better than
random agents. This should come as no surprise: the oldest node agents are able to
search the network more effectively by minimizing back-tracking.

However, it is interesting to see that often the random agent does not do as much
worse than the oldest-node agent as we might expect. For example, in our baseline of
100 agents with a history size of 25, the average connectivity for the oldest-node
agent system is 0.792, while the average connectivity for random agents is 0.646.
Though a 23% gain in performance is palpable, random agents might still be
preferable for some network situations. In particular, the random algorithm might
reduce the computational load on each node in the system. Whether or not this load is
important depends on a variety of factors, not least of which is how quickly the
network topology changes out from underneath the agents. An algorithm that makes a
careful choice about where to visit is much less useful relative to a random choice if
the links between nodes are no longer what the agent thinks believes them to be.

4.2.2 History size
The second parameter we studied is the effect of agent history size on system
performance. Reading the history graph in Figure 3 from left to right, we see that for
both types of algorithms having more history is better. This is to be expected: the
agents have longer memories, and so provide more data to the nodes and (in the case
of the oldest node agent) operate more efficiently.

However, the performance improvements diminish as the history size grows
bigger. Intuitively, it is always better for agents to have longer memories. But at some
point those memories are either so old as to be out of date and useless, or else
redundant across multiple agents. In addition, larger history sizes still have high
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spreads between maximum and minimum connectivity. Adding more memory to
agents does make the system perform better on average, but has little effect on
stability. Again, the movement of nodes explains this characteristic. Long agent
memories allow information that remains valid for several time steps to be widely-
distributed, but do not help the system recover from large topological changes.

4.2.3 Population size
Finally, we also looked at the effect of population size on system performance. As
with history size, we found that having more agents is better. This result is
unsurprising, since a larger population means there are more agents to look for routes.
And as with history size, the gain from adding more agents declines as the population
size gets larger, presumably because agents begin to duplicate each other’s work.
However, more agents also narrows the spread between maximum and minimum
connectivity; having some often-redundant agents can help lend stability to the
network. In other words, distributing the workload across the network (so, necessarily,
across many agents) reduces the time it takes for information about newly-formed
routes to propagate outwards.

4.2.4 Summary of basic system analysis
A different view of the above data is presented in the four time series graphs in

Figure 4. Each graph represents the effect of changing one variable (either history size
or population size) while holding the others (agent algorithm, and population size or
history size) fixed. The time series data confirms the summary presented above; a



larger population is better, agents with larger memories perform better, and oldest
node agents are better than random agents.

This series of experiments confirms our basic expectations of the model. An
analysis of the overhead of these agent populations, to establish some basis for
determining optimum parameters in this kind of system, remains.

4.3 Overhead analysis

The results presented above validate our model, but the basic conclusions are a bit
dull. Of course more agents or more memory is better, we expect that! But, in the real
world, these attributes come at some cost. The more agents there are in the system, or
the more memory the agents have, the more overhead there will be for the network to
support the routing agent population. A sensible analysis must account for agent
overhead when measuring system performance.

In order to specify the overhead characteristic of an agent population, we make
some rough estimates on the cost of transmitting an agent. If nodes have a 48 bit ID,
time stamps are kept as 64 bit quantities, and hop counts are kept as 16 bit quantities,
then for every node an agent remembers it needs to keep 48 + 64 + 16 = 128 bits of
data in its history table. Therefore, the cost for a particular agent is 128 * h, where h is
the history size. Furthermore, we estimate that the cost of sending the agent itself is
roughly 256 bits – 128 bits to cover a digital signature on the agent's contents, and
128 bits of data for the agent owner field, the agent type, and other bookkeeping data.
(The size of the agent's code is not factored in, because in these homogeneous systems
it would be sensible to cache the agent's code. In more open systems where there are
many different agent species, the agent's code size will become an important factor.)

Taking these estimates together, the overhead of the system is defined by the
equation O = N * (128 * h + 256) It is important to note that the particular values of
these constraints are somewhat arbitrary. However, the general form of the overhead
measurement is important: a simple linear function dominated by the product of the
number of agents and their history size.

With this overhead calculation in place, it is possible to compare different systems
with equal overhead. In our baseline, the overhead for the entire population of 100
agents with history 25 is 100 * (128 * 25 + 256) = 345600 bits/step.  Many other
parameter settings also produce the same overhead: for example, a system with 30
agents of history size 88 also has an overhead of 345600, as does a system with 450
agents of history size 4.

Given the fixed overhead cost of 345600, what is the optimal tradeoff between
number of agents and history size? Figure 5 shows the performance of a system of
oldest node agents at varying settings with constant overhead. This graph shows that
for our experimental parameters, a system with 135 agents of history size 18 is
optimal.

We do not wish to argue for the significance of these specific numbers; they are
dependent on the particular parameters we chose for the world. However, we believe
these results are suggestive of the performance of these and similar algorithms across
characteristic multi-hop systems.
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In particular, our results show that with this kind of system one has to strike a
balance between having a large number of agents and having each agent carry around
a large amount of data. Putting too few agents into the system causes unacceptable
performance degradation, but there is a bit more leeway in giving individual agents
shorter memories. Intuitively, this implies that for routing on a dynamic network, a
decentralized approach using a great many individual autonomous agents is more
effective than a more-centralized solution with a few very smart agents.

5 Conclusions & Future Work

This chapter has presented an approach to managing service in a dynamic network.
The particular network we have chosen to simulate, consisting of a large number of
highly-mobile nodes with relatively short-range transceivers, is one example of a
system that is poorly served by traditional, centralized architectures. We have
attempted to show that a population of mobile, cooperating software agents are able to
build and maintain routing tables in such a system, and that these tables remain
reasonably accurate even as the topology of the network changes over time.

At a more general level, we have described a framework for the design and
management of unruly networks. Our framework is based on the idea of an ecology of
mobile agents living inside a network, both serving as and servicing infrastructure.
This approach has promise as an inherently decentralized technique, appropriate for



managing networks which are themselves inherently decentralized. To borrow the
language of electrical engineering, there is no “impedance mismatch” between system
and software. The result is a design theory that is aesthetically appealing, conceptually
clean, and significantly flexible.

This work is part of a broader research program focusing on the development of
infrastructure for complex, large-scale heterogeneous networks. We are just beginning
to understand the possibilities and implications of systems built from mobile code.
Much work remains to be done in several important areas: provisions for security and
safety across networks; tools for design, modeling and inspection; methods for
analysis of resource tradeoffs, system overhead and protocol strengths and
weaknesses; and application-level frameworks that allow new uses of networked
devices.

Our next series of experiments will study the design of specialty sub-populations of
agents that manage particular routing tasks. In addition, there are a number of
parameters that are held constant in the particular system presented here, but that we
would like to explore, such as the speed with which nodes move, the density of nodes,
the size of transmit/receive radii, and the assumption of link reliability. Incorporating
these variables will increase the complexity and realism of our simulation, giving us a
better picture of the demands upon such networks and the possibilities of the mobile
code approach. Finally, we are in the process of building a real-world implementation
of the short-range, low-power RF network modeled in this chapter, in order to apply
the lessons learned so far, and to test our hypotheses outside the safe confines of
simulation.
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