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Appendix II: Derivation of
Principal Component
Analysis

2.1 Eigenvectors of the Covariance Matrix Derivation

2.1.1 Principal Component Feature Extraction

Consider a random vector  for which a basis  is to be determined such that an approxi-

mation of  can be obtained by a linear combination of  orthogonal basis vectors:

[154]

where  and  is the weighting coefficient of basis vector  formed by taking the inner

product of  with :

. [155]

By forming a  observation matrix , the rows of which are the observations , we can

express Equation 154 and Equation 155 respectively in the following form:

[156]

[157]

where  is an  matrix whose columns are an uncorrelated basis for , and  is a

 matrix whose columns are the coefficients for each column vector in . By the orthog-
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onality of  and by the imposition of an additional constraint that the columns of  have

unit norm, i.e. , it follows that:

[158]

where  is a diagonal matrix with unit entries. We refer to Equation 156 as the PCA-

feature re-synthesis equation and Equation 157 as the PCA-feature projection equation where the

columns of correspond to the estimated features and the columns of  are the projection

vectors which perform the linear transformation of the input to the new uncorrelated basis.

The problem, then, for deriving a PCA is to obtain the matrix  such that the residual error in

approximating  with  is minimized:

[159]

that is, the expansion of all the unused features results in a minimal signal which is the residual

error . A suitable criteria is the minimization of the expectation of the mean-square residual
error:

[160]

where the expectation of an arbitrary function of , say , is defined as the element-wise
operation:

[161]

where  is the probability density function of the random variable . Since the expectation

operator is linear and due to the condition that the columns of  are orthonormal it follows that:
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[162]

from which it follows that:

[163]

where  is the correlation matrix for . Now by substitution of Equation 163 into Equation 162
we arrive at the quantity to be minimized:

[164]

We can express the minimization as a multi-variate differential equation by using a set of

Lagrangian multipliers  and setting the derivative of the expectation of the mean-square error

with respect to the basis components  to zero. This is a necessary condition for the minimum

and gives the characteristic equation:

. [165]

It is well known that the solutions to this equation constitute the eigenvectors of the correlation

matrix . It is also worth noting that the correlation matrix is related to the covariance matrix by
the following expression:

. [166]

Thus, for zero-mean orcentered data, the problem is equivalent to finding the eigenvectors of the

covariance matrix . Since the columns of  are now determined to be the eigenvectors, we

can re-express the residual error as the sum of the eigenvalues of the unused portion of the basis:

[167]
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and the solution to the minimization reduces to ordering the basis vectors  such that the col-

umns with the smallest eigenvalues occur in the unused portion of the basis which also implies that

the  columns of  whichareused for reconstruction should comprise the eigenvectors with

the  largest eigenvalues.

Now that we have arrived at the form of the solution for optimal orthonormal basis reconstruction
(in the square-error sense) we must find a general form for representing the solution. Since the
eigenvalues form the diagonal elements of the covariance of the transformed data with all other
elements equal to zero we can express the solution to the eigenvalue decomposition as a diagonal-

ization of the input covariance matrix .
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