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Abstract Wandel [7] in the context of characterizing color surfacd an

) ) ~illuminant spectra. Tenenbaum and Freeman [10] applied
Natural images are the composite consequence of multipleihis extension to three different perceptual tasks, indgd
factors related to scene structure, illumination, and imag 5ce recognition.
ing. For_facial image_s, the factors include differept fdcia _ We have recently proposed a more sophisticated math-
geometries, expressions, head poses, and lighting condimzmatical framework for the analysis and representation
tions. We apply multilinear algebra, the algebra of higher- ¢ jj29e ensembles, which subsumes the aforementioned
ord_er _tensors, to obtain a parsimonious representation of ,athods and which can account generally and explicitly for
facial image ensembles which separates these factors. Ou4.h of the multiple factors inherent to facial image for-
represgntation, called_ TensorFaces, yi_elds improvedafaci | ation [14]. Our approach is that of multilinear algebra—
recognition rates relative to standard eigenfaces. the algebra of higher-order tensors. The natural generaliz

tion of matrices (i.e., linear operators defined over a vec-
. tor space), tensors define multilinear operators ostaf
1 Introduction vector spaces. Subsuming conventional linear analysis as a
special case, tensor analysis emerges as a unifying mathe-
People possess a remarkable ability to recognize faces whematical framework suitable for addressing a variety of com-
confronted by a broad variety of facial geometries, expres- puter vision problems. More specifically, we perfork
sions, head poses, and lighting conditions. Developing amode analysis, which was first proposed by Tucker [11],
similarly robust computational model of face recognition who pioneered 3-mode analysis, and subsequently devel-
remains a difficult open problem whose solution would have oped by Kapteyet al. [4, 6] and others, notably [2, 3].
substantial impact on biometrics for identification, stirve In the context of facial image recognition, we apply a
lance, human-computer interaction, and other application higher-order generalization of PCA and the singular value
Prior research has approached the problem of facial rep-decomposition (SVD) of matrices for computing principal
resentation for recognition by taking advantage of the func components. Unlike the matrix case for which the exis-
tionality and simplicity of linear algebra, the algebra of tence and uniqueness of the SVD is assured, the situation
matrices. Principal components analysis (PCA) has beenfor higher-order tensors is not as simple [5]. There are mul-
a popular technique in facial image recognition [1]. This tiple ways to orthogonally decompose tensors. However,
method of linear algebra address single-factor variations  one multilinear extension of the matrix SVD to tensors is
image formation. Thus, the conventional “eigenfaces” fa- most natural. We apply thi&-mode SV the represen-
cial image recognition technique [9, 12] works best when tation of collections of facial images, where multiple ineag
person identity is the only factor that is permitted to vary. formation factors, i.e., modes, are permitted to vary. Our
If other factors, such as lighting, viewpoint, and expressi  TensorFacesepresentation separates the different modes
are also permitted to modify facial images, eigenfaces faceunderlying the formation of facial images. After review-
difficulty. Attempts have been made to deal with the short- ing TensorFaces in the next section, we demonstrate in Sec-
comings of PCA-based facial image representations in lesstion 3 that TensorFaces show promise for use in a robust
constrained (multi-factor) situations; for example, by-em facial recognition algorithm.
ploying better classifiers [8].
Bilinear models have recently attracted attention because
of their richer representational power. TRenode analysis 2 Tensor Faces
technique for analyzing (statistical) data matrices ofaca
entries is described by Magnus and Neudecker [6]. 2-modeWe have identified the analysis of an ensemble of images
analysis was extended to vector entries by Marimont andresulting from the confluence of multiple factors related
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to scene structure, illumination, and viewpoint as a pro
lem in multilinear algebra [14]. Within this mathematica
framework, the image ensemble is represented as a higl
dimensional tensor. This image data tenBomust be de-
composed in order to separate and parsimoniously reg
sent the constituent factors. To this end, we prescribe th
N-mode SVIalgorithm, a multilinear extension of the con-
ventional matrix singular value decomposition (SVD).

Appendix A overviews the mathematics of our multilin-
ear analysis approach and presentsithenode SVD algo-
rithm. In short, an ordeN > 2 tensor orN-way arrayD is
an N-dimensional matrix comprisingy spaces.N-mode
SVD is a “generalization” of conventional matrix (i.e., 2-
mode) SVD. It orthogonalizes the$é spaces and decom-
poses the tensor as timeode-n produgtdenotedx,, (see
Equation (4) in Appendix A), ofV-orthogonal spaces, as
follows:

D:ZX1U1X2U2...XnUn .XNUN.

1)

TensorZ, known as thecore tensor is analogous to the
diagonal singular value matrix in conventional matrix SVD
(although it does not have a simple, diagonal structureg. Th
core tensor governs the interaction betweemtoge matri-
cesU,,...,Uy. Mode matrixU,, contains the orthonor-
mal vectors spanning the column space of mabiy, re-
sulting from themodex flatteningof D (see Appendix A).
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Figure 1: The facial image database (28 subjegtst5 images
per subject). (a) The 28 subjects shown in expression 2 é¥mil
viewpoint 3 (frontal), and illumination 2 (frontal). (b) Ehfull
image set for subject 1. Left to right, the three panels shoages
captured in illuminations 1, 2, and 3. Within each panel desof
expressions 1, 2, and 3 are shown horizontally while images f
viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of
subject 1 in (a) is the image situated at the center of (b).

The multilinear analysis of facial image ensembles leads
to the TensorFaces representation. To illustrate Tensor- o il vsi b i PCA |
Faces, we employed in our experiments a portion of the . ur muttiinear analysis subsumes finear, analy-

Weizmann face image database: 28 male subjects pho: Sis. As shownTlhn F|g._2(a)_, each colu.r(;m ?]fp‘*el'st's an
tographed in 5 viewpoints, 3 illuminations, and 3 expres- “eigenimage €se eigenimages are identical to conven-

sions. Using a global rigid optical flow algorithm, we gonal:ger_ﬁaces [Ss){/JbZ]’ S|tr;]ce thzforsn}:ertglver%c(;)r?p?ted
aligned the originab12 x 352 pixel images relative to one y performing an on the mode-- flatléned data ten-

reference image. The images were then decimated byafacsorD which yields the matrixD .. The advantage of

tor of 3 and cropped as shown in Fig. 1, yielding a total of multilinear analysis, however, is that the core tengocan
7943 pixels per image within the elliptical cropping win- transform the eigenimagest,,.s into TensorFaces, which

dow represent the principal axes of variation across the variou

Our facial image data tens@ris a28 x 5 x 3 x 3 x 7943 modes (people, viewpoints, illuminations, expressions) a
tensor. Applying multilinear analysis t, using ourN- represents how the various factors interact with each other

- : e ; to create the facial images. This is accomplished by simply
mode decomposition algorithm with' = 5, we obtain forming the producg x; U,,... By contrast, the PCA basis
vectors or eigenimages represent only the principal axes of
variation across images.
where the28 x 5 x 3 x 3 x 7943 core tenso2 governs the Our facial image database comprises 45 images per per-
interaction between the factors represented in the 5 modegg that vary with viewpoint, illumination, and expres-
matrices: Thes x 28 mode matrixU,.,. Spans the space  sjon, PCA represents each person as a set of 45 vector-
of people parameters, tlie< 5 mode matrixU.... Spansthe  yajyed coefficients, one from each image in which the per-
space of viewpoint parameters, the 3 mode matriXU...  son appears. The length of each PCA coefficient vector is
spans the space of illumination parameters and3the3 28 x 5 x 3 x 3 = 1260. By contrast, multilinear analy-
mode matrixU... Spans the space of expression parame- sjs enables us to represent each person with a single vector

ters. The7943 x 1260 mode matrixU,,., orthonormally  cqefficient of dimension 28 relative to the bases comprising
spans the space of images. Reference [14] discusses the afhe98 x 5 x 3 x 3 x 7943 tensor

tractive properties of this analysis, some of which we now
summarize.

D=2Zx 1 Upeople X2 Uviews X3 UiIIums X4 Uexpres)< 5 Upixels; (2)

B - Z X2 Uviews X3 Uillums X4 Uexpres X5 Upixels7 (3)
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Figure 2: Some of the TensorFaces basis vectors resulting from

the multilinear analysis of the facial image data terBor(a) The
first 10 PCA eigenvectors (eigenfaces), which are contaiméke
mode matrixU,s, and are the principal axes of variation across
allimages. (b,c,d) A partial visualization of tB8 x 5 x 3 x 3 x
7943 tenSOI'B =ZX 2 Uviews X3 Uil\ums X4 Uexpres>< 5 Upixels: Wh|Ch
defines 45 different bases for each combination of viewoit
lumination and expressions, as indicated by the labelsabih of
each array. These bases have 28 eigenvectors which spaeahe p
ple space. The eigenvectors in any particular row play tineesa
role in each column. The topmost row across the three paeels d
picts the average person, while the eigenvectors in theinénga
rows capture the variability across people in the varioesvpoint,
illumination, and expression combinations.

into the reduced-dimensional space of image coefficients.
Our multilinear facial recognition algorithm performs
the TensorFaces decomposition (2) of the teri3af vec-
torized training imaged, extracts the matrilJ .., Which
contains row vectorez of coefficients for each persagn
and constructs the basis tengdaccording to (3). We in-
dex into the basis tensor for a particular viewpaintllu-
minationi, and expressioa to obtain a subtensd, ; . of
dimensior28 x 1 x 1 x 1 x 7943. We flattenB, ; . along
the people mode to obtain tR8 x 7943 matrix B, ; ¢ (peopi -
Note that a specific training imagk; of personp in view-
pointw, illuminationd, and expression can be written as
= BUTJ,E(people)cp; hencer, = B;ZE(peoplédp7v’i7e'
Now, given an unknown facial imagg we use the pro-
jection operatoB_ " to projectd into a set of can-

v,1,€(people

didate coefficient vectors, ; . = B;Ze(pmp@d for everyw,

i, e combination. Our recognition algorithm compares each
cy,i,e against the person-specific coefficient vectgysThe
best matching vectar,—i.e., the one that yields the small-
est value of|c, ;. — cp|| among all viewpoints, illumina-
tions, and expressions—identifies the unknown imd@e
portraying persom.

As the following table shows, in our preliminary ex-
periments with the Weizmann face image database, Ten-
sorFaces yields significantly better recognition rates1tha
eigenfaces in scenarios involving the recognition of peopl
imaged in previously unseen viewpoints (row 1) and under
a previously unseen illumination (row 2):

dp.vie

Recognition Experiment PCA Tensor Faces

Training: 23 people, 3 viewpoint§( + 34), 4 illuminations
Testing: 23 people, 2 viewpointsH(17), 4 illuminations (center, left,
right, left+right)

61% 80%

Training: 23 people, 5 viewpoint§( + 17, +34), 3illuminations

Testing: 23 people, 5 viewpoint§ ( + 17, +34), 4th illumination 27% 88%

some of which are shown in Fig. 2(b—d). Each columnin 4 Conclusion

the figure is a basis matrix that comprises 28 eigenvectors.

In any column, the first eigenvector depicts the average per-We have approached the analysis of an ensemble of facial
son and the remaining eigenvectors capture the variabilityimages resulting from the confluence of multiple factors
across people, for the particular combination of viewpoint related to scene structure, illumination, and viewpoint as
illumination, and expression associated with that column. a problem in multilinear algebra in which the image en-
semble is represented as a higher-dimensional tensor. Us-
ing the “N-mode SVD” algorithm, a multilinear exten-
sion of the conventional matrix singular value decompo-
sition (SVD), this image data tensor is decomposed in or-
We propose a recognition method based on multilinear anal-der to separate and parsimoniously represent the constitue
ysis analogous to the conventional one for linear PCA anal-factors. Our analysis subsumes as special cases the sim-
ysis. In the PCA or eigenface technique, one decomposes le linear (1-factor) analysis associated with convergion

3 Recognition Using Tensor Faces

data matrixD of known “training” facial imagesl, into a
reduced-dimensional basis matkx., and a matrixC con-
taining a vector of coefficienis; associated with each vec-
torized imaged,. Given an unknown facial imagé, the
projection operatoB,_. linearly projects this new image

SVD and principal components analysis (PCA), as well
as the incrementally more general bilinear (2-factor) anal

ysis that has recently been investigated in computer vi-
sion. Our completely general multilinear approach accom-
modates any number of factors by exploiting tensor machin-
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ery and, in our experiments, it yields significantly better
recognition rates than standard eigenfaces.

We plan to investigate dimensionality reduction in con-
junction with TensorFaces (refer to the final paragragh
of Appendix A). See [13] in these proceedings for the ap-
plication of multilinear analysis to the recognition of e
and actions from human motion data.

A Multilinear Analysis

A tensoris a higher order generalization of a vector (first

Dimensionality reduction in matrix principal component
analysis is obtained by truncation of the singular value
decomposition (i.e., deleting eigenvectors associated wi
the smallest eigenvalues). Unfortunately, this does not
have a trivial multilinear counterpart. According to [3], a
useful generalization to tensors involves an optimal rank-
(R1, Rs, ..., Ry) approximation which iteratively opti-
mizes each of the modes of the given tensor, where each
optimization step involves a best reduced-rank approxima-
tion of a positive semi-definite symmetric matrix. This tech
nigue is a higher-order extension of the orthogonal iterati
for matrices.

order tensor) and a matrix (second order tensor). Tensors

are multilinear mappings over a set of vector spaces. The

order of tensorA € IRI'*PX->IN js N Elements of
A are denoted asl;, i, iy OF @i, i, . in, Wherel <
in < I,. In tensor terminology, matrix column vectors

are referred to as mode-1 vectors and row vectors as mode-

2 vectors. The mode-vectors of an N order tensor4
are thel,-dimensional vectors obtained froph by vary-
ing indexi,, while keeping the other indices fixed. The
moden vectors are the column vectors of mati,,) €
R/»x I lo-Tn—1lnsr-In) that results bynoder flattening
the tensot4 (see Fig. 1 in [14]).

A generalization of the product of two matrices is the
product of a tensor and a matrix. Theodes product
of a tensord € R ¥ 2% xInx..XIN by g matrixM €
R7*'» denoted by4 x,, M, is thel; x ... x I, 1 X
Jp X Ipq X ... x Iy tensor

(A Xn M)il...inflj"in_*_l...i]v

E Ay i 1ining1- N jnin -

in

(4)

The moder product can be expressed in terms of flattened
matrices a3 (,) = MA,,).!

Our N-mode SVD algorithrfor decomposin@ accord-
ing to equation (1) is:

1. Forn =1,..., N, compute matriXJ,, in (1) by com-
puting the SVD of the flattened matrd,,) and set-
ting U,, to be the left matrix of the SV

2. Solve for the core tensor as follows:

Z=Dx, U x, Ul x,UT

n

1The moder product of a tensor and a matrix is a special case of the in-
ner product in multilinear algebra and tensor analysis.eNloat for tensors
and matrices of the appropriate sizesx,,, U x, V=A X, V X, U
and(A x, U) X, V= A x, (VU).

2When D(,) is a non-square matrix, the computation@f, in the
singular value decomposition (SVO)(,y = U,XZVT can be per-
formed efficiently, depending on which dimension Df,,, is smaller,

by decomposing eitheD(n)D(Tn) = U,X2U7 and then computing
VI = =+tUT D, orby decomposing)a)D(n) =V,xZ2VI and

then computind,, = D)V, X+ .
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