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Abstract

Numerical multilinear (tensor) algebra is a principled
mathematical approach to disentangling and explicitly and
parsimoniously representing the essential factors or modes
of image formation, among them illumination, scene geom-
etry, and imaging, thereby dramatically improving the per-
formance of appearance-based recognition. Generalizing
concepts from linear (matrix) algebra, we define the identity
tensor and the pseudo-inverse tensor and we employ them to
develop a multilinear projection algorithm, which is natural
for performing recognition in the tensor algebraic frame-
work. Our multilinear projection algorithm simultaneously
projects an unlabeled test image into multiple constituent
mode spaces spanned by learned, mode-specific basis sets
in order to infer its mode labels. Multilinear projection is
applied to unconstrained facial image recognition, where
the mode labels are person identity, viewpoint, illumination,
etc.

1. Introduction

Appearance-based methods have attracted a great deal of
attention in computer vision. Traditional appearance-based
image analysis and recognition employs principal compo-
nents analysis (PCA) to parsimoniously model the varia-
tion apparent in training image ensembles, typically us-
ing the well-known matrix singular value decomposition
(SVD) and dimensionality reduction through the omission
of higher-order singular vectors. Conventional PCA, which
is a linear method, models the apparent variation as if it
had resulted from a single contributory factor. However,
natural images result from the interaction of multiple fac-
tors or modes related to scene structure, illumination, and
imaging. For example, facial images are the result of facial
geometry (person, expression), the pose of the head rela-
tive to the camera, the lighting conditions, and the type of
camera employed. This multifactor variation causes severe
difficulties for conventional appearance-based face recogni-

tion methods. In particular, the PCA approach and its vari-
ants adequately address face recognition only under tightly
constrained conditions—e.g., frontal images, fixed light-
sources, fixed expression—where person identity is the only
factor that is allowed to vary.

We have introduced a more powerful, tensor algebraic
framework for the appearance-based analysis and recog-
nition of images that elegantly and effectively deals with
the multifactor variation inherent to image formation [9,
8]. Our nonlinear approach exploits multilinear algebra—
the algebra of higher-order tensors. The TensorFaces
method [9] employs multilinear PCA (MPCA) and a nat-
ural multilinear extension of the matrix SVD to tensors,
known as the N -mode SVD, to analyze ensembles of facial
images in which multiple modes are permitted to vary. The
method separates and parsimoniously represents each of the
different modes underlying the formation of facial images,
enabling mode-specific dimensionality reduction. A facial
image is represented by a set of coefficient vectors, one for
each constituent mode or factor—person, viewpoint, illumi-
nation, expression, etc. The tensor algebraic approach was
shown to be promising for facial recognition [8].

Our contribution in this paper is an extension of the ten-
sor approach that is significant for recognition. Generaliz-
ing concepts from linear algebra, we introduce the mode-n
identity tensor and the mode-n pseudo-inverse tensor and
employ them to develop a multilinear projection algorithm
for recognition in the tensor framework. This novel algo-
rithm simultaneously projects an unlabeled test image into
multiple constituent mode spaces in order to infer its set
of mode labels. We demonstrate our multilinear projection
in the context of unconstrained facial image recognition,
where the mode labels are the person identity, the view-
point, the illumination, the expression, etc.

The remainder of this paper is organized as follows: For
readers unfamiliar with the topic from our prior papers, we
cover the terminology and relevant fundamentals of multi-
linear algebra in Appendix A. In Section 2, we review our
multilinear image analysis approach and, in particular, the
TensorFaces method. Section 3 develops our multilinear



-35     -30     -25     -20     -15     -10       -5       0        5       10      15       20       25       30      35

-35

-30

-25

-20

-15

-10

  -5

  0

  5

 10

 15

 20

25

30

 35

Figure 1. Facial image data. 3D scans of 75 subjects were ac-
quired using a Cyberware 3030PS laser scanner as part of the Uni-
versity of Freiburg 3D morphable faces database [1]. The facial
images from one of the subjects are shown, viewed from 15 dif-
ferent viewpoints (across) (θ = −35◦ to +35◦ in 5◦ steps on the
horizontal plane φ = 0◦) under 15 different illuminations (down)
(θ = −35◦ to +35◦ in 5◦ steps on an inclined plane φ = 45◦).
In our recognition experiments, the dash-boxed images served as
training images; the solid-boxed images served as test images.

projection algorithm. Section 4 reviews its application to
facial recognition under unconstrained conditions.

2. Multilinear Facial Image Analysis

Progressing beyond PCA, which can model only single-
factor variations in image ensembles, we have been con-
fronting the fact that natural images result from the interac-
tion of multiple factors related to scene structure, illumina-
tion, and imaging. The analysis of an ensemble of images
resulting from the confluence of multiple factors, or modes,
is a problem that is addressable using multilinear algebra.
Within our multilinear framework, the image ensemble is
organized as a higher-order data tensor. This image data
tensorD is decomposed in order to separate and, through di-
mensionality reduction, parsimoniously represent the con-
stituent factors. The TensorFaces method [9] is a particular
multilinear method that addresses facial image ensembles,
whose relevant factors include different facial geometries
and expressions, head poses, and lighting conditions.

We illustrate the TensorFaces analysis using gray-level
facial images of 75 subjects (Fig. 1). Each subject is im-
aged from 15 different viewpoints under 15 different illumi-
nations. Fig. 1(b) shows the set of 225 images for one of the
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Figure 2. A portion of the fourth-order data tensor D for the im-
age ensemble formed from the dash-boxed images of each subject.
Only 4 of the 75 people are shown.

subjects, with viewpoints arrayed horizontally and illumina-
tions arrayed vertically. The image set was rendered from
a 3D scan of the subject. Each image is 80 × 107 = 8560
pixels in size. The 75 scans were acquired using a Cyber-
ware 3030PS laser scanner and are part of the 3D morphable
faces database created at the University of Freiburg [1].

We select an ensemble of images from the dataset com-
prising for each person the dash-boxed images shown in
Fig. 1. Thus, our facial image data tensor D is a 6 × 6 ×
75 × 8560 tensor (Fig. 2). Applying multilinear analysis,
the N -mode SVD (refer to Appendix A.3), with N = 4, of
D is

D = Z ×1 Uillums ×2 Uviews ×3 Upeople ×4 Upixels, (1)

where the 6 × 6 × 75 × 8560 core tensor Z governs the
interaction between the factors represented in the mode
matrices—the 6 × 6 mode matrix Uillums spans the space of
illumination parameters and contains row vectors cT

l of co-
efficients for each illumination direction l, the 6 × 6 mode
matrix Uviews spans the space of viewpoint parameters and
contains row vectors cT

v of coefficients for each view direc-
tion v, the 75 × 75 mode matrix Upeople spans the space of
people parameters and contains row vectors cT

p of coeffi-
cients for each person p, and the 8560 × 2700 mode ma-
trix Upixels orthonormally spans the space of images, and its
columns are conventional “eigenfaces” (Fig. 3(a)).

The big advantage of multilinear analysis over linear
PCA (i.e., the eigenfaces basis shown in Fig. 3(a)) is that
the TensorFaces bases (Fig. 3(b)) explicitly represent how
the various factors interact to produce facial images. Ten-
sorFaces, which are expressed as

T = Z ×4 Upixels, (2)
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Figure 3. Eigenfaces and TensorFaces bases for an ensemble of 2,700 facial images spanning 75 people, each imaged under 6 viewing
and 6 illumination conditions. (a) PCA eigenvectors (eigenfaces) Upixels, which are the principal axes of variation across all images. (b) A
partial visualization of the 6 × 6 × 75 × 8560 TensorFaces T = Z ×4 Upixels representation obtained from D. Tensorfaces captures the
illumination-mode, view-mode, and person-mode variation across all images.

explicitly represent the mode-specific variation across all
images. Note that, in practice, T can be computed directly
by the N -mode SVD without explicitly computing the usu-
ally large Upixels.

Our facial image database comprises 75 people and 36
images per person that vary with viewpoint and illumina-
tion. Note that conventional PCA represents each image
with a unique coefficient vector and each person with a set
of 36 coefficient vectors, one for each image in which the
person appears. By contrast, multilinear analysis enables us
to represent each person, regardless of viewpoint and illu-
mination by a single invariant coefficient vector of dimen-
sion 75, while each image is represented with a set of coef-
ficient vectors representing the person, viewpoint, and illu-
mination factors associated with the image. This important
distinction between PCA and MPCA is relevant for facial
image recognition, a topic that we will consider next.

3. Multilinear Projection

3.1. Motivation

We will now discuss how to infer from an unlabeled
test image the coefficient vectors associated with the mul-
tiple image formation factors. The recognition algorithm
for TensorFaces proposed in [8] obtained coefficient vectors
based on a linear projection approach. It computed a set of
linear projection operators, which yielded a set of candidate
coefficient vectors for recognition. Multiple linear projec-

tions are less than ideal. We will now develop a novel pro-
jection method for appearance-based recognition that fully
exploits the multilinear structure of the tensor framework.

Our unified, multilinear projection method simultane-
ously infers the mode coefficient vectors of an unknown test
image, by projecting it from the pixel space into the N dif-
ferent constituent mode spaces that are of relevance. Fig. 4
illustrates this in the context of face recognition, where we
analyze facial images and the relevant modes are person
identity, illumination, viewpoint, etc.

For concreteness, we will continue the development
of our superior approach using the facial image dataset
of Fig. 1 and MPCA. Given the data tensor D (Fig. 2)
of labeled, vectorized training images dp,v,l, where the
subscripts are person, view, and illumination labels, our
method first performs an MPCA decomposition (1), extract-
ing mode matrices Uillums, Uviews, and Upeople, as well as the
TensorFaces basis T (2) that governs the interaction be-
tween them (Fig. 3(b)). Then the method represents an unla-
beled, test image d by the relevant set of coefficient vectors
as follows:

d = T ×1 cT
l ×2 cT

v ×3 cT
p , (3)

a multilinear representation that is illustrated in Fig. 5(a).
Given d and T , we must determine the unknown vari-

ables, cl, cv, and cp in order to determine the illumination,
viewpoint, and person associated with the test image. This
involves computing an inverse (or pseudo-inverse) of tensor
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Figure 4. An illustration of the multilinear projection. In this example, 75 people were imaged from 6 different viewing directions under 7
different illumination conditions. Each blue dot in the pixel space represents one of the 3150 acquired images. For clarity, each image is
represented by 3 coefficients associated with the 3 most significant eigenvectors. The multilinear projection simultaneously projects each
image to multiple mode spaces (person, illumination, viewpoint). Note the manifold structure of the analyzed images. They form 6 clusters
in the pixel space, each comprising all the images acquired from the same viewing direction. The clusters evidently have a semi-circular
arrangement within the pixel space that can be parameterized by the viewing direction. Similarly, within each cluster, images for each
individual also exhibit a semi-circular arrangement that can be parameterized by the illumination direction. The red diamonds denote
images of one person under various illuminations, while the purple circles denote images of another person under various illuminations.
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Figure 5. (a) Image representation d = T ×1 cT
l ×2 cT

v ×3 cT
p . (b) Given an unlabeled test image d, the associated coefficient vectors cl,

cv , cp are computed by decomposing the response tensor R = P ×4 dT using the N -mode SVD algorithm.
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Figure 6. The three identity tensors of order 3; (a) mode-1 identity
tensor; (b) mode-2 identity tensor; (c) mode-3 identity tensor.

T , which raises some related questions. How does one in-
vert a tensor? When one multiplies a tensor with its inverse
tensor, what should the resulting identity tensor be? Unfor-
tunately, the identity tensor is not the obvious generalization
of the identity matrix; i.e., it is not a tensor with ones along
the super diagonal. We address these questions next.

3.2. Identity and (Pseudo-) Inverse Tensors

First, we will extend the definition of the mode-n product
of a tensor with a matrix (Definition 8 in Appendix A.1) to
the mode-n product between two tensors:

Definition 1 (Generalized Mode-n Product, ×n) The
mode-n product of a tensor A ∈ IRI1×I2×...×In×...×IN

and a tensor B ∈ IRJ1×J2×...×Jn×...×JN , where
In = J1J2 . . . Jn−1Jn+1 . . . JN , is denoted by C = A×nB,
where C ∈ IRI1×...×In−1×Jn×In+1×...×IN can be expressed
in terms of matrices as C(n) = B(n)A(n).

Second, unlike the identity matrix, identity tensors are not
diagonal tensors.

Definition 2 (Mode-n Identity Tensor) In is a mode-n
multiplicative identity tensor iff In×nA = A, where A ∈
IRI1×I2×...×In×...×IN and In ∈ IRI1×I2...×Jn...IN , where
Jn = In+1 . . . INI1I2 . . . In−1. The mode-n identity ten-
sor In is a tensorized identity matrix of dimensionality
Jn × (Jn+1 . . . JNJ1 . . . Jn−1).

Fig. 6 illustrates the structure of the three identity tensors
of order 3. Although the existence of an identity tensor for
every mode might seem a construct peculiar to multilinear
algebra, one should recall that there exist left and right iden-
tity matrices in linear algebra for every matrix A ∈ IRI1×I2 .
Whereas the left and right identity matrices have different
dimensions, they share the same diagonal structure, unlike
the case for higher-order tensors.

Next, generalizing the definition of an inverse matrix, we
define the mode-n inverse tensor as follows:

Definition 3 (Mode-n Inverse Tensor, A−n) Tensor B is
a mode-n inverse of tensor A if and only if A×nB = In

and B×nA = In, where In is the mode-n identity tensor.

Finally, we define a mode-n pseudo-inverse tensor that
generalizes the left pseudo-inverse matrix A+A and right
pseudo-inverse matrix AA+ from linear algebra.

Definition 4 (Mode-n Pseudo-Inverse Tensor)
The mode-n pseudoinverse tensor, A+n , of tensor
A ∈ IRI1×I2×...×IN satisfies:

1. (A×nA+n)×nA = A

2. (A+n×nA)×nA+n = A+n

The mode-n pseudoinverse tensor A+n of A is the ten-
sorized pseudoinverse of A(n); i.e., the mode-n flattened
version of A+n is A+

(n).

3.3. Multilinear Projection Algorithm

Since an image is a point (vector) in pixel space, then all
mathematical operations must be performed in that space.
Hence, T must be inverted with respect to the pixel mode
to obtain the projection tensor P . Projecting the unlabeled
test image d onto the pixel mode of T yields the image
response tensor

R = P ×N dT , (4)

where P is obtained by re-tensorizing matrix P(pixels) =
T+T

(pixels), matrix T(pixels) being the pixel-mode flattened T .

Lemma 1 R has rank-(1, . . . , 1).
Proof:

R = P ×N dT (5)

≈ I1 ×N (cT
N−1 ⊗ cT

N−2 . . . ⊗ cT
1 ) (6)

= c1 ◦ c2 . . . ◦ cN−1. (7)

Since R is expressible as an outer product of coefficient vec-
tors associated with the factors inherent to d, it is of rank-
(1, . . . , 1).

In principle then, we can compute the coefficient vectors
by applying the N -mode SVD to decompose the response
tensor as follows:

R = Z ×1 c1 . . . ×n cn . . . ×N−1 cN−1. (8)

The multilinear projection algorithm is detailed in Fig. 7.
The reason for Step 5 in the algorithm is that, due to nu-
merical errors, R may not be precisely rank-(1, . . . , 1) in
practice, so it is generally necessary to compute an optimal
rank-(1, . . . , 1) approximation, which is accomplished in an
iterative manner, one mode at a time, by the alternating least
squares method.



The multilinear projection algorithm

Given a (TensorFaces) basis set T and an unknown test im-
age d:

1. Compute the projection operator P . In matrix form
P(pixels) = TT+

(pixels).

2. Compute the response tensor R = P ×N dT .

3. Compute mode matrices Un, for n = 1, 2, . . . , N − 1,
by decomposing R using the N -mode SVD algorithm
as follows: R = Z ×1 U1 ×2 U2 . . . ×N−1 UN−1.

4. Truncate each mode matrix to one column, thus obtain-
ing the initial coefficient vectors U0

1,U
0
2, . . . ,U

0
N−1.

5. Alternating Least Squares: Iterate for k = 1, 2, . . .,
until ‖R − Zk ×1 Uk

1 . . .×nUk
n . . .Uk

N−1‖ ≤ ε:

(a) For n = 1, 2, . . . , N − 1:

i. Set Ũk
n = R×1Uk

1
T

. . .×n−1Uk
n−1

T ×n+1

Uk−1
n+1

T
. . . ×N−1 Uk−1

N−1

T
.

ii. Mode-n flatten tensor Ũk
n to obtain Ũk

n.

iii. Set Uk
n to the first column of the left singular

matrix of the SVD of Ũk
n.

(b) Compute core tensor Zk = Ũk
N−1 ×N−1 Uk

N−1.

6. Letting the converged Uk
n be denoted by the coefficient

vectors c1, . . . , cN−1 representing d, then the projec-
tion of dT is d̂T = T ×1 cT

1 ×2 cT
2 . . . ×N−1 cT

N−1.

Figure 7.

4. Application to Face Recognition

Applying the multilinear projection algorithm to the spe-
cific face recognition scenario described earlier, in Step 4
of the algorithm the truncated Un where 1 ≤ n ≤ 3 (i.e.,
Upeople, Uviews, and Uillums), become the initial approximations
to the illumination cl, view cv , and person cp coefficient
vectors. These are the modes inherent to d.

Projecting the unlabeled test image d onto the pixel
mode of T yields the image response tensor (Fig. 5(b)):

R = P ×4 dT ≈ cl ◦ cv ◦ cp.
1 (9)

The rank-(1, 1, 1) structure of tensor R and the fact that cl,
cv , and cp are unit vectors enables us to compute these three
coefficient vectors via a tensor decomposition using the N -
mode SVD algorithm. This is because the mode-n vectors

1From Lemma 1, P×4dT ≈ I4×4 (cT
p ⊗cT

v ⊗cT
l ), where I4 is the

re-tensorized identity matrix I(pixels) ≈ TT
(pixels)T

+T
(pixels) = TT

(pixels)P(pixels).

of R are multiples of their corresponding coefficient vectors
(cl, cv , cp) (cf. the boxed rows/columns in Fig. 5(b)). Thus,
flattening R in each mode yields rank-1 matrices, enabling
the N -mode SVD to compute the corresponding coefficient
vector. The N -mode SVD thus maps R into N different
mode spaces that explicitly account for the contribution of
each mode—illumination, viewpoint, and person.

In particular, note that the person coefficient vector cp is
the left singular matrix of the SVD of R(people). To recognize
the person in the unknown test image dT , we can employ a
normalized nearest neighbor classification scheme by com-
puting normalized scalar products between cT

p and each of
the row vectors of the people mode matrix Upeople.

We have applied our multilinear projection algorithm to
face recognition in experiments with the 16, 875 images
captured from the University of Freiberg 3D Morphable
Faces Database (Fig. 1). Using multilinear ICA (MICA)
bases [11] that were learned from a training ensemble of
2,700 images, multilinear projection and nearest neighbor
classification, we obtained recognition rates slightly greater
than 98% for test subjects whose faces were imaged in pre-
viously unseen viewpoints and illuminations.
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A. Multilinear Algebraic Fundamentals

A tensor, or n-way array, is a higher-order generalization
of a scalar (zeroth-order tensor), a vector (first-order ten-
sor), and a matrix (second-order tensor). We denote scalars
by lowercase italic letters (a, b, . . .), vectors by bold low-
ercase letters (a,b, . . .), matrices by bold uppercase letters
(A,B, . . .), and higher-order tensors by calligraphic upper-
case letters (A,B, . . .).

A.1. Basic Definitions

Definition 5 (Tensor) Tensors are multilinear mappings
over a set of vector spaces. The order of tensor A ∈
IRI1×I2×...×IN is N . An element of A is denoted as
Ai1...in...iN

or ai1...in...iN
, where 1 ≤ in ≤ In.

Definition 6 (Mode-n Vectors) The mode-n vectors of an
N th−order tensor A ∈ IRI1×I2×...×IN are the In-
dimensional vectors obtained from A by varying index in
while keeping the other indices fixed.

The mode-n vectors (a.k.a. fibers) are the column vectors of
matrix A(n) ∈ IRIn×(I1I2...In−1In+1...IN ) that result from
flattening the tensor A (Fig. 8).
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Figure 8. Flattening a third-order tensor. The tensor can be flat-
tened in 3 ways to obtain matrices comprising its 1-mode, 2-mode,
and 3-mode vectors.

Definition 7 (Mode-n Rank) The mode-n rank of A ∈
IRI1×I2×...×IN , denoted Rn, is defined as the dimension of
the vector space generated by the mode-n vectors:

Rn = rankn(A) = rank(A(n)). (10)

A generalization of the product of two matrices is the
product of a tensor and a matrix.

Definition 8 (Mode-n Product, ×n) The mode-n product
of a tensor A ∈ IRI1×I2×...×In×...×IN and a matrix
M ∈ IRJn×In , denoted by A ×n M, is a tensor of
dimensionality IRI1×...×In−1×Jn×In+1×...×IN whose en-
tries are computed by (A ×n M)i1...in−1jnin+1...iN

=∑
in

ai1...in−1inin+1...iN
mjnin

.

The mode-n product can be expressed in tensor notation as

B = A×n M, (11)

or in terms of flattened matrices as

B(n) = MA(n). (12)

A matrix representation of the mode-n product of a tensor
A ∈ IRI1×...×In×...×IN and a set of N matrices, Fn ∈
IRJn×In can be obtained as follows:

B = A×1 F1 . . . ×n Fn . . . ×N FN (13)

B(n) = FnA(n)(Fn−1 ⊗ . . .F1 ⊗ FN ⊗ . . .Fn+1)T ,

where ⊗ denotes the matrix Kronecker product. Given a
tensor A ∈ IRI1×...×In×...×IN and two matrices, U ∈
IRJn×In and V ∈ IRKn×Jn , then

A×n (VU) = (A×n U) ×n V. (14)

The Frobenius norm of a tensor A is given by ‖A‖ =√
〈A,A〉, where 〈·, ·〉 denotes the scalar product.

A.2. Tensor Decompositions

There are two types of higher-order tensor decomposi-
tions, but neither has all the nice properties of the matrix
SVD. The tensor rank-R decomposition is a natural gen-
eralization of the matrix rank-R decomposition, but it does
not compute the orthonormal subspace associated with each
mode. The second, known as the rank-(R1, R2, . . . , RN )
decomposition, does not reveal the rank of the tensor, but
it naturally generalizes the orthonormal subspaces corre-
sponding to the left/right singular matrices computed by the
matrix SVD [7, 5, 4, 3].

Theorem 1 (Rank-(R1, R2, . . . , RN ) Decomposition)
Let A be a I1 × I2 ××In . . . IN tensor where 1 ≤ n ≤ N .
Every such tensor can be decomposed as follows:

A = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN (15)

where Un are orthonormal mode-n matrices of dimension-
ality In × In, where u(in)

n is the ith
n column in Un for

1 ≤ n ≤ N , and where Z ∈ IRI1×I2...×In...×IN . The
subtensors Zin=a and Zin=b obtained by fixing the nth in-
dex to a and b are orthogonal for all values of n, a, and b

when a 	= b. The ‖Zjn=a‖ = σ
(n)
a is the ath mode-n singu-

lar value of A and the ath column vector of Un, such that
‖Zin=1‖ ≥ ‖Zin=2‖ ≥ . . . ‖Zin=In

‖ ≥ 0.

This is illustrated in Fig. 9 for the case N = 3. Tensor Z ,
known as the core tensor, is analogous to the diagonal sin-
gular value matrix in conventional matrix SVD (although
it does not have a simple, diagonal structure). The core
tensor governs the interaction between the mode matrices
U1, . . . ,UN . Mode matrix Un contains the orthonormal
vectors spanning the column space of matrix A(n) resulting
from the mode-n flattening of A (Fig. 8).

For matrices, the rank-R decomposition and the multi-
linear rank-(R1, R2) decomposition (with R1 = R2 = R
necessarily) are equivalent; hence, there is no need to dis-
tinguish between them. They are both computed by the ma-
trix SVD (along with the orthonormal subspaces associated
with the column space U1 and row space U2). Unfortu-
nately, however, there does not exist a single higher order
SVD for tensors that has all the nice properties of the ma-
trix SVD.



D

U
1

= X X
-
R
1

I
3

U
2

U
3

Z

R
1

I
2

I
3

I
1 I

1
I
2

-
R
3

-
R
2

-
R
3

-
R
1

-
R
2

Figure 9. The rank-(R1, R2, R3) decomposition expresses the
data tensor D as the product of a core tensor Z and N orthog-
onal mode matrices U1 . . .UN ; for the N = 3 case illustrated
here, D = Z ×1 U1 ×2 U2 ×3 U3. Deletion of the last mode-1
eigenvector of U1 incurs an error in the approximation equal to
σ2

I1 , which equals the Frobenius norm of the (grey) subtensor of
Z whose row vectors would normally multiply the eigenvector in
the mode-1 product Z ×1 U1.

The N -mode SVD algorithm

1. For n = 1, . . . , N , compute matrix Un in (15) by com-
puting the SVD of the flattened matrix D(n) and set-
ting Un to be the left matrix of the SVD.

2. Solve for the core tensor:
Z = D ×1 UT

1 ×2 UT
2 . . . ×n UT

n . . . ×N UT
N .

Figure 10.

A.3. N-Mode SVD and Dimensionality Reduction

The rank-(R1, R2, . . . RN ) decomposition (15) may be
computed using the N -mode SVD algorithm (Fig. 10),
a multilinear extension of the conventional matrix SVD
[7, 5, 2].

There is no trivial multilinear counterpart to dimen-
sionality reduction in the linear case. Truncation of the
mode matrices resulting from the N -mode SVD algorithm
may yield a good reduced-dimensionality approximation D̂
(Fig. 9), but it is generally not optimal.

A locally optimal dimensionality reduction scheme for
tensors is to compute a best rank-(R1, R2, . . . , RN ) approx-
imation2 D̂ = Ẑ ×1 Û1 ×2 Û2 . . .×N ÛN , with orthonor-
mal In×Rn mode matrices Ûn, for n = 1, 2, . . . , N , which

2This best rank-(R1, R2, . . . , RN ) problem should not be confused
with the classical “best rank-R” problem for tensors [6]: An N th-order
tensor A ∈ IRI1×I2×...×IN has rank 1 when it is expressible as the outer
product of N vectors: A = u1 ◦ u2 ◦ . . . ◦ uN . The tensor element is
expressed as aij...m = u1iu2j . . . uN m, where u1i is the ith component

of u1, etc. The rank of a N th order tensor A, denoted R = rank(A), is
the minimal number of rank-1 tensors that yield A in a linear combination:

A =
∑R

r=1
σru

(r)
1 ◦ u

(r)
2 ◦ . . . ◦ u

(r)
N . Finding this minimal linear

combination for a given tensor A is known as the best rank-R problem.

minimizes the error function

e = ‖D − Ẑ ×1 Û1 . . . ×N ÛN‖ +
N∑

i=1

Λi‖ÛT
i Ûi − I‖,

(16)
where the Λi are Lagrange multiplier matrices. The (local)
minimization can be accomplished in an iterative manner,
optimizing each of the modes of the given tensor, where
each optimization step involves a best reduced-rank approx-
imation of a positive semi-definite symmetric matrix. This
technique is a higher-order extension of the orthogonal iter-
ation for matrices. The algorithm is given in [10, 2, 5].
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