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Abstract

Independent Components Analysis (ICA) maximizes the sta-
tistical independence of the representational components of
a training image ensemble, but it cannot distinguish be-
tween the different factors, or modes, inherent to image for-
mation, including scene structure, illumination, and imag-
ing. We introduce a nonlinear, multifactor model that gen-
eralizes ICA. Our Multilinear ICA (MICA) model of im-
age ensembles learns the statistically independent compo-
nents of multiple factors. Whereas ICA employs linear
(matrix) algebra, MICA exploits multilinear (tensor) alge-
bra. We furthermore introduce a multilinear projection al-
gorithm which projects an unlabeled test image into the N
constituent mode spaces to simultaneously infer its mode
labels. In the context of facial image ensembles, where the
mode labels are person, viewpoint, illumination, expres-
sion, etc., we demonstrate that the statistical regularities
learned by MICA capture information that, in conjunction
with our multilinear projection algorithm, improves auto-
matic face recognition.

1 Introduction

A key problem in data analysis for pattern recognition
and signal processing is finding a suitable representation.
For historical and computational reasons, linear models
that optimally encode particular statistical properties of the
data have been broadly applied. In particular, the linear,
appearance-based face recognition method known as Eigen-
faces [9] is founded on the principal components analysis
(PCA) of facial image ensembles [7]. PCA encodes pair-
wise relationships between pixels—the second-order, corre-
lational structure of the training image ensemble—but it ig-
nores all higher-order pixel relationships—the higher-order
statistical dependencies. By contrast, a generalization of
PCA known as independent components analysis (ICA) [5]
learns a set of statistically independent components by an-
alyzing the higher-order dependencies in the training data
in addition to the correlations. However, ICA cannot distin-
guish between higher-order statistics that rise from differ-
ent factors, or modes, inherent to image formation—factors

pertaining to scene structure, illumination, and imaging.
In this paper, we introduce a nonlinear, multifactor

model of image ensembles that generalizes conventional
ICA.1 Whereas ICA employs linear (matrix) algebra, our
Multilinear ICA (MICA) model exploits multilinear (ten-
sor) algebra. Unlike its conventional, linear counterpart,
MICA is able to learn the interactions of multiple factors in-
herent to image formation and separately encode the higher-
order statistics of each of these factors. Unlike our recently
proposed multilinear generalization of Eigenfaces dubbed
TensorFaces [11] which encodes only second order statis-
tics associated with the different factors inherent to image
formation, MICA encodes higher order dependencies asso-
ciated with the different factors.

ICA has been employed in face recognition [1, 2] and,
like PCA, it works best when person identity is the only
factor that is permitted to vary. If additional factors, such
as illumination, viewpoint, and expression can modify fa-
cial images, recognition rates decrease dramatically. This
problem is addressed by our multilinear framework. In the
context of recognition, our second contribution in this pa-
per is a novel, multilinear projection algorithm. This al-
gorithm projects an unlabeled test image into the multiple
factor representation spaces in order to simultaneously infer
the person, viewpoint, illumination, expression, etc., labels
associated with the test image. Equipped with this new al-
gorithm, we demonstrate the application of multilinear ICA
to the problem of face recognition under varying viewpoint
and illumination, obtaining significantly improved results.

After reviewing the mathematical foundations of our
work in the next section, we introduce our multilinear ICA
algorithm in Section 3 and develop the associated recogni-
tion algorithm in Section 4. Section 5 describes our experi-
ments and presents results. Section 6 concludes the paper.

2 Mathematical Background

In this section, we review the mathematics of PCA, multi-
linear PCA, and ICA.

1An initial description of this work appeared as an extended abstract in
the Learning 2004 Workshop, Snowbird, UT, April, 2004.

1



Views

People

Illuminations

(a) (b)

Figure 1: Eigenfaces and TensorFaces bases for an ensemble of 2,700 facial images spanning 75 people, each imaged under 6 viewing and
6 illumination conditions (see Section 5). (a) PCA eigenvectors (eigenfaces), which are the principal axes of variation across all images.
(b) A partial visualization of the 75 × 6 × 6 × 8560 TensorFaces representation of D, obtained as T = Z ×4 Upixels.

2.1 PCA

The principal components analysis of an ensemble of I2 im-
ages is computed by performing an SVD on a I1 × I2 data
matrix D whose columns are the “vectored” I1-pixel “cen-
tered” images.2 The matrix D ∈ IRI1×I2 is a two-mode
mathematical object that has two associated vector spaces,
a row space and a column space. In a factor analysis of D,
the SVD orthogonalizes these two spaces and decomposes
the matrix as

D = UΣVT , (1)

the product of an orthogonal column-space represented by
the left matrix U ∈ IRI1×J1 , a diagonal singular value ma-
trix Σ ∈ IRJ1×J2 with diagonal entries σ1 ≥ σ2 ≥ . . . ≥
σp ≥ 0 called the singular values of D, and an orthogonal
row space represented by the right matrix V ∈ IRI2×J2 .
The eigenvectors U are also called the principal component
(or Karhunen-Loeve) directions of D (Fig. 1(a)).

Optimal dimensionality reduction in matrix principal
components analysis is obtained by truncation of the sin-
gular value decomposition (i.e., deleting eigenvectors asso-
ciated with the smallest singular values).

2Each vectored-centered image is obtained by subtracting the mean im-
age of the ensemble from each input image and identically arranging the
resulting pixels into a column vector.

2.2 Multilinear PCA

The analysis of an ensemble of images resulting from the
confluence of multiple factors, or modes, related to scene
structure, illumination, and viewpoint is a problem in mul-
tilinear algebra [11]. Within this mathematical framework,
the image ensemble is represented as a higher-order ten-
sor. This image data tensor D must be decomposed in or-
der to separate and parsimoniously represent the constituent
factors. To this end, we prescribe the N -mode SVD al-
gorithm [11, 10], a multilinear extension of the aforemen-
tioned conventional matrix SVD.

Appendix A overviews the mathematics of multilinear
analysis. Briefly, an order N > 2 tensor or N -way ar-
ray D is an N -dimensional matrix comprising N spaces.
N -mode SVD is a “generalization” of conventional matrix
(i.e., 2-mode) SVD. It orthogonalizes these N spaces and
decomposes the tensor as the mode-n product, denoted ×n

(see (25)), of N -orthogonal spaces, as follows:

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN . (2)

Tensor Z , known as the core tensor, is analogous to the
diagonal singular value matrix in conventional matrix SVD
(although it does not have a simple, diagonal structure). The
core tensor governs the interaction between the mode matri-
ces U1, . . . ,UN . Mode matrix Un contains the orthonor-
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mal vectors spanning the column space of matrix D(n) re-
sulting from the mode-n flattening of D (see Appendix A).3

Our N -mode SVD algorithm for decomposing D ac-
cording to equation (2) is:

1. For n = 1, . . . , N , compute matrix Un in (2) by com-
puting the SVD of the flattened matrix D(n) and set-
ting Un to be the left matrix of the SVD. 4

2. Solve for the core tensor as follows:

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (3)

Dimensionality reduction in the linear case does not have
a trivial multilinear counterpart. According to [6, 4], a
useful generalization to tensors involves an optimal rank-
(R1, R2, . . . , RN ) approximation which iteratively opti-
mizes each of the modes of the given tensor, where each
optimization step involves a best reduced-rank approxima-
tion of a positive semi-definite symmetric matrix. This tech-
nique is a higher-order extension of the orthogonal iteration
for matrices.

The tensor basis associated with multilinear PCA is dis-
played in Fig. 1(b).

2.3 ICA

The independent components analysis of multivariate data
looks for a sequence of projections such that the projected
data look as far from Gaussian as possible. ICA can be ap-
plied in two ways [1, 2]: Architecture I applies ICA to DT ,
each of whose rows is a different image, and finds a spa-
tially independent basis set that reflects the local properties
of faces. On the other hand, Architecture II applies ICA
to D and finds a set of coefficients that are statistically in-
dependent while the basis reflects the global properties of
faces.

Architecture I: ICA starts essentially from the factor
analysis or PCA solution (1), and computes a rotation of the
principal components such that they become independent
components [8]; that is ICA rotates the principal component
directions U in (1) as follows:

DT = VΣUT (4)

=
(
VΣW−1

) (
WUT

)
(5)

= KT CT , (6)

3Note that the conventional SVD in (1) can be rewritten as D = Σ×1

U ×2 V using mode-n products.
4When D(n) is a non-square matrix, the computation of Un in the

singular value decomposition (SVD) D(n) = UnΣVT
n can be per-

formed efficiently, depending on which dimension of D(n) is smaller,

by decomposing either D(n)D
T
(n)

= UnΣ2UT
n and then computing

VT
n = Σ+UT

nD(n) or by decomposing DT
(n)

D(n) = VnΣ2VT
n and

then computing Un = D(n)VnΣ+.

where every column of D is a different image, W is an in-
vertible transformation matrix that is computed by the ICA
algorithm, C = UWT are the independent components
(Fig. 2(a)), and K = W−T ΣVT are the coefficients. Var-
ious objective functions, such as those based on mutual
information, negentropy, higher-order cumulants, etc., are
presented in the literature for computing the independent
components along with different optimization methods for
extremizing these objective functions [5]. Dimensionality
reduction with ICA is usually performed in the PCA pre-
processing stage.

Alternatively, in Architecture II, ICA is applied to D
and it rotates the principal components directions such that
the coefficients are statistically independent, as follows:

D = UΣVT (7)

=
(
UW−1

) (
WΣVT

)
(8)

= CK. (9)

where C = UW−1 is the basis matrix and K = WΣVT

are the statistically independent coefficients.
Note, that C, K and W are computed differently in the

two different architectures. Architecture I yields statisti-
cally independent bases, while Architecture II yields a “fac-
torial code”.

Like PCA, ICA is a linear analysis method, hence it is
not well suited to the representation of multi-factor image
ensembles. To address this shortcoming, we next propose a
multilinear generalization of ICA.

3 Multilinear ICA

Analogously to (2), multilinear ICA is obtained by decom-
posing the data tensor D as the mode-n product of N mode
matrices Cn and a core tensor S, as follows:

D = S ×1 C1 ×2 C2 . . . ×n Cn . . . ×N CN . (10)

The N -mode ICA algorithm is as follows:

1. For n = 1, . . . , N , compute the mode matrix Cn in
(10) in an architecture-dependent way (see below).

2. Solve for the core tensor as follows:

S = D×1C−1
1 ×2C−1

2 . . .×nC−1
n . . .×N C−1

N . (11)

As in ICA, there are two strategies for multilinear in-
dependent components analysis (MICA). Architecture I re-
sults in a factorial code, where each set of coefficients that
encodes people, viewpoints, illuminations, etc., is statisti-
cally independent, while Architecture II finds a set of inde-
pendent bases across people, viewpoints, illuminations, etc.

3



Views

People

Illuminations

(a) (b)

Figure 2: ICA and MICA bases for an ensemble of 2,700 facial images spanning 75 people, each imaged under 6 viewing and 6 illu-
mination conditions (see Section 5). (a) Independent components Cpixels. (b) A partial visualization of the 75 × 6 × 6 × 8560 MICA
representation of D, obtained as B = S ×4 Cpixels.

Architecture I: Transposing the flattened data tensor D
in the nth mode and computing the ICA as in (4)–(6), we
obtain:

DT
(n) = VnΣT

nUT
n (12)

=
(
VnΣT

nW−1
n

) (
WnUT

n

)
(13)

= KT
nCT

n , (14)

where the mode matrices are given by

Cn = UnWT
n . (15)

The columns associated with each of the mode matrices, Cn

are statistically independent. We can derive the relationship
between N -mode ICA and N -mode SVD (2) in the context
of Architecture I as follows:

D = Z ×1 U1 . . . ×N UN

= Z ×1 U1WT
1 W−T

1 . . . ×N UNWT
NW−T

N

= Z ×1 C1W−T
1 . . . ×N CNW−T

N

= (Z ×1 W−T
1 . . . ×N W−T

N ) ×1 C1 . . . ×N CN

= S ×1 C1 . . . ×N CN ,

where the core tensor S = Z ×1 W−T
1 . . . ×N W−T

N .
Architecture II: Flattening the data tensor D in the nth

mode and computing the ICA as in (7)–(9), we obtain:

D(n) = UnΣnVT
n (16)

=
(
UnW−1

n

) (
WnΣnVT

n

)
(17)

= CnKn, (18)

where the mode matrices are given by

Cn = UnW−1
n . (19)

Architecture II results in a set of basis vectors that are sta-
tistically independent across the different modes. Note that
the Wn in (19) differ from those in (15).

We can derive the relationship between N -mode ICA
and N -mode SVD (2) in the context of Architecture II as
follows:

D = Z ×1 U1 . . . ×N UN

= Z ×1 U1W−1
1 W1 . . . ×N UNW−1

N WN

= Z ×1 C1W1 . . . ×N CNWN

= (Z ×1 W1 . . . ×N WN ) ×1 C1 . . . ×N CN

= S ×1 C1 . . . ×N CN ,

where the core tensor S = Z ×1 W1 . . . ×N WN .

4 Recognition

Our approach performs a multilinear ICA decomposition of
the tensor D of vectored training images dp,v,l,

D = B ×1 Cpeople ×2 Cviews ×3 Cillums, (20)
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Figure 3: (a) Image representation dT = B×1 cT
p ×2 cT

v ×3 cT
l . (b) Given an unlabeled test image dT , the associated coefficient vectors

cp, cv , cl are computed by decomposing the response tensor R = P ×4 dT using the N -mode SVD algorithm.

extracting a set of mode matrices—the matrix Cpeople con-
taining row vectors cT

p of coefficients for each person p,
the matrix Cviews containing row vectors cT

v of coefficients
for each view direction v, and the matrix Cillums containing
row vectors cT

l of coefficients for each illumination direc-
tion l—and a MICA basis tensor

B = S ×4 Cpixels (21)

that governs the interaction between the different mode ma-
trices (Fig. 2(b)). Given an unlabeled test image, recog-
nition is performed by inferring the associated coefficient
vectors.

The recognition algorithm for TensorFaces proposed in
our earlier work [10] was based on a linear projection ap-
proach.5 It computed a set of linear projection operators for
each mode, which yielded a set of candidate coefficients per
mode.

We will now develop a multilinear method for simulta-
neously inferring the identity, illumination, viewpoint, etc.,
coefficient vectors of an unlabeled, test image. Our method
maps an image from the pixel space to N different con-
stituent mode spaces. We obtain a new recognition algo-
rithm that is based on the multilinear structure of the ten-

5In the PCA (eigenfaces) technique, one decomposes a data matrix D
of known, training facial images dd into a basis matrix Upixels and a matrix
of coefficient vectors. In our tensor notation, an unlabeled, test facial image
d can be decomposed and represented as

dT = Σ ×1 cT
p ×2 Upixels. (22)

We obtain the vector of “person coefficients” p associated with d as
follows: cT

p = P ×2 dT , where the linear projection operator P =

UpixelsΣ−1.

sor framework and the statistical independence properties
of ICA.

From (20), MICA represents the unlabeled, test image
by a set of coefficient vectors:

dT = B ×1 cT
p ×2 cT

v ×3 cT
l , (23)

where the coefficient vector cp encodes the person, the coef-
ficient vector cv encodes the viewpoint, and the coefficient
vector cl encodes the illumination. The multilinear repre-
sentation of an image is illustrated in Fig. 3(a).

The response tensor, illustrated in Fig. 3(b), is computed
as

R = P ×4 dT , (24)

where the “projection tensor” P is obtained by re-
tensorizing matrix P(pixels) = B−T

(pixels) (the matrix B(pixels) is the
pixel-mode flattening of tensor B).

The response R has the structure (cp ◦ cv ◦ cl).6 It is a
tensor of rank (1,1,1) as it is the outer product of the three
coefficient vectors cp, cv , and cl.

The structure of R enables us to compute the three co-
efficient vectors via a tensor decomposition using the N -
mode SVD algorithm. This is because the fibers (columns,
rows, tubes) of R are multiples of their corresponding co-
efficient vectors (cp, cv, cl) (cf. the boxed rows/columns
in Fig. 3(b)). Thus, flattening R in each mode yields rank
1 matrices, enabling the modal SVD to compute the corre-
sponding coefficient vector. The N -mode SVD thus maps

6We can show that P ×4 dT = I ×4 (cT
l ⊗ cT

v ⊗ cT
p ), where ⊗

denotes the Kronecker product and I is the re-tensorized identity matrix
I(pixels) = (B+

(pixels)B(pixels))
T .

5



the response tensor R into N different mode spaces that ex-
plicitly account for the contribution of each mode—person,
viewpoint, illumination.

In particular, note that the person coefficient vector cp

is the left singular matrix of the SVD of R(people). To recog-
nize the person in the test image dT , we apply a normal-
ized nearest neighbor classification scheme by computing
normalized scalar products between cp and each of the row
vectors of the people mode matrix Cpeople.

5 Experiments

In our experiments, we employ gray-level facial images of
75 subjects. Each subject is imaged from 15 different view-
points (θ = −35◦ to +35◦ in 5◦ steps on the horizontal
plane φ = 0◦) under 15 different illuminations (θ = −35◦

to +35◦ in 5◦ steps on an inclined plane φ = 45◦). Fig. 4(b)
shows the full set of 225 images for one of the subjects
with viewpoints arrayed horizontally and illuminations ar-
rayed vertically. The image set was rendered from a 3D
scan of the subject shown boxed in Fig. 4(a). The 75 scans
shown in the figure were recorded using a CyberwareTM

3030PS laser scanner and are part of the 3D morphable
faces database created at the University of Freiburg [3].

Recognition Experiment PCA ICA MPCA MICA

Training: 75 people, 6 viewpoints (θ =
±35, ±20, ±5, φ = 0), 6 illumi-
nations (θ = 45, φ = 90 + δ,
δ = ±35, ±20, ±5)
Testing: 75 people, 9 viewpoints (φ =
0 ± 10, ±15, ±25, ± = 30), 9
illuminations (θ = 90 + δ, δ =
±35, ±20, ±5, θ = 0)

83.9% 89.5% 93.4% 98.14%

As the above table shows, in our experiments with
16, 875 images captured from the University of Freiberg 3D
Morphable Faces Database, MICA yields better recognition
rates than PCA (eigenfaces) and ICA in scenarios involv-
ing the recognition of people imaged in previously unseen
viewpoints and illuminations. MICA training employed an
ensemble of 2,700 images. Fig. 2(b) illustrates the MICA
basis derived from the training ensemble, while Fig. 2(a)
illustrates the ICA basis.

6 Conclusion

Motivated by the reported outperformance in the face recog-
nition literature of PCA by ICA in the linear case where
only a single factor is allowed to vary, and the outperfor-
mance of PCA by TensorFaces when multiple factors are
allowed to vary, it is natural to ask whether there a multi-
linear generalization of ICA and if its performance is bet-
ter than the other two methods. In this paper, we devel-
oped a multilinear generalization of ICA and successfully

applied our multilinear ICA (MICA) algorithm to a mul-
timodal face recognition problem involving multiple peo-
ple imaged under different viewpoints and illuminations.
We also introduced a multilinear projection algorithm for
recognition, which projects an unlabeled test image into
the N constituent mode spaces to infer its mode labels—
person, viewpoint, illumination, etc. In our experiments, we
obtained improved recognition results relative to the prior
methods under consideration, because MICA disentangles
the multiple factors inherent to image formation and ex-
plicitly represents the higher-order statistics associated with
each factor.

Acknowledgements

This research was funded by the Technical Support Work-
ing Group (TSWG) of the US Department of Defense. The
3D Morphable faces database was obtained courtesy of
Prof. Sudeep Sarkar of the University of South Florida as
part of the USF HumanID 3D database.

A Multilinear Math

A tensor is a higher order generalization of a vector (first
order tensor) and a matrix (second order tensor). Ten-
sors are multilinear mappings over a set of vector spaces.
The order of tensor A ∈ IRI1×I2×...×IN is N . Ele-
ments of A are denoted as Ai1...in...iN

or ai1...in...iN
, where

1 ≤ in ≤ In. In tensor terminology, matrix column
vectors are referred to as mode-1 vectors and row vectors
as mode-2 vectors. The mode-n vectors of an Nth or-
der tensor A are the In-dimensional vectors obtained from
A by varying index in while keeping the other indices
fixed. The mode-n vectors are the column vectors of matrix
A(n) ∈ IRIn×(I1I2...In−1In+1...IN ) that results by mode-n
flattening the tensor A (see Fig. 1 in [11]). The n-rank of
A ∈ IRI1×I2×...×IN , denoted Rn, is defined as the dimen-
sion of the vector space generated by the mode-n vectors.

A generalization of the product of two matrices is the
product of a tensor and a matrix. The mode-n product
of a tensor A ∈ IRI1×I2×...×In×...×IN by a matrix M ∈
IRJn×In , denoted by A ×n M, is the I1 × . . . × In−1 ×
Jn × In+1 × . . . × IN tensor

(A×n M)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
mjnin

. (25)

The mode-n product can be expressed in terms of flattened
matrices as B(n) = MA(n). The mode-n product of a ten-
sor and a matrix is a special case of the inner product in
multilinear algebra and tensor analysis. Note that for ten-
sors and matrices of the appropriate sizes, A×m U×n V =
A×n V ×m U and (A×n U) ×n V = A×n (VU).
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Figure 4: (a) 3D scans of 75 subjects, recorded using a CyberwareTM 3030PS laser scanner as part of the University of Freiburg 3D
morphable faces database [3]. (b) Full set of facial images for a subject (boxed head in (a)), viewed from 15 different viewpoints (across)
under 15 different illuminations (down). The dashed-boxed images served as training images; the solid-boxed images served as testing
images.
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