TensorFaces:

Multilinear Representation of Image Ensembles for Recognition and Compression

The Problem with Linear (PCA) Appearance Based Recognition Methods

- Eigenimages work best for recognition when only a single factor e.g., object identity is allowed to vary
- Natural images are the composite consequences of multiple factors (or modes) related to scene structure, illumination and imaging

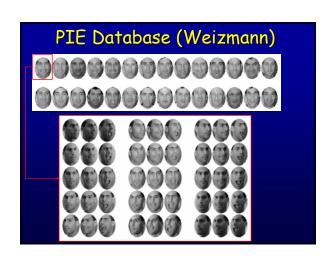
Decomposition from Pixel Space to Factor Spaces Pecil Space Weepin Space Verypoint Space Verypoint Space

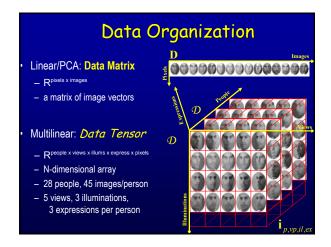
Multilinear Model Approach

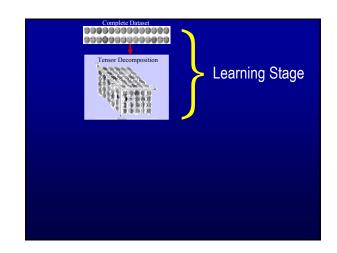
- · Non linear appearance based technique
- Appearance based model that explicitly accounts for each of the multiple factors inherent in image formation
- Multilinear algebra, the algebra of higher order tensors
- Applied to facial images, we call our tensor technique "TensorFaces" [Vasilescu & Terzopoulos, ECCV 02, ICPR 02]

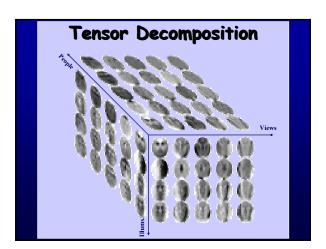
TensorFaces vs Eigenfaces (PCA)

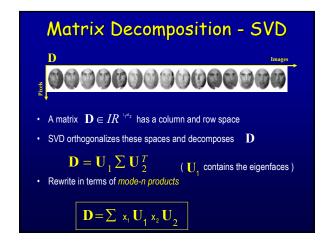
PIE Recognition Experiment	PCA	TensorFaces
Training: 23 people, 3 viewpoints (0,+34,-34), 4 illuminations Testing: 23 people, 2 viewpoints (+17,-17), 4 illuminations (center,left,right,left+right)	61%	80%
Training: 23 people, 5 viewpoints (0,+17, 17,+34,-34), 3 illuminations Testing: 23 people, 5 viewpoints (0,+17, -17,+34,-34), 4 th illumination	27%	88%







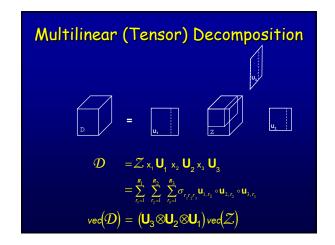




D is a n-dimensional matrix, comprising N-spaces N-mode SVD is the natural generalization of SVD N-mode SVD orthogonalizes these spaces & decomposes D as the mode-n product of N-orthogonal spaces D = Z x₁ U₁ x₂ U₂ x₃ U₃ x₄ ··· x_n U_n z core tensor; governs interaction between mode matrices

 $\mathbf{U}_{\scriptscriptstyle n}$, mode-n matrix, is the column space of

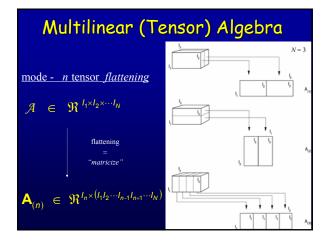
Tensor Decomposition

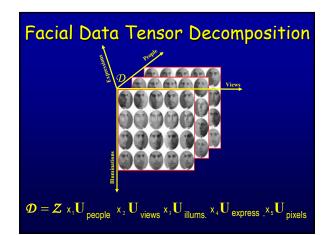


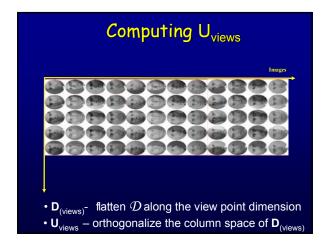
N-Mode SVD Algorithm

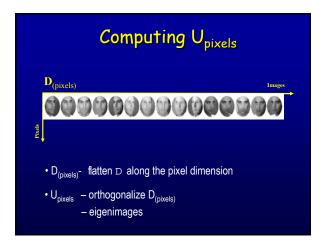
- For n=1,...,N, compute matrix U_n by computing the SVD of the flattened matrix D_(n) and setting U_n to be the left matrix of the SVD.
- 2. Solve for the core tensor as follows

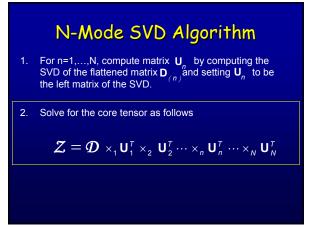
$$\mathcal{Z} = \mathcal{D}_{1} \times_{1} \mathbf{U}_{1}^{\mathsf{T}} \times_{2} \mathbf{U}_{2}^{\mathsf{T}} \cdots \times_{n} \mathbf{U}_{n}^{\mathsf{T}} \cdots \times_{N} \mathbf{U}_{N}^{\mathsf{T}}$$



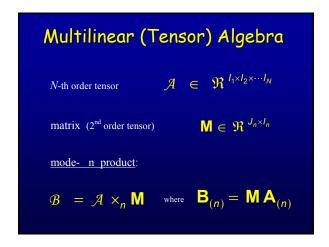


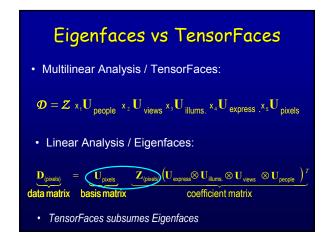


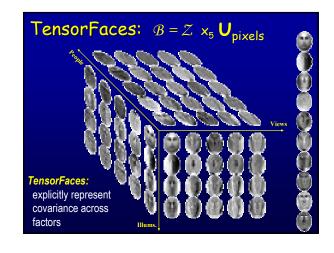


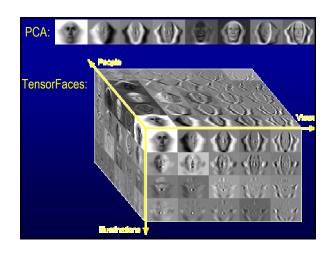


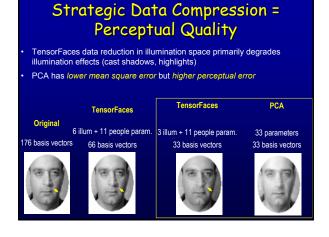
Mode-*n* Product Mode-n product is a generalization of the product of two matrices It is the product of a tensor with a matrix Mode-n product of \$\mathcal{A} \in \mathbb{N}^{l_1 \times \times l_n \times l_n \times l_n}\$ and \$\mathbb{M} = \mathbb{N}^{l_n \times l_n}\$ \$\mathcal{B} \in \mathbb{N}^{l_1 \times \times l_n \times l_n \times l_n}\$ \$\mathcal{M} \in \mathbb{N}\$ \$\mathcal{A} \times \mathbb{N}\$ \$\mathcal{M} \times \mathcal{N}\$ \$\mathcal{M} \times \mathcal{N}\$ \$\mathcal{M} \times \mathcal{M}\$ \$\mathcal{M} \times \mathcal{M}\$ \$\mathcal{M} \times \mathcal{M}\$ \$\mathcal{M} \times \mathcal{M}\$ \$\mathcal{M}\$ \$\mathcal{M}\$











Dimensionality Reduction - Truncation $\left\|\boldsymbol{\mathcal{D}}-\boldsymbol{\hat{\mathcal{D}}}\right\|^2 \leq \sum_{i_1=R_1}^{I_1}\sigma_{i_1}^2 + \sum_{i_2=R_2}^{I_2}\sigma_{i_2}^2 \cdots + \sum_{i_N=R_N}^{I_N}\sigma_{i_N}^2$

Iterative Multilinear Model -Dimensionality Reduction

$$e = \left\| \mathcal{D} - \mathcal{Z} \times_{\mathbf{I}} \mathbf{U}_{\mathbf{I}} \times \dots \times_{n} \mathbf{U}_{n} \times \dots \times_{N} \mathbf{U}_{N} \right\| + \sum_{n=1}^{N} \lambda_{n} \left\| \mathbf{U}_{n} \mathbf{U}_{n}^{T} - \mathbf{I} \right\|$$

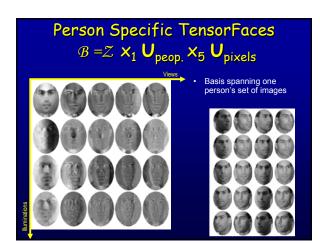
- · Iterative data reduction approach:
 - Optimize mode per mode in an iterative way
 - Alternating Least Squares [Golub & Van Loan] improves data fit

Iterative Multilinear Model

- 1. Initialize U₁0, U₂0, ..., U_N0:
 - Compute U₁, U₂, ..., U_N using N-Mode SVD and
 - Truncate each mode matrix
- Iterate:
 - $\quad \mathbf{U_1}^t = \mathbf{D} \ \mathbf{x_2} \ \mathbf{U_2}^{t-1}^\mathsf{T} \ \mathbf{x_3} \ \cdots \ \mathbf{x_N} \ \mathbf{U_N}^{t-1}^\mathsf{T}$
 - $\mathbf{U}_1^{t} = \text{svd} \left(\mathbf{U}_1^{t} \right)$
 - $\quad U_{2}^{t} = D x_{1} U_{1}^{tT} x_{3} U_{3}^{t-1} \cdots x_{N} U_{N}^{t-1}^{T}$ $U_{2}^{t} = svd \left(U_{2}^{t} U_{2}^{t} \right)$
- 3. $Z = D x_1 U_1^{t^T} x_2 U_2^{t^T} x_3 \cdots x_N U_N^{t^T}$

Construction of Projection Basis

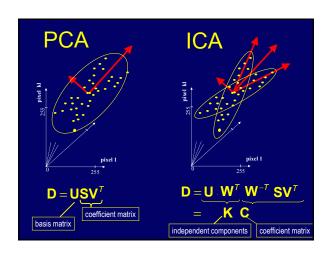
- Multilinear decomposition allows for the construction of different basis depending on the application needs
 - Object Specific TensorFaces: person appearance model; eigenvectors span an individuals set of images
 - View Based TensorFaces
 - Recognition basis basis maps an image into people parameter space, $\boldsymbol{U}_{\text{people}}$

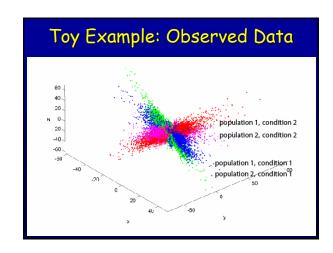


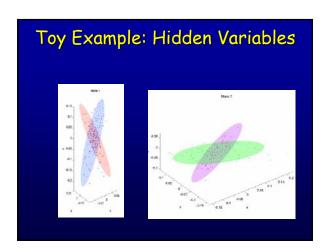
Perspective on Our Face Recognition Approach

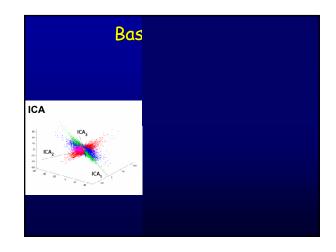
	Linear Models	Our Nonlinear (Multilinear) Models
2 nd -Order Statistics (covariance)	PCA Eigenfaces	Multilinear PCA TensorFaces
Higher -Order Statistics	ICA	Multilinear ICA Independent TensorFaces

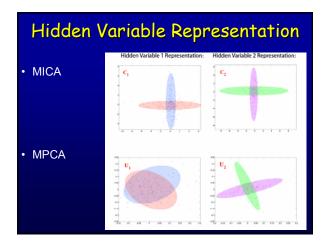
Vasilescu & Terzopoulos, Learning 2004











1. For n=1,...,N, compute matrix \mathbf{U}_n by computing the SVD of the flattened matrix $\mathbf{P}_{(n)}$ and setting \mathbf{U}_n to be the left matrix of the SVD. Compute \mathbf{W}_n^T using ICA. Our new mode matrix is \mathbf{K}_n $\mathbf{D}_{(n)} = \mathbf{U}_n \mathbf{Z}_{(n)} \mathbf{V}_n^T = \left(\mathbf{U}_n \mathbf{W}_n^T\right) \mathbf{W}_n^T \mathbf{Z}_{(n)} \mathbf{V}_n^T$ $= \mathbf{K}_n \mathbf{W}_n^T \mathbf{Z}_{(n)} \mathbf{V}_n^T$ 2. Solve for the core tensor as follows $\mathbf{S} = \mathbf{D}_{1} \mathbf{K}_1^{-1} \times_2 \mathbf{K}_2^{-1} \times \cdots \times_n \mathbf{K}_n^{-1} \times \cdots \times_N \mathbf{K}_n^{-1}$ $\mathbf{S} = \mathbf{Z}_{1} \mathbf{W}_1^{-T} \times_2 \mathbf{W}_2^{-T} \times \cdots \times_n \mathbf{W}_n^{-T} \times \cdots \times_N \mathbf{W}_n^{-T}$

