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Multilinear Representation of Image Ensembles
for Recognition and Compression

Multilinear Representation of Image Ensembles
for Recognition and Compression

TensorFaces:

The Problem with Linear (PCA) 
Appearance Based Recognition 

Methods

The Problem with Linear (PCA) 
Appearance Based Recognition 

Methods
• Eigenimages work best for recognition when only a single 

factor – e.g., object identity – is allowed to vary 

• Natural images are the composite consequences of multiple 
factors (or modes) related to scene structure, illumination and 
imaging

Decomposition from 
Pixel Space to Factor Spaces

Decomposition from 
Pixel Space to Factor Spaces Multilinear Model ApproachMultilinear Model Approach

• Non- linear appearance based technique

• Appearance based model that explicitly accounts for each of the 
multiple factors inherent in image formation

• Multilinear algebra, the algebra of higher order tensors

• Applied to facial images, we call our tensor technique 
“TensorFaces”   [ Vasilescu & Terzopoulos, ECCV 02, ICPR 02 ]

TensorFaces vs Eigenfaces
(PCA) 

TensorFaces vs Eigenfaces
(PCA) 

88%27%

Training: 23 people, 5 viewpoints (0,+17,         -
17,+34,-34), 3 illuminations

Testing: 23 people, 5 viewpoints (0,+17,            
-17,+34,-34), 4th illumination

80%61%

Training: 23 people, 3 viewpoints (0,+34,-34),   
4 illuminations

Testing: 23 people, 2 viewpoints (+17,-17),        
4 illuminations (center,left,right,left+right)

TensorFacesPCAPIE Recognition Experiment

PIE Database (Weizmann)PIE Database (Weizmann)
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Data OrganizationData Organization

• Linear/PCA: Data Matrix
– Rpixels x images

– a matrix of image vectors

• Multilinear: Data Tensor
– Rpeople x views x illums x express x pixels

– N-dimensional array
– 28 people, 45 images/person
– 5 views, 3 illuminations, 

3 expressions per person
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Tensor DecompositionTensor Decomposition
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Matrix Decomposition - SVDMatrix Decomposition - SVD

• A matrix                          has a column and row space  

• SVD orthogonalizes these spaces and decomposes

• Rewrite in terms of mode-n products
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Tensor DecompositionTensor Decomposition
• D is a n-dimensional matrix, comprising N-spaces 

• N-mode SVD is the natural generalization of SVD

• N-mode SVD orthogonalizes these spaces & decomposes

D as the mode-n product of N-orthogonal spaces

• Z core tensor; governs interaction between mode matrices

• ,  mode-n matrix, is the column space of  nU )(nD
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Multilinear (Tensor) DecompositionMultilinear (Tensor) Decomposition
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N-Mode SVD AlgorithmN-Mode SVD Algorithm

1. For n=1,…,N, compute matrix         by computing the SVD 
of the flattened matrix         and setting        to be the left 
matrix of the SVD.

2. Solve for the core tensor as follows
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Multilinear (Tensor) AlgebraMultilinear (Tensor) Algebra

mode  - n tensor  flattening

NIII L××ℜ∈ 21A
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flattening
=

“matricize”

N = 3
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Facial Data Tensor DecompositionFacial Data Tensor Decomposition
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Computing UviewsComputing Uviews

Images

• D(views)- flatten D along the view point dimension
• Uviews – orthogonalize the column space of D(views)
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Computing UpixelsComputing Upixels

D(pixels)

• D(pixels)- flatten D along the pixel dimension

• Upixels – orthogonalize D(pixels)

– eigenimages

N-Mode SVD AlgorithmN-Mode SVD Algorithm
1. For n=1,…,N, compute matrix         by computing the 

SVD of the flattened matrix         and setting        to be 
the left matrix of the SVD.

2. Solve for the core tensor as follows

)( nD
nU

nU

T
NN

T
nn

TT UUUU  ××××= LL    2211 DZ



4

I1

J1

x1

• Mode-n product is a generalization of the product of two matrices
• It is the product of a tensor with a matrix

• Mode-n product of                                   andNn III x...xx...x1ℜ∈A
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Multilinear (Tensor) AlgebraMultilinear (Tensor) Algebra

N-th order tensor NIII L××ℜ∈ 21A

nn IJ ×ℜ∈Mmatrix (2nd order tensor)

mode - n    product:

Mn×= AB ( ) ( )nn AMB =where
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matrix basis
   

matrix data
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Eigenfaces vs TensorFaces Eigenfaces vs TensorFaces 
• Multilinear Analysis / TensorFaces:
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321

matrix basis
   pixelsU

• Linear Analysis / Eigenfaces:

• TensorFaces subsumes Eigenfaces

TensorFaces:TensorFaces:

Views

Illums.

People

B = Z x5 Upixels

TensorFaces:
explicitly represent
covariance across
factors

PCA:

TensorFaces:

TensorFaces

Mean Sq. Err. = 409.15
3 illum + 11 people param.

33 basis vectors

PCA

Mean Sq. Err. = 85.75
33 parameters

33 basis vectors

Strategic Data Compression = 
Perceptual Quality

Strategic Data Compression = 
Perceptual Quality

Original

176 basis vectors

TensorFaces

6 illum + 11 people param.
66 basis vectors

• TensorFaces data reduction in illumination space primarily degrades 
illumination effects (cast shadows, highlights)

• PCA has lower mean square error but higher perceptual error
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Dimensionality Reduction -
Truncation

Dimensionality Reduction -
Truncation
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Iterative Multilinear Model -
Dimensionality Reduction

Iterative Multilinear Model -
Dimensionality Reduction

• Iterative data reduction approach:
– Optimize mode per mode in an iterative way
– Alternating Least Squares [Golub & Van Loan] improves data fit
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1. Initialize U1
0, U2

0, …, UN
0:

– Compute U1, U2, …, UN using N-Mode SVD and 
– Truncate each mode matrix

2. Iterate:
– U 1

t = D x2 U2
t-1T  

x3
… xN UN

t-1T 

U1
t = svd( U 1

t
(1) )

– U 2
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U2
t = svd( U 2

t
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tT 

x2 U2
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tT

Iterative Multilinear ModelIterative Multilinear Model Construction of Projection 
Basis

Construction of Projection 
Basis

• Multilinear decomposition allows for the construction 
of different basis depending on the application needs

• Object Specific TensorFaces: person appearance model; 
eigenvectors span an individuals set of images

• View Based TensorFaces

• Recognition basis – basis maps an image into people parameter 
space, Upeople

Person Specific TensorFaces
B =Z x1 Upeop. x5 Upixels

Person Specific TensorFaces
B =Z x1 Upeop. x5 Upixels

• Basis spanning one 
person’s set of images

Views
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Higher  -Order    
Statistics

2nd -Order Statistics
(covariance)

Our Nonlinear 
(Multilinear) Models

Linear 
Models

Perspective on 
Our Face Recognition Approach

Perspective on 
Our Face Recognition Approach

Multilinear PCA
TensorFaces

PCA
Eigenfaces

ICA Multilinear ICA
Independent TensorFaces

Vasilescu & Terzopoulos, Learning 2004
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Toy Example: Observed DataToy Example: Observed Data

Toy Example: Hidden VariablesToy Example: Hidden Variables Basis VectorsBasis Vectors

ICA

Hidden Variable RepresentationHidden Variable Representation

• MICA

• MPCA

1. For n=1,…,N, compute matrix         by computing the SVD 
of the flattened matrix         and setting        to be the left 
matrix of the SVD. Compute        using ICA. Our new mode 
matrix is       

2. Solve for the core tensor as follows
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PCA:

TensorFaces:
• Multilinear orthog. decomp.
• Encodes 2nd order statistics

ICA:

Independent TensorFaces:
Multilinear ICA

• Multilinear decomposition
• Encodes higher order statistics


