Independent Component Analysis

Computing IC's using Non-Gausianity

- a measure of non-gaussianity: kurtosis
$-\operatorname{kurt}(y)=E\{y 4\}-3(E\{y 2\}) 2=E\{y 4\}-3$
- for unit-variance data
- kurt(y) $=0$ for gaussian data
- kurt(y) < 0 for subgaussian data
- kurt(y) >0 for supergaussian data
- kurtosis is measured along each possible projection direction over the data
- a maximum corresponds to one of the IC's
- other IC's are found from the orthogonal directions with an iterative algorithm
- rotation matrix R has now been solved

Computing Independent Components

- By maximization of nongaussianity: kurtosis
- By maximum likelihood estimation
- By minimization of mutual information
- By tensorial methods
- By nonlinear decorrelation and nonlinear PCA
- By methods using time structure
- Hyvärinen A, Karhunen J, Oja E. "Independent component analysis", John Wiley \& Sons, Inc., New York, 2001, p. 481
- http://www.cis.hut.fi/projects/ica/fastica/

Geometric View of ICA
$\mathbf{D}=\mathbf{U S V}^{T}$
$\mathbf{D}^{\prime}=\mathbf{U}^{\top} \mathbf{D}$

Geometric View of ICA

Fisher's Linear Discriminant

- Objective: Find a projection which separates data clusters

Poor separation

Good separation

Fisher Linear Discriminant:
FisherFaces

FLD: Data Scatter

- Within dass scatter matrix

$$
\mathbf{S}_{W}=\sum_{c=1}^{C} \sum_{\mathbf{i}_{n} \in D_{c}}\left(\mathbf{i}_{n}-\mu_{c}\right)\left(\mathbf{i}_{n}-\mu_{c}\right)^{T}
$$

- Between dass scatter matrix

$$
\mathbf{S}_{B}=\sum_{c=1}^{c}\left|\boldsymbol{D}_{c}\right|\left(\boldsymbol{\mu}_{c}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{c}-\boldsymbol{\mu}\right)^{T}
$$

- Total scatter matrix

$$
\mathbf{S}_{T}=\mathbf{S}_{W}+\mathbf{S}_{B}
$$

Fisher Linear Discriminant

- The basis matrix B is chosen in order to maximize ratio of the determinant between class scatter matrix of the projected samples to the determinant within class scatter matrix of the projected samples

$$
\mathbf{B}=\arg \max _{\mathbf{B}} \frac{\left|\mathbf{B}^{T} \mathbf{S}_{b w w} \mathbf{B}\right|}{\left|\mathbf{B}^{T} \mathbf{S}_{i n} \mathbf{B}\right|}
$$

- B is the set of generalized eigenvectors of $\mathrm{S}_{\mathrm{Btw}}$ and $\mathrm{S}_{\text {win }}$ corresponding with a set of decreasing eigenvalues

$$
\mathbf{S}_{b t w} \mathbf{B}=\mathbf{S}_{\text {within }} \Lambda \mathbf{B}
$$

Fisher Linear Discriminant

Consider a set of images of 2 people under fixed viewpoint \& N lighting condition

pixel 1

Each image is represented by one coefficient vector
Each person is displayed in N images and therefore has N coefficient vectors

