

• "...If I look at your face I immediately recognize that I have seen it before. ...Yet there is no machine which, with that speed, can take a picture of a face and say even that it is a man; and much less that it is the same man that you showed it before—unless it is exactly the same picture. If the face is changed; if I am closer to the face; if I am further from the face; if the light changes—I recognize it anyway. Now, this little computer I carry in my head is easily able to do that. The computers that we build are not able to do that. ..."

Richard P. Feynman, Dec. 29, 1959 There's Plenty of Room at the Bottom An Invitation to Enter a New Field of Physics

Why is Face Recognition Difficult?

· Severe illumination change

Automated Face Recognition Why is it Difficult?

• Varying viewpoint, illumination, etc.

Face Recognition

Definition:

- Given a database of labeled facial images
- Recognize an individual from an image formed from new and varying conditions (pose, expression, lighting etc.)

Sub-Problems:

- Representation:
- How do we represent images of faces?What information do we store?
- Classification:
- Classification:
- How do we compare stored information to a new sample?
- Search

Applications of Face Biometrics

- financial transactions
- check-in or boarding planes
- crossing borders
- · casting votes
- · security or surveillance
- identity fraud
- · criminal justice & law enforcement
- access to facilities, databases or privileged information, etc

Representation

Goal:

Compact, descriptive object representation for recognition

Representations:

- Shape Representation:
- Generalized cylinders, Superquadrics ...
- Apperace Based Representation for Recognition:
 Ordinary images
 - statistics

Today: Apperance Based Recognition

Appearance based recognition refers to the recognition of 3D objects from ordinary images.

Linear Models

•

- PCA Eigenfaces, EigenImages
- FLD Fisher Linear Discriminant Analysis
- ICA images are a linear combination of multiliple sources
- Multilinear Models
 - Relevant Tensor Math
 - MPCA TensorFaces
 - MICA

© 2002 by M. Alex O. Vasilescu

Linear Algebra

The algebra of vectors and matrices

- Traditionally of great value in image science
 - Fourier transform
 - Karhunen-Loeve transform (PCA)
 - Eigenfaces
- Linear methods model:
 - · Linear operators over a vector space
 - · Single-factor linear variation in image formation
 - · The linear combination of multiple sources (ICA)

Multilinear Algebra

- The algebra of higher-order (>2) tensors
 - A unifying mathematical framework for image science
 - Natural images result from the interaction of multiple factors related to
 - scene geometry
 - Illumination
 - Imaging
 - Multilinear algebra can explicitly represent multiple factors
 Multilinear operators over a set of vector spaces
 - Multilinear algebra subsumes linear algebra as a special case

Toy Example - Representation Heuristic

Consider a set of images of N people under the same viewpoint and lighting Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images

Toy Example - Representation Heuristic

Consider a set of images of N people under the same viewpoint and lighting
 Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images

Principal Component Analysis: Eigenfaces

 Employs second order statistics to compute in a principled way a new basis matrix

Statistical Learning

- Statistics: the science of collecting, organizing, and interpreting data.
 - Data collection.
 - Data analysis organize & summarize data to bring out main features and clarify their underlying structure.
 - Inference and decision theory extract relevant info from collected data and use it as
 - a guide for further action.

Data Collection

- **Population:** the entire group of individuals that we want information about.
- Sample: a *representative* part of the population that we actually examine in order to gather information.
- Sample size: number of observations/individuals in a sample.
- Statistical inference: to make an inference about a population based on the information contained in a sample.

Definitions

- Individuals (people or things)- objects described by data.
- Individuals on which an experiment is being performed are known as experimental units, subjects.
- · Variables describe characteristics of an individual.
 - Categorical variable places an individual into a category such as male/female.
 - Quantitative variable measures some characteristic of the individual, such as height, or pixel values in an image.

Data Analysis

- Experimental Units: images
- Observed Data: pixel values in images are directly measurable but rarely of direct interest
- Data Analysis: extracts the relevant information

Variables

- · Response Variables are directly measurable, they measure the outcome of a study.
 - Pixels are response variables that are directly measurable from an image.
- Explanatory Variables, Factors explain or cause changes in the response variable.
 - Pixel values change with scene geometry, illumination location, camera location which are known as the explanatory variables

Response vs. Explanatory Variables

Pixels (response variables, directly measurable from data) change with changes in view and illumination, the explanatory variables (not directly measurable but of actual interest).

The Principle Behind Principal Component Analysis¹

- Also called:- Hotteling Transform² or the - Karhunen Loeve Method ³.
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.

I.T.Jolliffe; Principle Component Analysis; 1986 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987 K.Karhunen; Über Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946 M.L.Deve, Probability Theory; 1985

- PCA / Eigenimages:
 - Sirovich & Kirby 1987
 - "Low Dimensional Procedure for the Characterization of Human Faces" Turk & Pentland 1991
 - "Face Recognition Using Eigenfaces"
 - Murase & Nayar 1995
 - "Visual learning and recognition of 3D objects from appearance"

Define a new origin as the mean of the data set

Find the direction of maximum variance in the samples (e_1) and align it with the first axis (y_1),

Continue this process with orthogonal directions of decreasing variance, aligning each with the next axis

Thus, we have a rotation which minimizes the covariance.

PCA-Dimensionality Reduction

Consider a set of images, & each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images $\mathbf{i} = \begin{bmatrix} i & i \\ j \end{bmatrix} \begin{bmatrix} i & j \end{bmatrix} \begin{bmatrix} i & j \\ j \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \end{bmatrix} \begin{bmatrix} i \\$ $\mathbf{i}_n = \begin{bmatrix} i_{1n} & i_{2n} & i_{3n} \end{bmatrix}^T$ s.t. $i_{1n} = i_{3n}$ and $1 \le n \le N$ PCA chooses axis in the direction of highest variability of the data, maximum scatter

pixel 1

• Each image \mathbf{i}_n is now represented by a vector of coefficients \mathbf{e}_n in a reduced dimensionality space.

 $\mathbf{D} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ (svd of D) \implies set $\mathbf{B} = \mathbf{U}$

· B minimize the following function

 $E = \mathbf{B}^T \mathbf{S}_T \mathbf{B}$ such that $\mathbf{B}^T \mathbf{B} = \mathbf{I}$ dentity

PCA: Some Properties of the Covariance/Scatter Matrix

- The matrix $\boldsymbol{S}_{\mathsf{T}}$ is symmetric
- The diagonal contains the variance of each parameter (i.e. element S_{T,ii} is the variance in the i'th direction).
- Each element S_{T,ij} is the co-variance between the two directions i and j, represents the level of correlation (i.e. a value of zero indicates that the two dimensions are uncorrelated).

SVD of a Matrix

Scatter of matrix: $\mathbf{S}_{T} = (\mathbf{D} - \mathbf{M})(\mathbf{D} - \mathbf{M})^{T}$ $(\mathbf{D} - \mathbf{M}) = \mathbf{U} \Sigma \mathbf{V}^{T}$ by svd of $(\mathbf{D} - \mathbf{M}) \implies$ set $\mathbf{B} = \mathbf{U}$ $(\mathbf{D} - \mathbf{M})(\mathbf{D} - \mathbf{M})^{T} = \mathbf{U} \Sigma^{2} \mathbf{U}^{T}$ (svd of \mathbf{S}_{T}) \implies set $\mathbf{B} = \mathbf{U}$

Selecting the Optimal B

How do we find such B?

 $(\mathbf{D}-\boldsymbol{\mu})(\mathbf{D}-\boldsymbol{\mu})^{\mathsf{T}}\mathbf{b}_{i}=\lambda_{i}\mathbf{b}_{i}$

 $\mathbf{S}_T \mathbf{B} = \mathbf{\Lambda} \mathbf{B}$ $\mathbf{B}_{\text{oot}} \text{ contains the eigenvectors of <u>the covariance of D</u>}$

$$B_{opt} = [b_1|...|b_d]$$

Data Reduction: Theory

- Each eigenvalue represents the the total variance in its dimension.
- Throwing away the least significant eigenvectors in B_{opt} means throwing away the least significant variance information

PCA for RecognitionConsider the set of images $\mathbf{i}_{a} = \begin{bmatrix} i_{1a} & i_{2a} & i_{3a} \end{bmatrix}^{T}$ s.t. $i_{1a} = i_{3a}$ and $1 \le n \le N$ PCA chooses axis in the direction of highest variability of the data

Given a new image, \mathbf{b}_{new} , compute the vector of coefficients \mathbf{c}_{new} associated with the new basis, \mathbf{B}_{new}^{i}

ixel

 $\mathbf{c}_{new} = \mathbf{B}^T \mathbf{i}_{new} \quad \mathbf{B}^{-1} = \mathbf{B}^T$

• Next, compare \mathbf{c}_{new} a reduced dimensionality representation of \hat{l}_{new} against all coefficient vectors \mathbf{c}_n $1 \le n \le N$

•One possible classifier: nearest-neighbor classifier

© 2002 by M. Alex O. Vasiles

Data and Eigenfaces

• Data is composed of 28 faces photographed under same lighting and viewing conditions

© 2002 by M. Alex O. Vasilescu

PCA for Recognition - EigenImages Consider a set of images of 2 people under fixed viewpoint & N lighting condition Each image is made up of 2 pixels

Reduce dimensionality by throwing away the axis along which the data varies the least The coefficient vector associated with the 1st basis vector is used for classifiction Possible classifier: Mahalanobis distance

Each image is represented by one coefficient vector

Each person is displayed in N images and therefore has N coefficient vectors