Image Pyramids

Idea: Represent NxN image as a "pyramid" of
$1 \times 1,2 \times 2,4 \times 4, \ldots, 2^{k} \times 2^{k}$ images (assuming $N=2^{\text {k }}$)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

What are they good for?

Improve Search

- Search over translations
- Classic coarse-to-fine strategy
- Search over scale
- Template matching
- E.g. find a face at different scales

Precomputation

- Need to access image at different blur levels
- Useful for texture mapping at different resolutions (called mip-mapping)
Image Processing
- Editing frequency bands separately
- E.g. image blending...

Image sub-sampling

Throw away every other row and column to create a $1 / 2$ size image - called image sub-sampling

The whole pyramid is only $4 / 3$ the size of the original image!

Why does this look so bad?

Really bad in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.
If camera shutter is only open for a fraction of a frame time (frame time $=1 / 30 \mathrm{sec}$. for video, $1 / 24 \mathrm{sec}$. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Alias: n., an assumed name

Picket fence receding Into the distance will produce aliasing...

WHY?

Not enough samples

Smoothing as low-pass filtering

- The message of the FT is that high frequencies lead to trouble with sampling.
- Solution: suppress high frequencies before sampling
- multiply the FT of the signal with something that suppresses high frequencies
- or convolve with a low-pass filter
- A filter whose FT is a box is bad, because the filter kernel has infinite support
- Common solution: use a Gaussian
- multiplying FT by

Gaussian is equivalent to convolving image with Gaussian.

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

256	128×128	64×64	32x	16x16

Sampling with smoothing. Top row shows the imater. We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

256×256	128×128	64×64	32×32	16×16

Sampling with smoothing. Top row shows the images. We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.
$\begin{array}{lllll}256 \times 256 & 128 \times 128 & 64 \times 64 & 32 \times 32 & 16 \times 16\end{array}$

Gaussian pre-filtering

G 1/4

Gaussian 1/2
Solution: filter the image, then subsample

Affect of Window Size

Good Window Size

"Optimal" Window: smooth but not ghosted

What is the Optimal Window?
To avoid seams

- window >= size of largest prominent feature

To avoid ghosting

- window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)

High-Pass filter

Laplacian Pyramid

How can we reconstruct (collapse) this pyramid into the original image?

Laplacian Pyramid: Blending

General Approach:

1. Build Laplacian pyramids $L A$ and $L B$ from images A and B
2. Build a Gaussian pyramid $G R$ from selected region R
3. Form a combined pyramid $L S$ from $L A$ and $L B$ using nodes of $G R$ as weights:

- $L S(i, j)=G R(l, j,)^{*} L A(l, j)+(1-G R(1, j))^{*} L B(l, j)$

4. Collapse the $L S$ pyramid to get the final blended image
