Image Filtering, Edges and Image Representation

Req. reading:
-Chapter 7, 9.2 F\&P
-Adelson, Simoncelli and Freeman (handout online)
Opt. reading:
$\underset{- \text { FP } 8}{- \text { Horn } 7} 48$
-FP 8

A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...

Capturing what's important

Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):
Any periodic function can be rewritten as a weighted sum of sines and cosines of different frequencies.
Don't believe it?

- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!
But it's true!
- called Fourier Series

Fourier Transform

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x :

For every ω from 0 to inf, $\boldsymbol{F}(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A \sin (\omega x+\phi)$

- How can F hold both? Complex number trick!
$F(\omega)=R(\omega)+i I(\omega)$
$A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}} \quad \phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}$
We can always go back:

Time and Frequency
example : $g(t)=\sin (2 \pi f t)+(1 / 3) \sin (2 \pi(3 f t))$

Frequency Spectra
example : $g(t)=\sin (2 \pi f t)+(1 / 3) \sin (2 \pi(3 f) t)$

Frequency Spectra

Frequency Spectra

$$
=A \sum_{k=1}^{\infty} \frac{1}{k} \sin (2 \pi k t)
$$

\qquad

FT: Just a change of basis

$$
M^{*} f(x)=F(\omega)
$$

IFT: Just a change of basis

$$
\mathrm{M}^{-1 *} F(\omega)=f(x)
$$

Finally: Scary Math
Fourier Transform : $F(\omega)=\int_{-\infty}^{+\infty} f(x) e^{-i \omega x} d x$
Inverse Fourier Transform : $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega x} d \omega$

Finally: Scary Math
Fourier Transform : $F(\omega)=\int_{-\infty}^{+\infty} f(x) e^{-i \omega x} d x$
Inverse Fourier Transform : $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega x} d \omega$
\ldots...not really scary: $\quad e^{i \omega x}=\cos (\omega x)+i \sin (\omega x)$
is hiding our old friend: $A \sin (\omega x+\phi)$

$$
\begin{gathered}
\text { phase can be encoded } \\
\text { by } \sin / \text { cos pair }
\end{gathered} \rightarrow \begin{aligned}
& P \cos (x)+Q \sin (x)=A \sin (x+\phi) \\
& A= \pm \sqrt{P^{2}+Q^{2}}
\end{aligned} \quad \phi=\tan ^{-1}\left(\frac{P}{Q}\right)
$$

So it's just our signal $f(x)$ times sine at frequency ω

Most information in at low frequencies!

Application to image compression

- (compression is about hiding differences from the true image where you can't see them).

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

A variant of discrete Fourier transform

Using DCT in JPEG

The first coefficient $\mathrm{B}(0,0)$ is the DC component, the average intensity
The top left coeffs represent low frequencies, the bottom right - high frequencies

Block size

- small block
- faster
- correlation exists between neighboring pixels
- large block
- better compression in smooth regions

Image compression using DCT

Convolution and Edge Detection

Gaussian filtering
A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$H[u, v]$

This kernel is an approximation of a Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathrm{F}^{-1}[g h]=\mathrm{F}^{-1}[g] * \mathrm{~F}^{-1}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

Fourier Transform pairs

Image gradient

The gradient of an image:

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f^{-}}{\partial y}\right.
$$

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how aoes inis reate to trie airection of the edge? perpendicular

The edge strength is given by the gradient magnitude

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Derivative theorem of convolution

$$
\frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f
$$

This saves us one operation:

∇^{2} is the Laplacian operator:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

What does blurring take away?

smoothed (5x5 Gaussian)

