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Image Filtering, Edges
and 

Image Representation 

Req. reading: 
–Chapter 7, 9.2 F&P
–Adelson, Simoncelli and Freeman (handout online)

Opt. reading: 
–Horn 7 & 8
–FP 8

February 19, 2008

Capturing what’s important

A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.

Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (1807):

Any periodic function 
can be rewritten as a 
weighted sum of sines
and cosines of different 
frequencies. 

Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

But it’s true!
• called Fourier Series

A sum of sines
Our building block:

Add enough of them to get 
any signal f(x) you want!

How many degrees of 
freedom?

What does each control?

Which one encodes the 
coarse vs. fine structure of 
the signal?
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Fourier Transform
We want to understand the frequency ω of our signal.  So, 
let’s reparametrize the signal by ω instead of x:
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f(x) F(ω)Fourier 
Transform

F(ω) f(x)Inverse Fourier 
Transform

For every ω from 0 to inf, F(ω) holds the amplitude A 
and phase φ of the corresponding sine  

• How can F hold both?  Complex number trick!
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We can always go back:
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Time and Frequency
example : g(t) = sin(2π f t) + (1/3)sin(2π(3f t))

Frequency Spectra
example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)
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Frequency Spectra
Usually, frequency is more interesting than the phase
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Frequency Spectra Frequency Spectra

FT: Just a change of basis
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M * f(x) = F(ω)

IFT: Just a change of basis
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M-1 * F(ω) = f(x)
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Finally: Scary Math Finally: Scary Math

…not really scary:
is hiding our old friend:

So it’s just our signal f(x) times sine at frequency ω
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phase can be encoded
by sin/cos pair

2D FFT transform Man-made Scene

Can change spectrum, then reconstruct Most information in at low frequencies!
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Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG 
A variant of discrete Fourier transform

• Real numbers
• Fast implementation

Block size
• small block

– faster 
– correlation exists between neighboring pixels

• large block
– better compression in smooth regions

Using DCT in JPEG 
The first coefficient B(0,0) is the DC component, 

the average intensity
The top- left coeffs represent low frequencies, 

the bottom right – high frequencies

Image compression using DCT
DCT enables image compression by 

concentrating most image information in the 
low frequencies

Loose unimportant image info (high 
frequencies) by cutting B(u,v) at bottom right 

The decoder computes the inverse DCT – IDCT 

•Quantization Table
3      5     7     9     11   13   15   17
5      7     9     11   13   15   17   19
7      9     11   13   15   17   19   21
9      11   13   15   17   19   21   23
11    13   15   17   19   21   23   25
13    15   17   19   21   23   25   27
15    17   19   21   23   25   27   29
17    19   21   23   25   27   29   31

JPEG compression comparison

89k 12k
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Convolution and Edge Detection
Reading: FP 8

Man-made Scene

Most information in at low frequencies! Mean vs. Gaussian filtering

Gaussian filtering
A Gaussian kernel gives less weight to pixels 
further from the center of the window

This kernel is an approximation of a Gaussian 
function:
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The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =∗
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Fourier Transform pairs 2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

Edges in images Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

• how does this relate to the direction of the edge? perpendicular

The edge strength is given by the gradient magnitude

Effects of noise
Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

How to compute a derivative?

Where is the edge?  

Solution:  smooth first

Look for peaks in 
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Derivative theorem of convolution

This saves us one operation:

Laplacian of Gaussian

Consider  

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

MATLAB demo

g = fspecial('gaussian',15,2);
imagesc(g)
surfl(g)
gclown = conv2(clown,g,'same');
imagesc(conv2(clown,[-1 1],'same'));
imagesc(conv2(gclown,[-1 1],'same'));
dx = conv2(g,[-1 1],'same');
imagesc(conv2(clown,dx,'same'));
lg = fspecial('log',15,2);
lclown = conv2(clown,lg,'same');
imagesc(lclown)
imagesc(clown + .2*lclown)

What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)
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Edge detection by subtraction

smoothed – original

Why does
this work?

High-Pass filter

smoothed – original

Unsharp Masking
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Gaussian - image filter

Laplacian of Gaussian

Gaussian delta function

FFT

Low-pass, Band-pass, High-pass filters
low-pass:

High-pass / band-pass:


