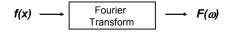


Fourier Transform

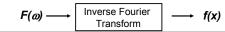
We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of *x*:

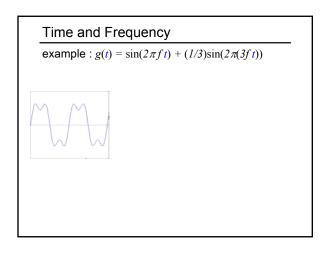


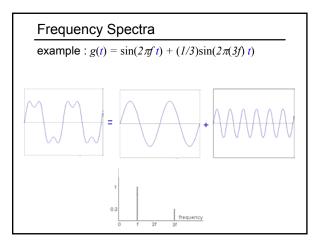
For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$ • How can F hold both? Complex number trick!

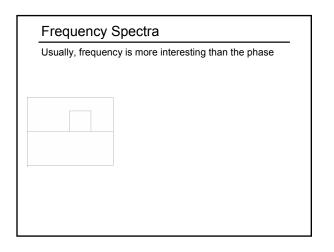
$$F(\omega) = R(\omega) + iI(\omega)$$
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

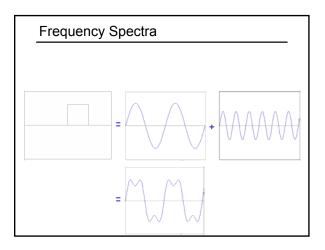
We can always go back:

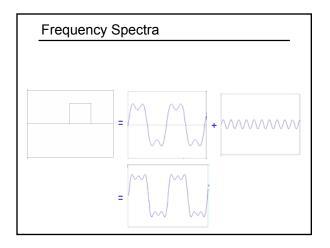


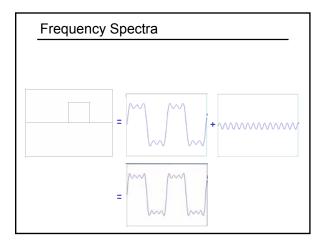


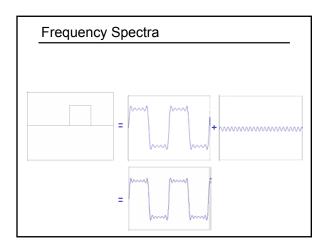


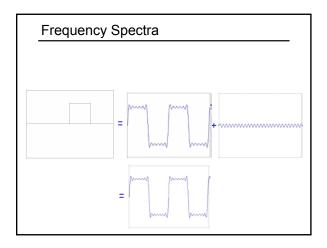


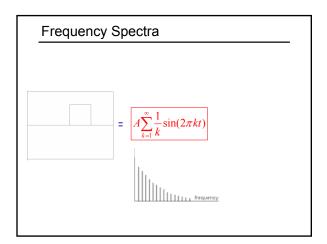


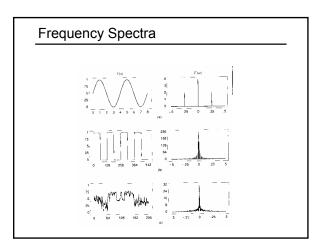


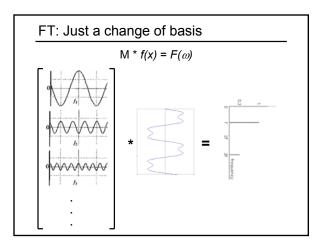


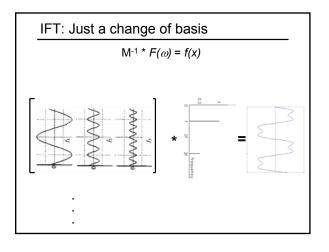


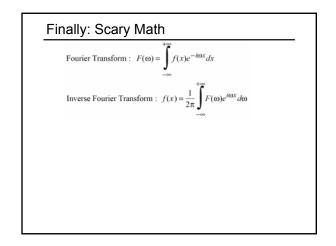


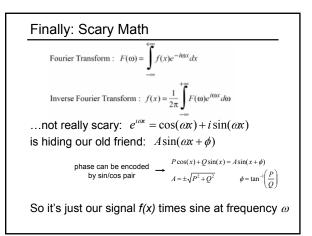


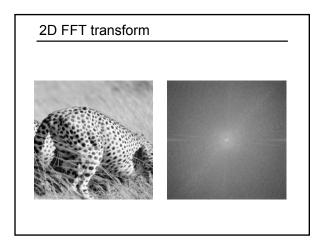


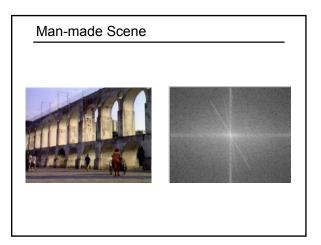


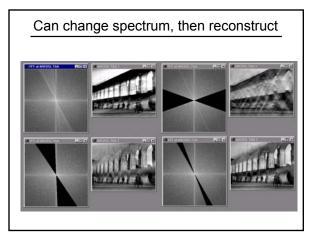


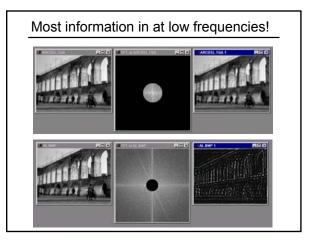












Application to image compression

• (compression is about hiding differences from the true image where you can't see them).

Lossy Image Compression (JPEG)Image Compression (JPEG)Image Compression (Image Compression)Image Compression (Image Compression)Image Compression (Image Compression)Image Compression (Image Compression)Image Compressio

Using DCT in JPEG

A variant of discrete Fourier transform

- · Real numbers
- Fast implementation

Block size

- small block
 - faster
 - correlation exists between neighboring pixels
- large block
 - better compression in smooth regions

Using DCT in JPEG

The first coefficient B(0,0) is the DC component, the average intensity

The top left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT

•Quantization Table

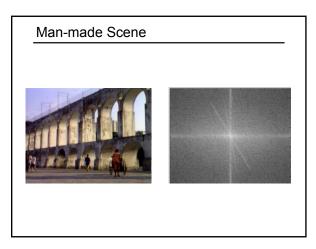
3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

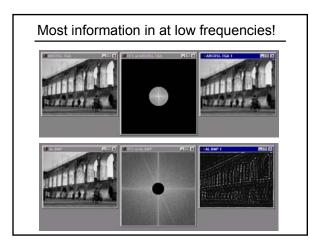
JPEG compression comparison

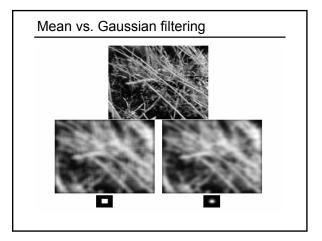
89k

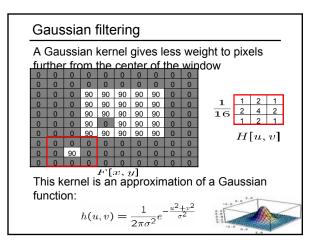
12k

Reading: FP 8









	The Operation Theorem
-	The Convolution Theorem
	The Fourier transform of the convolution of two functions is the product of their Fourier transforms
	F[g * h] = F[g]F[h]
	 The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms
	$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$
	 Convolution in spatial domain is equivalent to multiplication in frequency domain!

