CSE 527: Intro. to Computer Vision

www.cs.sunysb.edu/~cse527

Instructor: Prof. M. Alex O. Vasilescu Email: maov@cs.sunysb.edu Phone: 631 632-8457 Office: 1421

CSE 527: Intro. to Computer Vision

• Prerequisites:

Signal Processing Linear Algebra and Probability Familiarity with Matlab

• Textbooks and Reading material:

Computer Vision: A Modern Approach, David Forsyth and Jean Ponce., Prentice Hall, 2003.

Robot Vision, Berthold Horn Selected journal articles

Grading		
Problem Sets (~6) with lab exercises in Matlab. Problem sets may be discussed, but all written work and coding must be done individually.	30%	30%
Two take-home exams. (Take-home exams may not be discussed.)	40%	0%
No final exam	0%	
Final Project: -An original implementation of a new or published idea -A detailed empirical evaluation of an existing implementation of one or more methods Project proposal not longer than two pages must be submitted and approved before the end of March.	30%	70%

Internet Resources

• Matlab:

- University of Colorado Matlab Tutorials
- A decent collection of Matlab tutorials, including one focusing on image processing.
- Matlab Image Processing Tutorial
 - A short introduction to the manipulation of images in Matlab, including an introduction to principal components analysis via <u>eigenfaces</u>.

• Computer Vision:

Computer Vision Homepage Face Recognition Homepage Face Detection Homepage

Vision

- What does it mean, to see? "to know what is where by looking".
- How to discover from images what is present in the world, where things are, what actions are taking place.

Vision Problems Recognize objects people we know things we own Locate objects in space to pick them up Track objects in motion catching a baseball avoiding collisions with cars on the road Recognize actions walking, running, pushing

from Marr, 1982

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
- automated surveillance (who's doing what)
- movie post-processing
- HCI
- face finding
- Various deep and attractive scientific mysteries how does object recognition work?
- · Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
- building representations of the 3D world from pictures
- automated surveillance (who's doing what)
- movie post-processing
- HCI
- face finding
- Various deep and attractive scientific mysteries how does object recognition work?
- Greater understanding of human vision

Spatial warping operations

Why study Computer Vision? Images and movies are everywhere Fast-growing collection of useful applications building representations of the 3D world from pictures automated surveillance (who's doing what) movie post-processing HCI face finding Various deep and attractive scientific mysteries how does object recognition work? Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
 - Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - movie post-processing
 - HCI
 - face finding
- Various deep and attractive scientific mysteries how does object recognition work?
- Greater understanding of human vision

Video example: http://break.com/index/ufo-lands-on-guys-desk.html

Why study Computer Vision?

- Images and movies are everywhere
- · Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - movie post-processing
 - HCI
 - face finding
- Various deep and attractive scientific mysteries how does object recognition work?
- Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - movie post-processing
 - HCI
 - face finding
- Various deep and attractive scientific mysteries how does object recognition work?
- Greater understanding of human vision

- Nintendo Game Boy Ca
- Several million sold (most of any digital camera). Imaging chip is Mitsubishi Electric's "Artificial Retina" CMOS detector.

Black or White

- Face Detection
- Face Localization
- Segmentation
- Face Tracking
- Facial features localization
- **Facial features tracking**
- Morphing

www.youtube.com/watch?v=ZI9OYMRwN1Q

Course Outline

- Cameras, lenses, and sensors
- Radiometry
- Color
- Low level vision

Cameras, lenses, and sensors

- •Pinhole cameras
- •Geometric camera parameters

Figure 1.16 The first photograph on record, la table servie, obtained by Nicéphore Niepce in 1822. Collection Harlinge-Viollet.

From Computer Vision, Forsyth and Ponce, Prentice-Hall, 2002.

Bayesian framework for vision

://bensguide.gpo.gov/3-5/symbols/print/mountrushmore.html

Next Image formation & camera basics