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Problem 1: Image pre-processing 
Download the file truepca.m which contains a straight-forward implementation of PCA based on the matlab eig 
function.  Download and extract the file facedata.zip from the class web-site. It contains face and nonface images stored 
as .mat files. The face data has been taken from the CMU PIE database. The file face.mat contains five matrices: neutral, 
smile, talk, light1, and light2. Note that you can use who after loading .mat files to see what variables are defined. Each 
matrix is 7500 by 20, and contains one 100 by 75 image for each of 20 subjects. The subject order is the same for all 
matrices. So a single matrix containing all of the images for the i-th subject can be assembled as  
subject{i}= [neutral(:,i),smile(:,i),talk(:,i),light1(:,i),light2(:,i)].  
The file nonface.mat contains a set of 200 nonface images. The zip file also contains four images, face1.gif, face2.gif, 
nonface1.gif, and nonface2.gif, which will be used in question 1(d) for face detection.  
 
The face images have already been preprocessed: Using hand-labeled feature locations, the images have been scaled and 
rotated so the centers of the eyes and nose are aligned across all of the images. The images have been cropped to include 
only the interior of the face. The lower left and right corners of the images have been masked out to eliminate 
background pixels. You must perform the remaining preprocessing step of intensity normalization. 
Write a matlab function imagenorm which takes an arbitrary gray scale image as input and normalizes it so the pixels 
have a mean value of zero and a variance of 1. The functions mean and std will be useful here. Process all of the face 
and nonface images with imagenorm. Apply imagenorm to the test matrix and then compute the first five 
eigenvalues. 
 
Deliverables (Image pre-processing): 

• Code for imagenorm 
• Print the first two eigenvalues of the intensity-normalized test matrix: 
• How does intensity normalization affect the eigenvalues and eigenvectors of test? 

 
 

Problem 2: Face Detection 
In this problem we will compare the performance of classifiers based on Nearest- Neighbor (NN) and PCA for the task of 
face detection. We will use a few samples from their ROC curves to compare the overall performance of the classifiers. 
We will also evaluate the performance in practice on a few test images. We will measure the speed of the different 
classifiers (i.e. the average time required to classify an input). The cputime function will useful in this task. 
For performance evaluation and testing, we will divide the face and nonface data into training and testing sets. Let the 
training set consist of the first ten people (i.e. columns 1-10 of the face matrices) and the first half of the nonface images 
(i.e. columns 1-100 of nonface). Let the remaining images be the testing set. It goes without saying that you will never 
train on your testing images! 
 
(a) NN detector: In a nearest-neighbor classifier, the training data itself is the “model.” Given an input image y (also 
called a probe), the NN classifier will assign to y the label associated with the closest image in the training set. So if 
happens to be closest to another face it will be assigned L=1 (face), otherwise it will be assigned L=0 (nonface). We will 
use the Euclidean distance D to measure how close together two images are. For two image vectors (i.e. matrix columns) 
y1, y2 , we have D=|| y1 - y2 ||2.   
 
Write a function NNclassify that outputs the label L for a probe y given training faces ftrain and nonfaces nftrain. So 
an example of the calling convention would be: 
 
 



ftrain = [neutral(:,1:10),smile(:,1:10),talk(:,1:10), 
light1(:,1:10),light2(:,1:10)]; 
nftrain = nonface(:,1:100); 
L = NNclassify(y, ftrain, nftrain); 

 
 
Write a function NNtest which outputs the percentage of correct detections, RC, and percentage of false positives, RF, 
over the face and nonface testing data.  These are knowns as the detectionrate and false alarm rate respectively. A false 
positive occurs when a probe in the nonface class is assigned to the face class by the NN rule.  Evaluate the performance 
of the NN classifier in the following way: First, check your code by testing it on your training data. Second, evaluate the 
performance on all of the testing data. Since there is no threshold or tuning parameter for this classifier, its ROC curve 
consists of the single point given by ( RF ,RC ) over all of the test data. Third, evaluate the performance separately for 
each of the three categories of face test images listed below. 
 
Deliverables (NN detector): 
• Code for NNclassify and NNtest 
• Fill in the table: 
 

 Neutral + Talk Smile Light1 + Light2 Total 
RC     

 
• Comment on the performance of the NN rule. By examining some of the examples where the detector failed, can you 

explain the detection performance above? 
• What is the average cputime required by NNclassify? 
 

 
(b) PCA Preliminaries: We will compute separate subspace models for faces and nonfaces. We will be performing 
PCA on Sf and Sn , the sample covariance matrices for the face and nonface training images, respectively. 
A basic question is: How many eigenvectors should be used? Let 
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denote the fraction of the total variance which is captured in the first m eigenvalues of a sample covariance matrix S .  
Find , the minimum number of eigenvalues for the face and nonface 
PCA models, such that Kvar (mf )>0.95 and Kvar (mn )>0.95. 
. 
Deliverables: 

• Responses to questions about Kvar : 
• Print mf  and mn : 
• Print the first two eigenvalues for the face and nonface PCA models 

 
 
(c) PCA Detection:  Let Uf  and Un  denote the PCA projection matrices for the face and nonface subspace models 
defined above. Similarly, we will define the “distance from subspace” measures df and dn, where 
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or nonface. Intuitively, we expect  
dn (y) > df (y) to suggest that y is a face.  The LR for PCA is denoted ∆d (y). The LR test is defined as:  
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where η is a threshold parameter. For example, when ∆d (y) > η,  the classifier labels y as a face. 
 



Write a function PCAclassify which implements ∆d and outputs a classification of an input image as a function of η. 
Write a function PCAtest, analagous to NNtest, which computes RC and RF on the testing set as a function of η. 
Through experimentation, find four values for η that lead to fairly evenly spaced (RC , RF) pairs (i.e. sample the 
interesting part of the ROC curve as evenly as you can). Let RCdata and RFdata be vectors containing the RC and RF 
values for the thresholds Tdata. Plot the ROC curve defined by these points (e.g. use plot). Make sure the axes have 
reasonable scales and tick marks for the range 0-1. 
 
Deliverables (PCA classifier): 

• Code for PCAclassify and PCAtest 
• Printouts of RCdata, RFdata, Tdata and the ROC curve plot. Mark the location of the NN classifier on this ROC 

curve. 
• Print dn (neutral(:,1)) and df (nonface(:,1)), the distances from nonface/face space for the first face and nonface 

training images 
• What is the average cputime required by PCAclassify? 

 
(d) Face Detector: Write a function FaceDetect which scans PCAclassify across an input image and detects all of 
the up-right, frontal faces that it contains. You do not need to search over different orientations in the image. You will, 
however, need to consider different spatial scales (sizes) in doing detection. Thus the problem reduces to evaluating 
PCAclassify at all of the possible (x,y) positions that an appropriately-sized set of eigenimages can take in the input 
image. You can easily scale the eigenimages to the correct size using imresize. An ideal program would search over 
a range sizes and report all of the faces that it found. However, you may prefer to manually tune the detector size to the 
faces in the particular test images. Your program should accept a threshold and output a list of all of the locations at 
which faces were detected. 
 
Write a function FaceDisplay which takes the input image and the list of face locations produced by FaceDetect 
and draws boxes around all the detected faces. The following command draws a thick white box at the location (x,y): 
 

plot([x x+75 x+75 x x],[y y y+100 y+100 y],’w-’,’LineWidth’,3) 
 
Use the ROC curve for PCAclassify to pick a good threshold setting. Then apply FaceDetect to the test images 
face1.gif, face2.gif, nonface1.gif, and nonface2.gif.  Use FaceDisplay on the output. Was the result what you 
expected? It may be interesting to experimentally determine the threshold setting at which the true faces in face1 and 
face2 are successfully detected. Why is such a threshold setting guaranteed to exist? How many false positives per image 
are produced at that setting? 
 
Deliverables (Face Detector): 

• Code for FaceDetect and FaceDisplay 
• Printout of the four test images with white boxes overlaid on all of the detections. What threshold setting did 

you use? 
• Calculate the value of RF  that would be required in order for your face detector to make one false detection (on 

average) for an image the size of face1. Locate the corresponding point (approximately) on the combined ROC 
curves. What are the corresponding detection rates? 

• How would you explain the performance differences, in terms of accuracy and run-time, between the NN and 
PCA detectors? What could you do to improve the detection performance? 

 
Problem 3: Face Recognition 
 
The face recognition task which we will address in this problem is known as M-way classification. We are given a 
database of M subjects and it is known that each probe image will correspond to one of the subjects. Thus the problem 
reduces to determining which one of M known classes the test image belongs to. Our main goal will be to study the role 
of intrapersonal and extrapersonal factors in determining recognizer performance. The intrapersonal factors are the 
variations between images of the same person due to changes in lighting, pose, and facial expression. In contrast, the 
extrapersonal variations between images of different people include differences in identity. If the intrapersonal variations 
are completely controlled (e.g. by fixing the head pose, lighting, and facial expression for all subjects), then all of the 
intensity differences between face images will be due to differences in identity. In this case, recognition is as easy as 
possible. In practice, however, both testing and training images will contain a mixture of intrapersonal and extrapersonal 
factors.  
 
Download from the course web page freiburg_train.mat and freiburg_test.mat  The freiburg_train.mat contains a facial 



image data tensor of 75 people, 6 viewpoints (viewpoint angles 052035 =±±±= φθ ;,, ), 6 illuminations (illumination 
angles 455203590 =±±±= φθ ;,, ). The test data set, freiburg_test.mat contains a facial image data tensor of 75 
people, 9 viewpoints (viewpoint angles 0010152530 =±±±±= φθ ;,,,,, ), 9 illuminations (illumination angles 

001015253090 =±±±±= φθ ;,,,,, ). 
 

(a) EigenFaces (Nearest-Neighbor PCA):  
A standard approach to PCA-based face recognition is to use a NN classifier within the subspace defined by PCA.  
Write a function NNtestM which takes multi-class training and test images and outputs NC, the number of faces in the 
testing set (across all of the subjects) that were correctly classified. Use the Euclidean distance measure as in NNtest. 
Your program should support arbitrary numbers of training and testing images per subject. By calling NNtestM on 
specific categories of training and test data such as smile, light1, etc. we can study the performance as a function of the 
types of variation in the images. We can implement PCA-NN with NNtestM by projecting the training and testing data 
before calling the function. 
 
Reorganize the data tensor into a data matrix using the matricize function from Tensor Decomposition Toolbox.  
(Download the Tensor Decomposition Toolbox and explore the code by downloading the small dataset and  instruction 
set from: http://web.media.mit.edu/~maov/classes/pra/index.html ) 

 
                D=matricize(reshape(dtensor_train,75,6,6, 80*107),4); 
 
Compute the basis vectors (eigenfaces), U. Display the top 10 eigenfaces: 
 
       eigimages=[]; 
       for  i=1:10, 
           im=reshape(U(:,i),80,107); 
           mn=min(min(im));  mx=max(max(im)); 
           eigimages=[eigimages  (im-mn)/mx-mn]; 
       end; 
       imshow(eigimages,[]); 
 
Deliverables: 

• Code for NNtestM 
• Code for PCA-NN 
• Display the top 10 eigenfaces. 
• Perform three experiments.  The experiments differ in the choice of distance function  

o full-NN 
o PCA-NN (225 basis vectors) 
o PCA-NN (optimal basis) 
 

(b) TensorFaces: 
Using the m_mode_svd compute the Tensorfaces basis vectors, T

illums3
T
views2

T
people1 UUU ×××=DT . Display the 

main 3 faces of tensorfaces, ie. the illumination-viewpoint face of the Tensorfaces cube,  the people-viewpoint face and 
the illumination-people face. 
 
For example: 
 
% The illumination-viewpoint face 
basisimages=[]; 
for p=1; 
    for il=1:5, 
        rowim=[]; 
        for v=1:5 
            im=reshape(T(p, vp, il,:),80,107); 
            mn=min(min(im)); mx=max(max(im)); 
            rowim=[rowim (im-mn)/(mx-mn)]; 
        end 
    basisimages=[basisimages; rowim]; 
end; 



 
Implement a multilinear projection function, m_mode_proj, that takes an image, the learned TensorFaces basis vectors 
and projects the image into the person, viewpoint and illumination subspaces (

illumsviewspeople UUU ,, ).  The function 

should return the person coefficient vector representation, viewpoint representation, illumination coefficient vector 
representation, etc. 
 
Use NNtestM to write a TensorFaces-NN function that classifies the person representation. Employ a dimensionaly 
reduced Tensorfaces  (ie., 75 x 3 x 1 x 8560) to classify each image.  
 
Deliverables: 

• Display the main 3 faces of TensorFaces cube. 
• Code for  m_mode_proj 
• Code for TensorFaces-NN 
• Classify using Tensorfaces-NN 

o TensorFaces-NN (75 x 3 x 1 x 8560 basis vectors) 
o TensorFaces-NN (optimal number of basis vectors) 
o Generate a ROC curve – this will be time consuming 

 
 
Problem 4 (optional): Implement and experiment with a Skin-Color Tracker.   
 
This could be one possible first step in a vision based motion capture system.  The input is a video recording.  The output 
is a sequence of binary images of the same dimension.  Your program will set the pixels of the output image sequence to 
1 for skin regions, and set to 0 everywhere else.  Here are example matlab functions you can use. If you don't fully 
understand the matlab functions, use the matlab help feature. (for instance: help aviread).   
 
Here is the "recipe" : 
• In matlab you can load a sequence of frames with the aviread function. For example load the first 20 frames with:   
 

mov = aviread('subject01.avi',[1:20]); 
 

(If your source is a quicktime movie, just convert it to an AVI)  
 

• You can "digout" the first frame from the mov structure with: im = mov(1).cdata;  
• You can display that image with: image(im); axis image;  
• Now select a "training set" of skin pixels.  You can do that with: skin_mask = roipoly; (and select with the 

mouse a skin region)  
• To get a list of pixel indices of the mask area use: skin_inds = find(skin_mask>0);  
• For better performance mark several training sets across different subjects.  
• Use all those labeled skin pixels to estimate a multivariate Gaussian (as discussed in class and the first online paper 

describes).  First build a matrix that contains the RGB values of the labeled skin pixels: 
 
skin_R = double(im(:,:,1));  
skin_G = double(im(:,:,2));  
skin_B = double(im(:,:,3));  
 
% skin data  
skin_data_rgb = [skin_R(skin_inds),skin_G(skin_inds),skin_B(skin_inds)];  
% the entire image data  
all_data_rgb = [skin_R(:),skin_G(:),skin_B(:)]; 
 
To calculate the mean and the covariance of the skin Gaussian, use the matlab function:  
skin_MN = mean(skin_data_rgb); skin_CV = cov(skin_data_rgb);   

• Now you are going to compute for the entire image (and successive images in the video) the probabilities that a pixel 
contains a skin region.   

• Write a matlab function P = gaussdensity(all_data_rgb,MN,CV);   
If the input (all_data_rgb) is a Nx3 matrix, the output is a Nx1 matrix of probability values. 
Use following formula for the gaussian:  

 



 
 

If you do it in a smart way in matlab, you can fully vectorize it (no loops, just matrix inputs and matrix outputs). 
• You can reshape the result into a 2D layer with:  

[rows,cols,d] = size(im);  L1 = reshape(P,rows,cols);. 
  

You can do the same for a "background layer" L2 (using a different gaussian trained on background pixles). The last 
layer should be an "outlier layer" that has constant probability for each pixel. For example, 
 
L3 = ones(rows,cols)/256;.  
 
The final output of your algorithm should be normalized layers (posteriories). You get them in normalizing the values of 
each layer such that they add up to 1 for each pixel location (L1(x,y)+L2(x,y)+L3(x,y)=1). Do that with  
 
S = L1+L2+L3; L1 = L1./S; L2 = L2./S; L3 = L3./S;  
 
(Assuming uniform prior probabilities, those values could be interpreted as "posteriori probabilities": P(skin | RGB). 
And the un-normalized L1 values as "conditional density": p(RGB | skin).)  
   

• You can visualize your results in generating a video of the skin layer (L1).   Use the matlab function: avifile  
• Play with different color spaces (RGB vs HSV vs HS (with H on a circle)). Compute and plot those layers for your 

face and 2 other faces.  Converting a RGB image into a HSV image can be done with: rgb2hsv  
• The "HSV on a circle" representation can be done with: S*[cos(2*π*H),sin(2* π *H)];  (if this doesn't make sense to 

you, let's discuss it in class again :)  
   

•   If you are totally excited about this, you could already implement the next step.  Using the L1 matrix you can find 
the biggest "blob" of skin.  Use for example some smoothing of the L1 layer and then connected components, and 
then estimate the center of mass of that blob. That could be your estimate of the "head location". Keep repeating that 
computation for each succesive frame.  

 
 
 
 
 

  
 


