Lecture 2:
Feature and Model Selection

PCA and ICA

Statistical Learning

— Data collection.

— Data analysis - organize & summarize data to bring out
main features and clarify their underlying structure.

— Inference and decision theory — extract relevant info from

collected data and use it as %&\
a guide for further action. 2

lluminations

Statistics: the science of collecting, organizing, and
interpreting data. Machine learning using statistics

Designing a Machine Learning System

Data

Feature and Model Selection

Learning

5

Evaluation

Data

Data Collection:

— Causation, Common Response, Confounding

— Designing a Randomized Comparative Experiment
Data may need a lot of:

— Cleaning

— Preprocessing (conversions)

Cleaning:

— Getrid of errors, noise,

— Removal of redundancies
Pre-processing:

— Mean

— Rescaling - continuous values transformed to some range, typically

[-1, 1] or [0,1]

Feature Selection

« The size (dimensionality) of a sample can be enormous
« Example: document classification
— 10,000 different words
— Inputs: counts of occurrences of different words
— Too many parameters to learn (not enough samples to
justify the estimates the parameters of the model)
« Dimensionality reduction: replace inputs with features
— Extract relevant inputs (e.g. mutual information measure)
— PCA — principal component analysis
— Group (cluster) similar words (uses a similarity measure)
* Replace with the group label

Model Selection

What is the right model to learn?
— A prior knowledge helps a lot, but still a lot of guessing

— Initial data analysis and visualization

+ We can make a good guess about the form of the distribution,
shape of the function

— Independences and correlations
— Overfitting problem
« Take into account the bias and variance of error estimates




Learning

¢ Learning - Optimization problem
— Optimization problems can be hard to solve.
Model and error function choice make a difference.

— Parameter optimizations
« Gradient descent, Conjugate gradient
+ Newton-Rhapson
* Levenberg-Marquard
+ Some can be carried on-line on a sample by sample basis
« Combinatorial optimizations (over discrete spaces):
— Hillclimbing
— Simulated-annealing
— Genetic algorithms

Evaluation

« Problem: we cannot be 100 % sure about generalization
« Solution: test the statistical significance of the result

PCA

The Principle Behind
Principal Component Analysis!

« Also called: - Hotteling Transform?2 or the
- Karhunen-Loeve Method 3.

« Find an orthogonal coordinate system such that

data is approximated best and the correlation
between different axis is minimized.

1 L.T.Jolliffe; Principle Component Analysis; 1986

2 R.C.Gonzalas, P.A.Wintz Digital Image Processing; 1987

3 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946
M.M.Loeve; Probability Theory; 1955

Assumptions

« The relationship between explanatory and response variable is

linear

« Data has a gaussian distribution

PCA Goal

Problem Statement:
< nput: X=[xql [Xndgen
N points in d-dimensional space
e Lookfor: U, adxm transformation matrix that maps

X from d-dimensional space to m-dimensional
space where (m£d).

st [yl Yndme = UT [X4]- X

& the covariance is minimized




PCA: Theory

[
X

1%
« Define a new origin as the mean of the data set

« Find the direction of maximum variance in the samples (e,)
and align it with the first axis (y+),

« Continue this process with orthogonal directions of
decreasing variance, aligning each with the next axis

« Thus, we have a rotation which minimizes the covariance.

PCA: The Covariance Matrix

« Define the covariance (scatter) matrix of the input
samples as :

(where Mis the sample mean)

¢ Let D =[x,4m,...,X\41] then the above expression can
be rewritten simply as :

Cov(x) = S;=DDT

Covariance Matrix Properties

The matrix Cov is symmetric and of dimension d” d.

The diagonal contains the variance of each parameter (i.e.
element Cov ; is the variance in the i’th direction).

Each element Cov; is the co-variance between the two
directions i and j, or how correlated are they (i.e. a value of
zero indicates that the two dimensions are uncorrelated).

PCA: Goal Revisited

e Look for: U
St [yly]=UT X)X

& covariance is minimized

OR

e Cov(y) is diagonal

— Note that Cov(y) can be expressed viaCov(x) andU as :
Cov(y) =UTCov(x) U

Selecting the Optimal U

How do we find such U ?

Iu;= Cov(X)u;
Therefore :
Choose U, to be the eigenvectors matrix:

Uont = [ uz]...| ud]

opt

where {u,| i=1,..., d} is the set of the d-dimensional eigenvectors
of Cov(X) !

So...to sum up

« To find a more convenient coordinate system
one needsto :

Calculate Subtract it Calculate Covariance Find the set of
mean B fromall B matrix for resultingmBeigenvectors for the
sample m samplesx;  samples covariance matrix

§

Create U, the projection
matrix, by taking as columns the
eigenvectors calculated !




So...to sum up (cont.)

* Now we have that any point x;can be projected to an
appropriate pointy;by:

yi= UoptT(xl 'm)

« and conversely (since Ut=UT)
Uy; +m=x;

=3

Data Reduction Using PCA

Reduce space dimensionality with minimum loss of
description information.

| Original Data |

J L

| Compact Data |

Data Reduction: Theory

« Each eigenvalue represents the the total variance in
its dimension.

* Throwing away the least significant eigenvectors in
U,pt means throwing away the least significant
variance information !

Data Reduction: Practice

Sort the d columns of the projection matrix U, in descending
order of appropriate eigenvalues.

Select the first m columns thus creating a new projection matrix
of dimensiond”m

This will now be a projection
from a d-dimensional space
to an m-dimentional space l
m<d)! [Compact Datal]

Data Reduction:
Example of an Ideal Case

c =/

2D data 1D data

Since there is no variance along one dimension,
we only need a single dimension !!

Data Loss

« Sample points can still be projected via the newm”d

projection matrix U, and can still be reconstructed,
but some information will be lost.

7 =

UDP‘T(x,-m) 0—000—0 X Uy, + m

2D data 1D data




PCA : Conclusion
* A multi -variant analysis method.

 Allows for data to be removed with minimum loss in
reconstruction ability.

* Finds a new coordinate system for the sample data.

Eigenfaces

Face Recognition Problem

« Definition:
— Given a database of labeled facial images
— Recognize an individual in an unlabeled image formed from new and
varying conditions (pose, expression, lighting etc.)
* Sub-Problems:
— Representation:
+ How do we represent individuals?

+ What information do we store?
— Classification:

« How do we compare new data to stored information?

Representation

¢ Goal:

. Compact, descriptive object representation for
recognition

* Representations:

— Model - based Representation
* Shape, texture, ...

— Appearance Based Representation
* Images

Appearance Based Recognition

« Recognition of 3D objects directly from their
appearance in ordinary images

« PCA / Eigenfaces:

— Sirovich & Kirby 1987

“"Low Dimensional Procedure for the Characterization of Human Faces”

— Turk & Pentland 1991
"Face Recognition Using Eigenfaces”
— Murase & Nayar 1995

"Visual learning and recognition of 3D objects from appearance”
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Eigenimages

« Principal components (eigenvectors) of image ensemble

9eS

« Eigenvectors are typically comphted using the ~ Singular
Value Decomposition (SVD) algorithm

Matrix Decomposition - SVD

Images
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¢ Amatrix

has a column space and a row space

» SVD orthogonalizes these spaces and decomposes

( contains the eigenfaces )
« Rewrite in terms of mode-n products:

Running Sum:
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The Problem with Linear (PCA) Appearance
Based Recognition Methods

+ Eigenimageswork best for recognition when only a single
factor - e.g., object identity - is allowed to vary

* However, natural images are the consequences of multiple
factors (or modes) related to scene structure, illumination and
imaging
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Perspective on
Our Face Recognition Approach

Linear Our Nonlinear
Models (Multilinear ) Models
2" -Order Statistics PCA Multilinear PCA
(covariance) Eigenfaces TensorFaces
Higher -Order ili
Siietice ICA Multilinear ICA
Independent TensorFaces

Vasilescu & Terzopoulos CVPR 2005

ICA




Assumptions

The relationship between explanatory and response variable is
linear

Data has a non-gaussian distribution or at most one of the
variables has a gaussian distribution
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