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Lecture 2:
Feature and Model Selection

PCA and ICA

Statistical Learning

• Statistics: the science of collecting, organizing, and 
interpreting data. Machine learning using statistics
– Data collection.
– Data analysis - organize & summarize data to bring out 

main features and clarify their underlying structure.
– Inference and decision theory – extract relevant info from 

collected data and use it as 
a guide for further action.
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Designing a Machine Learning System

Data

Feature  and Model Selection

Learning

Evaluation

Data
• Data Collection:

– Causation, Common Response, Confounding
– Designing a Randomized Comparative Experiment

• Data may need a lot of:
– Cleaning
– Preprocessing (conversions)

• Cleaning:
– Get rid of errors, noise,

– Removal of redundancies

• Pre-processing:
– Mean
– Rescaling - continuous values transformed to some range, typically 

[-1, 1] or [0,1]

Feature Selection

• The size (dimensionality) of a sample can be enormous
• Example: document classification

– 10,000 different words
– Inputs: counts of occurrences of different words
– Too many parameters to learn (not enough samples to 

justify the estimates the parameters of the model)

• Dimensionality reduction: replace inputs with features
– Extract relevant inputs (e.g. mutual information measure)
– PCA – principal component analysis

– Group (cluster) similar words (uses a similarity measure)

• Replace with the group label

Model Selection

What is the right model to learn?
– A prior knowledge helps a lot, but still a lot of guessing
– Initial data analysis and visualization

• We can make a good guess about the form of the distribution, 
shape of the function

– Independences and correlations
– Overfitting problem

• Take into account the bias and variance of error estimates
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Learning

• Learning - Optimization problem
– Optimization problems can be hard to solve. 

Model and error function choice make a difference.

– Parameter optimizations
• Gradient descent, Conjugate gradient
• Newton-Rhapson
• Levenberg -Marquard
• Some can be carried on-line on a sample by sample basis
• Combinatorial optimizations (over discrete spaces):

– Hill-climbing
– Simulated-annealing
– Genetic algorithms

Evaluation

• Problem: we cannot be 100 % sure about generalization
• Solution: test the statistical significance of the result

PCA

The Principle Behind 
Principal Component Analysis1

• Also called: - Hotteling Transform2 or the             
- Karhunen-Loeve Method 3.

• Find an orthogonal coordinate system such that 
data is approximated best and the correlation 
between different axis is minimized.

1 I.T.Jolliffe; Principle Component Analysis; 1986
2 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
3 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946

M.M.Loeve; Probability Theory; 1955

Assumptions

• The relationship between explanatory and response variable is 
linear

• Data has a gaussian distribution

PCA Goal

Problem Statement:

• Input: X=[x1|…|xN]dxN

N points in d-dimensional space

• Look for: U, a d x m transformation matrix that maps 

X from d-dimensional space to m-dimensional 
space where (m≤d). 

st. [y1|…|yN]mxN = UT [x1|…|xN]

& the covariance is minimized
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PCA: Theory

• Define a new origin as the mean of the data set

• Find the direction of maximum variance in the samples (e1) 
and align it with the first axis (y1), 

• Continue this process with orthogonal directions of 
decreasing variance, aligning each with the next axis 

• Thus, we have a rotation which minimizes the covariance.
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PCA: The Covariance Matrix

• Define the covariance (scatter) matrix of the input 
samples as :

(where µ is the sample mean)
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• Let D = [x1-µ ,…,xN-µ ] then the above expression can 
be rewritten simply as :

Cov(x) = ST = DDT

Covariance Matrix Properties

• The matrix Cov is symmetric and of dimension d×d.

• The diagonal contains the variance of each parameter (i.e. 
element Cov ii is the variance in the i’th direction).

• Each element Cov ij is the co-variance between the two 
directions i and j, or how correlated are they (i.e. a value of 
zero indicates that the two dimensions are uncorrelated).

PCA: Goal Revisited
• Look for: U

• S.t. : [y1|…|yN] = UT [x1|…|xN]...
& covariance is minimized

OR

• Cov(y) is diagonal

– Note that Cov(y) can be expressed via Cov(x) and U as :
Cov(y)  = UT Cov(x) U

Selecting the Optimal U

How do we find such U ?

λiui= Cov(X)ui

Therefore :
Choose Uopt to be the eigenvectors matrix:

Uopt = [ u1 |…| ud ]
where {ui| i=1,…,d} is the set of the d-dimensional eigenvectors 
of Cov(X) !

So…to sum up

• To find a more convenient coordinate system 
one needs to :

Calculate 
mean 
sample µ

Subtract it 
from all 
samples xi

Calculate Covariance 
matrix for resulting 
samples

Find the set of 
eigenvectors for the 
covariance matrix

Create Uopt, the projection 
matrix, by taking as columns the 
eigenvectors calculated !
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So…to sum up (cont.)

• Now we have that any point x i can be projected to an 
appropriate point y i by :

yi = Uopt
T(xi -µ)

• and conversely (since U-1 = UT)
Uyi + µ = xi

X

Y x i

X

Y

yi

Uopt
T(xi-m)

Uyi + m

Data Reduction Using PCA

Reduce space dimensionality with minimum loss of 
description information.

Original Data

Compact Data

Data Reduction: 
Example of an Ideal Case

Since there is no variance along one dimension, 
we only need a single dimension !!!

x1

x2

2D data

y1

1D data

Data Reduction: Theory

• Each eigenvalue represents the the total variance in 
its dimension.

• Throwing away the least significant eigenvectors in 
Uopt means throwing away the least significant 
variance information !

Data Reduction: Practice

• Sort the d columns of the projection matrix Uopt in descending 
order of appropriate eigenvalues.

• Select the first m columns thus creating a new projection matrix
of dimension d×m

Original Data

Compact Data

This will now be a projection 
from a d-dimensional space 
to an m-dimentional space 

(m < d) !

Data Loss

• Sample points can still be projected via the new m×d
projection matrix Uopt and can still be reconstructed, 
but some information will be lost.

x1

x2

2D data 1D data

x1Uopt
T(xi - m)

x1

x2

2D data

Uyi + m
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PCA : Conclusion

• A multi -variant analysis method.
• Finds a new coordinate system for the sample data.
• Allows for data to be removed with minimum loss in 

reconstruction ability. Eigenfaces

Face Recognition Problem

• Definition:

– Given a database of  labeled facial images 
– Recognize an individual in an unlabeled image formed from new and 

varying conditions (pose, expression, lighting etc.)

• Sub-Problems:

– Representation:
• How do we represent individuals?
• What information do we store?

– Classification:
• How do we compare new data to stored information?

Representation

• Goal:
• Compact, descriptive object representation for 

recognition

• Representations:

– Model - based Representation
• Shape, texture, …

– Appearance Based Representation
• Images

Appearance Based Recognition
• Recognition of 3D objects directly from their 

appearance in ordinary images

• PCA / Eigenfaces:
– Sirovich& Kirby 1987

"Low Dimensional Procedure for the Characterization of Human Faces"

– Turk & Pentland 1991
"Face Recognition Using Eigenfaces"

– Murase& Nayar 1995
"Visual learning and recognition of 3D objects from appearance"
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• Principal components (eigenvectors) of image ensemble

• Eigenvectors are typically computed using the    Singular 
Value Decomposition (SVD) algorithm

Eigenimages
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Matrix Decomposition - SVD

• A matrix                     has a column space and a row space 

• SVD orthogonalizes these spaces and decomposes

•
• Rewrite in terms of mode-n products:
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The Problem with Linear (PCA) Appearance 
Based Recognition Methods

• Eigenimages work best for recognition when only a single 
factor – e.g., object identity – is allowed to vary 

• However, natural images are the consequences of multiple 
factors (or modes) related to scene structure, illumination and 
imaging

Higher  -Order    
Statistics

2nd -Order Statistics
(covariance)

Our Nonlinear 
(Multilinear ) Models

Linear 
Models

Perspective on 
Our Face Recognition Approach

Multilinear PCA
TensorFaces

PCA
Eigenfaces

ICA Multilinear ICA
Independent TensorFaces

Vasilescu & Terzopoulos, CVPR 2005

ICA
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Assumptions

• The relationship between explanatory and response variable is 
linear

• Data has a non-gaussian distribution or at most one of the 
variables has a gaussian distribution
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PCA ICA

TUSVD =
coefficient matrix

basis matrix

UD =
TSV

CK=
independent components

TT −WW

coefficient matrix
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Geometric View of ICA
TUSVD =

DUD T='

Geometric View of ICA
TUSVD =

DUD T='

DUSD T2

1
'' −
=

Geometric View of ICA

R

TUSVD =

DUD T='

DUSD T2

1
'' −
=

DURSD T2

1

'"
−

=

Geometric View of ICA
TUSVD =

DUD T='

DUSD T2

1
'' −
=

DURSD T2

1

'"
−

=
TT SVRSRUSD 2

1
2

1
−=

TWSVUWD 1−=
Independent Components

WW


