Lecture 2:

Feature and Modelselection
PCA and ICA

Statistical Le arning

- Statistics: the science of collecting, organizing, and interpreting data. Machine learning using statistics - Data collection.
- Data analysis - organize \& summarize data to bring out main features and clarify their underlying structure.
- Inference and decision theory - extract relevant info from collected data and use it as a guide for further action.

Feature Selection

- The size (dimensionality) of a sample can be enormous - Example: document classification
- 10,000 different words
- Inputs: counts of occurrences of different words
- Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)
- Dimensionality reduction: replace inputs with features - Extract relevant inputs (e.g. mutual information measure) - PCA - principal component analysis
- Group (cluster) similar words (uses a similarity measure)
- Replace with the group label
$\mathcal{D e}$ signing a Mackine Learning S ystem

Modelselection

What is the right model to learn?

- A prior knowledge helps a lot, but still a lot of guessing
- Initial data analysis and visualization
- We can make a good guess about the form of the distribution,
shape of the function
- Independences and correlations
- Overfitting problem
- Take into account the bias and variance of error estimates
- Meacsing:
- Mean

Rescaling - continuous values transformed to some range, typically $[-1,1]$ or $[0,1]$
Le arning

- Learning - Optimization problem
- Optimization problems can be hard to solve.
Model and error function choice make a difference.
- Parameter optimizations
- Gradient descent, Conjugate gradient
- Newton-Rhapson
- Sevenberg-Marquard
- Combinatorial oprried on-line on a sample by sample basis
- Hillclimbing (over discrete spaces):
- Simulated-annealing
- Genetic algorithms - Hillclimbing
- Simulated-annealing
- Genetic algorithms
- Gradient descent, Conjugate gradient
- Newton-Rhapson
- Levenberg - Marquard
- Some can be carried on-line on a sample by sample basis

Evaluation

- Problem: we cannot be 100% sure about generalization
- Solution: test the statistical significance of the result

The Principle $\mathcal{B e}$ find Principal Component $\mathfrak{A n a l y s}$ is ${ }^{1}$

- Also called: - Hotteling Transform ${ }^{2}$ or the - Karhunen-Loeve Method ${ }^{3}$
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.
I.T.J olifife. Principle Component Analysis; 1986
R.C.Gonzalas, P.A.Wintz Digital Image Processing; 1987
K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946 M.M.Loeve;; Probability Theory; 1955

Assumptions

- The relationship between explanatory and response variable is linear

Data has a gaussian distribution

PCA Goal

Problem Statement:

- Input: $\quad \mathbf{X}=\left[\mathbf{x}_{1}|\ldots| \mathbf{x}_{\mathrm{N}}\right]_{\mathrm{dxN}}$ N points in d-dimensional space
- Look for: U, ad $\times \mathrm{m}$ transformation matrix that maps \mathbf{X} from d-dimensional space to m -dimensional space where ($m \leq d$).
st. $\quad\left[\mathbf{y}_{1}|\ldots| \mathbf{y}_{\mathrm{N}}\right]_{\mathrm{mxN}}=\mathbf{U}^{\top}\left[\mathbf{x}_{1}|\ldots| \mathbf{x}_{\mathrm{N}}\right]$
\& the covariance is minimized

PCA: Theory

x_{2}

- Find the direction of maximum variance in the samples $\left(e_{1}\right)$ and align it with the first axis (y_{1}),
- Continue this process with orthogonal directions of decreasing variance, aligning each with the next axis
- Thus, we have a rotation which minimizes the covariance.

PCA: Goal Revisited

- Look for: U
- S.t. $\quad\left[\mathbf{y}_{1}|\ldots| \mathbf{y}_{N}\right]=\mathbf{U}^{\top}\left[\mathbf{x}_{1}|\ldots| \mathbf{x}_{N}\right] \ldots$
\& covariance is minimized
- $\operatorname{Cov}(\mathbf{y})$ is diagonal
- Note that $\operatorname{Cov}(\mathbf{y})$ can be expressed viaCov($\mathbf{x})$ and \mathbf{U} as $\operatorname{Cov}(\mathbf{y})=\mathbf{U}^{\top} \operatorname{Cov}(\mathbf{x}) \mathbf{U}$

Selecting the Optimal \mathcal{U}

How do we find such U ?

$$
\lambda_{i} \mathbf{u}_{\mathbf{i}}=\operatorname{Cov}(\mathbf{X}) \mathbf{u}_{\mathrm{i}}
$$

Therefore :
Choose $\mathbf{U}_{\text {opt }}$ to be the eigenvectors matrix:

$$
\mathbf{U}_{\mathrm{opt}}=\left[\mathbf{u}_{1}|\ldots| \mathbf{u}_{d}\right]
$$

where $\{u \mid i=1, \ldots, d\}$ is the set of the d-dimensional eigenvectors of $\operatorname{Cov}(\mathbf{X})$!

PCA: The Covariance Matrix

- Define the covariance (scatter) matrix of the input samples as:
(where μ is the sample mean)

Covariance Matrix Properties

- The matrix Cov is symmetric and of dimension $\mathrm{d} \times \mathrm{d}$.
- The diagonal contains the variance of each parameter (i.e. element $\operatorname{Cov}_{\mathrm{ij}}$ is the variance in the i 'th direction).
- Each element $\operatorname{Cov}_{\mathrm{ij}}$ is the co-variance between the two directions i and j, or how correlated are they (i.e. a value of zero indicates that the two dimensions are uncorrelated).
Let $\mathbf{D}=\left[\mathbf{x}_{1}-\mu, \ldots, \mathbf{x}_{-\mu}-\mu\right.$ then the above expression can be rewritten simply as:

$$
\operatorname{Cov}(\mathbf{x})=\mathbf{S}_{\mathrm{T}}=\mathbf{D D}^{\top}
$$

So..to sum up

- To find a more convenient coordinate system one needs to :
Calculate
Subtract it Calculate Covariance Find the set of
$\underset{\text { sample } \mu}{\text { mean }} \Rightarrow \underset{\text { samples } \mathrm{x}_{\mathrm{i}}}{\text { from all }} \boldsymbol{\substack { \text { samples } }} \underset{\substack{\text { matrix for resulting } \\ \text { covariance matrix }}}{\text { eigenectors for th }}$

Create $u_{\text {opt }}$ the projection eige nvectors calculated!

So..to sum up (cont.)

- Now we have that any point x_{i} can be projected to an appropriate point y_{i} by .

$$
\mathbf{y}_{\mathrm{i}}=\mathbf{U}_{\text {opt }}^{\top}\left(\mathbf{x}_{i}-\mu\right)
$$

- and conversely (since $\mathbf{U}^{-1}=\mathbf{U}^{\top}$)
$U y_{i}+\mu=\mathbf{x}_{\mathrm{i}}$

Data Reduction: Theory

- Each eigenvalue represents the the total variance in its dimension.
- Throwing away the least significant eigenvectors in $\mathbf{U}_{\text {oot }}$ means throwing away the least significant variance information!

Data Reduction Ulsing PCA

Reduce space dimensionality with minimum loss of description information.

Example of an Ideal Case

Since there is no variance along one dimension, we only need a single dimension !!!

Data Reduction: Practice

Sort the d columns of the projection matrix \mathbf{U}_{op} in descending order of appropriate eigenvalues.
Select the first m columns thus creating a new projection matrix of dimension $\mathrm{d} \ngtr m$

This will now be a projection
from a d-dimensional space
to an m-dimentionalspace

Data Loss

Sample points can still be projected via the new $m \times d$ projection matrix $\mathbf{U}_{\text {oot }}$ and can still be reconstructed, but some information will be lost.

$2 \mathcal{D}$ data
$1 \mathcal{D}$ data
$2 \mathcal{D}$ data

PCA: Conclusion

- A multi-variant analysis method.
- Finds a new coordinate system for the sample data.
- Allows for data to be removed with minimum loss in reconstruction ability.

Eigenfaces

- Given a database of labeled facial images

Recognize an individual in an unlabeled image formed from new and varying conditions (pose, expression, lighting etc.)

Sub-Problems:
Representation.

- How do we represent individuals?
-What information do we store?
- Classification:
- How do we compare new data to stored information?

Appearance Based Recognition

Recognition of 3D objects directly from their appearance in ordinary images

PCA / Eigenfaces:

- Sirovich \& Kirby 1987
"Low Dimensional Procedure for the Characterization of Human Faces"
- Turk \& Pentland 1991
"Face Recognition Using Eigenfaces"
- Murase \& Nayar 1995
"Visual learning and recognition of 3D objects from appearance

Images

- An image is a point in
dimensional space

00000000000000

Face Recognition Problem

Representation

- Goal:
- Compact, descriptive object representation for recognition
- Representations
- Model - based Representation
- Shape, texture,
- Appearance Based Representation
- Images

Eigenimages

- Principal components (eigenvectors) of image ensemble

The Problem with Linear (PCA) Appearance
 Based Recognition Methods
 - Eigenimages work best for recognition when only a single factor - e.g., object identity - is allowed to vary - However, natural images are the consequences of multiple factors (or modes) related to scene structure, illumination and factors (or modes) related to scene structure, illumination and imaging
 000000000000 0 $010000000 \cdot$

Matrix Decomposition - SVD

100900000000000

- A matrix has a column space and a row space
- SVD orthogonalizes these spaces and decomposes
- Rewrite in terms of mode-n products: contains the eigenfaces)

Perspective on Our Face Recognition Approacf		
	Linear Models	Our Nonlinear (Multilinear) Models
$2^{\text {nd }}$ - Order Statistics (covariance)	PCA Eigenfaces	Multiline ar PCA TensorFaces
Higher -Order Statistics	$I C A$	Multiline ar ICA Independent TensorFaces
		Vasilescu \& Terzopoulos CVPR 2005

$\operatorname{Assumptions}$

- The relationship between explanatory and response variable is
linear
- Data has a non-gaussian distribution or at most one of the
variables has a gaussian distribution

Geometric View of ICA

