A Multilinear Algebraic Framework for Analysis, Recognition & Synthesis

M. Alex O. Vasilescu

MIT Media Laboratory

www.media.mit.edu/~maov

Visual Computing

Image Science

- Image synthesis
 - Mathematical forward problem
 - Computer graphics
- Image analysis
 - Mathematical inverse problem
 - Computer vision
- Image recognition
 - Pattern recognition
 - Statistical machine learning

Why is Face Recognition Difficult?

Viewpoint changes

Why is Face Recognition Difficult?

Illumination Changes

Appearance-Based Recognition

Recognition of 3D objects (faces) directly from their appearance in ordinary images

- PCA / Eigenimages:
 - -[Sirovich & Kirby 1987]

"Low Dimensional Procedure for the Characterization of Human Faces"

-[Turk & Pentland 1991]

"Face Recognition Using Eigenfaces"

-[Murase & Nayar 1995]

"Visual learning and recognition of 3D objects from appearance"

Linear Algebra

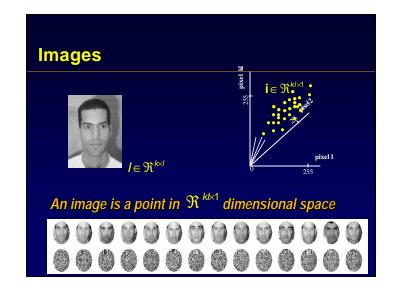
The algebra of vectors and matrices

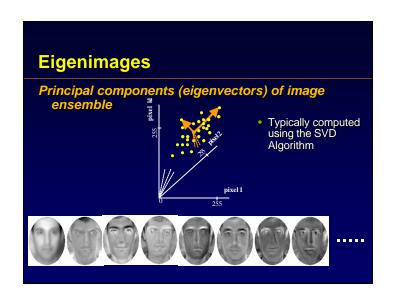
- Traditionally of great value in image science
 - Fourier transform
 - Karhunen-Loeve transform (PCA)
 - Eigenfaces
- Linear methods model:
 - Linear operators over a vector space
 - Single-factor linear variation in image formation
 - The linear combination of multiple sources (ICA)

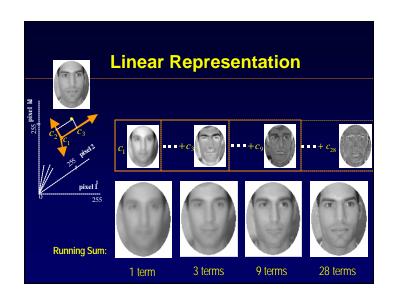
Multilinear Algebra

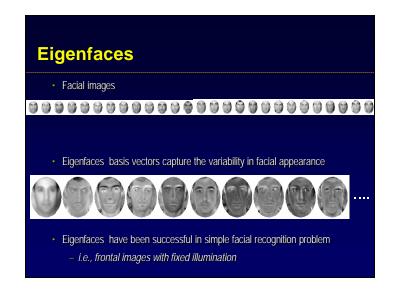
The algebra of higher-order (>2) tensors

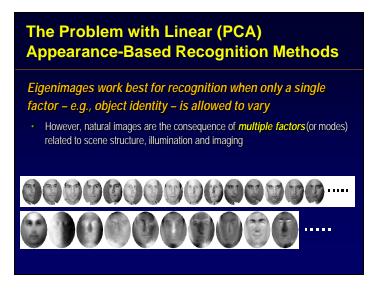
- A unifying mathematical framework for image science
- Natural images result from the interaction of multiple factors related to
 - scene geometry
 - Illumination
 - Imaging
- Multilinear algebra can explicitly represent multiple factors
 - Multilinear operators over a **set** of vector spaces
- Multilinear algebra subsumes linear algebra as a special case











Our Approach [Vasilescu & Terzopoulos, ECCV 02, ICPR 02, CVPR 03, CVPR 05]

A <u>nonlinear</u> appearance-based technique

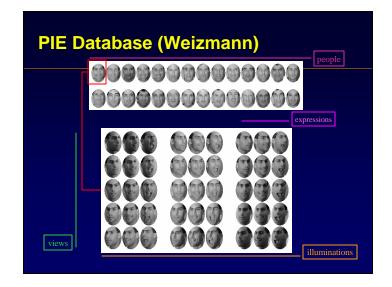
- Our appearance-based model *explicitly accounts* for each of the multiple factors inherent in image formation
- Multilinear algebra, the algebra of higher order tensors
- Applied to facial images, we call our tensor technique "TensorFaces"

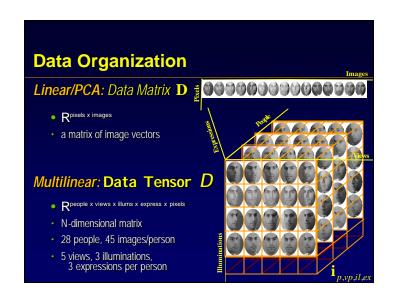
Linear vs Multilinear Manifolds

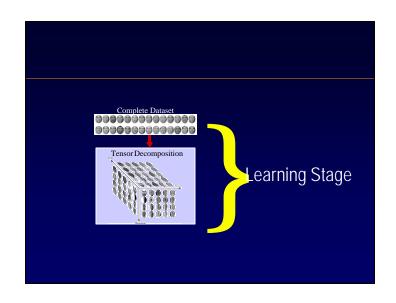
Preliminary Recognition Results

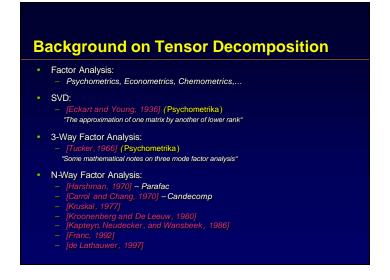
[Vasilescu & Terzopoulos, ICPR'02]

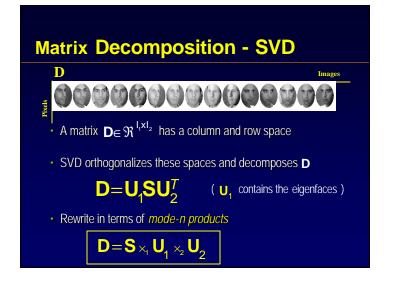
PIE Recognition Experiment	PCA	TensorFaces
Training: 23 people, 3 viewpoints (0,+34,-34), 4 illuminations		
Testing: 23 people, 2 viewpoints (+17, -17), 4 illuminations (center,left,right,left+right)	61%	80%
Training: 23 people, 5 viewpoints (0,+17, -17,+34, -34), 3 illuminations	27%	88%
Testing: 23 people, 5 viewpoints (0,+17, -17,+34, -34), 4 th illumination		











Tensor Decomposition

D is a N-dimensional "matrix", with N spaces

- N-mode SVD is the natural generalization of SVD
- N-mode SVD orthogonalizes these spaces and decomposes D as the mode-n product of N-orthogonal spaces

$$D = Z \times_{\scriptscriptstyle 1} \mathbf{U}_{\scriptscriptstyle 1} \times_{\scriptscriptstyle 2} \mathbf{U}_{\scriptscriptstyle 2} \cdots \times_{\scriptscriptstyle n} \mathbf{U}_{\scriptscriptstyle n} \cdots \times_{\scriptscriptstyle N} \mathbf{U}_{\scriptscriptstyle N}$$

- Core tensor Z governs interaction between mode matrices
- Mode-n matrix \mathbf{U}_n spans the column space of $\mathbf{D}_{(n)}$

Multiline Tensor Decomposition $D = Z \times_{1} \mathbf{U}_{1} \times_{2} \mathbf{U}_{2} \times_{3} \mathbf{U}_{3}$ $= \sum_{l_{1}=1}^{R_{1}} \sum_{l_{2}=1}^{R_{2}} \sum_{l_{3}=1}^{R_{3}} \mathbf{s}_{l_{1}/l_{1}} \circ \mathbf{u}_{2,l_{2}} \circ \mathbf{u}_{3,l_{3}}$ $vec(D) = (\mathbf{U}_{3} \otimes \mathbf{U}_{2} \otimes \mathbf{U}_{1}) vec(Z)$

Facial Data Tensor Decomposition Decomposition Views V

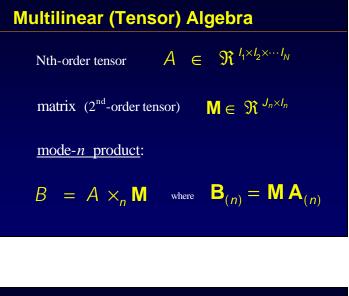
N-Mode SVD Algorithm

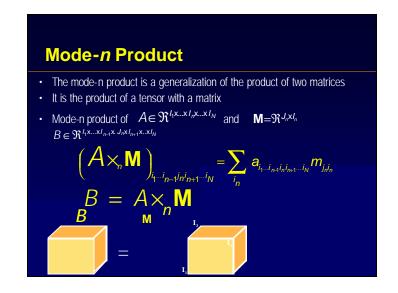
Two steps:

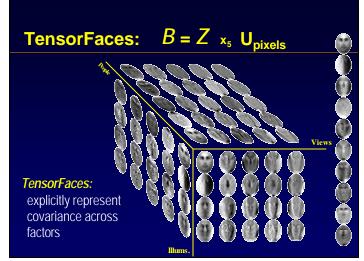
- 1. For n = 1,...,N, compute matrix \mathbf{U}_n by computing the SVD of the flattened matrix $\mathbf{D}_{(n)}$ and setting \mathbf{U}_n to be the left matrix of the SVD
- 2. Solve for the core tensor as follows

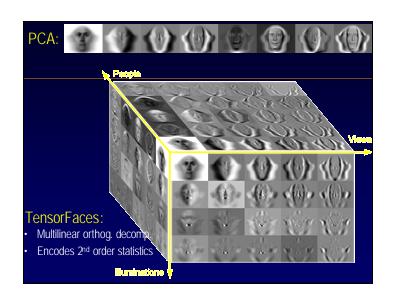
$$Z = D \times_1 \mathbf{U}_1^T \times_2 \mathbf{U}_2^T \cdots \times_n \mathbf{U}_n^T \cdots \times_N \mathbf{U}_N^T$$

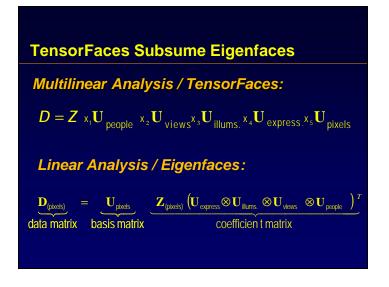
Computing Upixels Description: Images Description: Images Description: Descripti

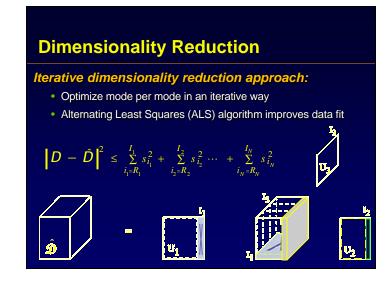


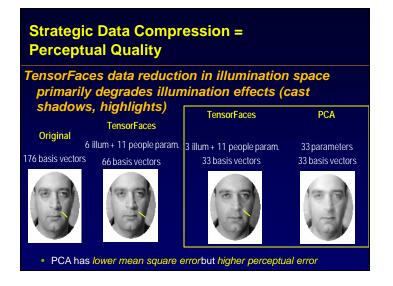


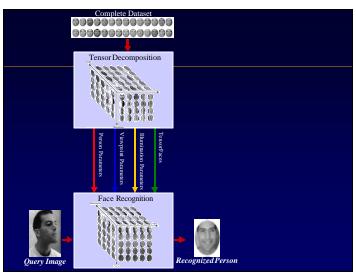


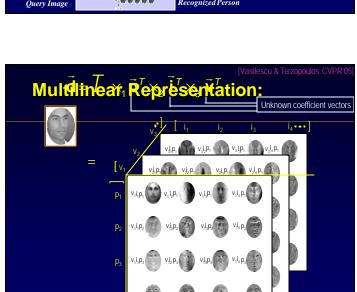


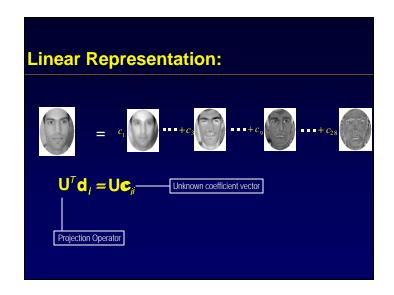


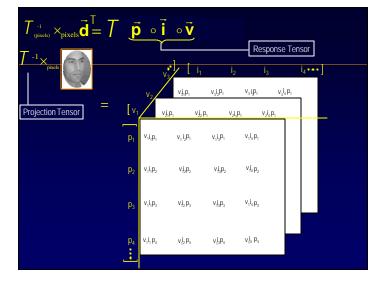


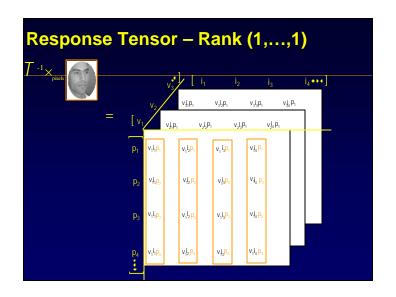


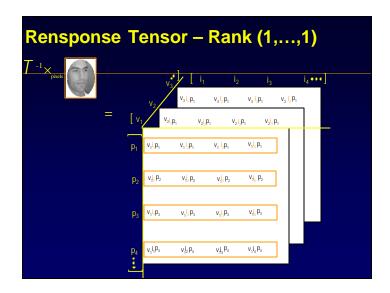


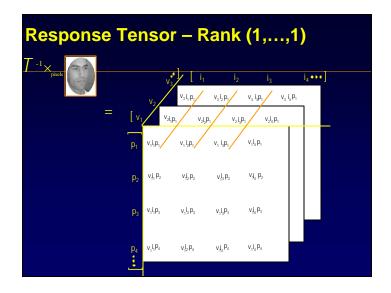


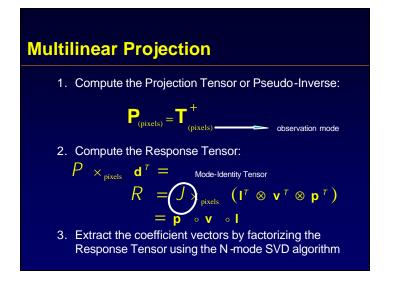












Perspective on Multilinear Models

	Linear Models	Our Nonlinear (Multilinear) Models
2 nd -Order Statistics (covariance)	PCA Eigenfaces	Multilinear PCA TensorFaces
Higher-Order Statistics	ICA	Multilinear ICA Independent TensorFaces

[Vasilescu & Terzopoulos, Learning 2004]

N-Mode ICA

[Vasilescu & Terzopoulos, CVPR 2005]

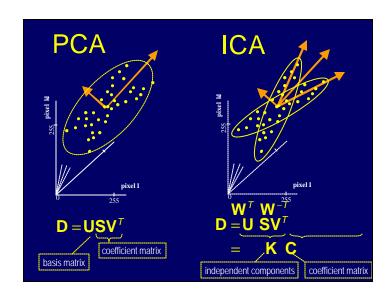
1. For n=1,...,N, compute matrix \mathbf{U}_n by computing the SVD of the flattened matrix $\mathbf{D}_{(n)}$ and setting \mathbf{U}_n to be the left matrix of the SVD. Compute \mathbf{W}_n^T using ICA. Our new mode matrix is \mathbf{K}_n

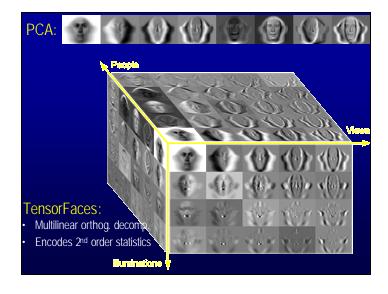
$$\mathbf{D}_{(n)} = \mathbf{U}_{n} \mathbf{Z}_{(n)} \mathbf{V}_{n}^{T} = \underbrace{\left(\mathbf{U}_{n} \mathbf{W}_{n}^{T}\right)}_{n} \mathbf{W}_{n}^{T} \mathbf{Z}_{(n)} \mathbf{V}_{n}^{T}$$
$$= \mathbf{K}_{n} \mathbf{W}_{n}^{T} \mathbf{Z}_{(n)} \mathbf{V}_{n}^{T}$$

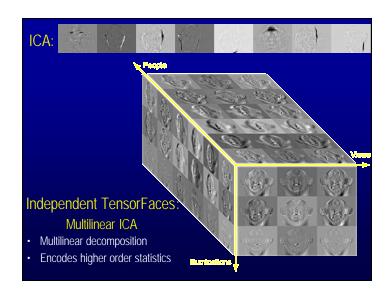
2. Solve for the core tensor as follows

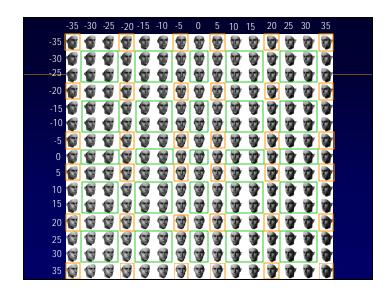
$$S = D \times_{1} \mathbf{K}_{1}^{-1} \times_{2} \mathbf{K}_{2}^{-1} \times \cdots \times_{n} \mathbf{K}_{n}^{-1} \times \cdots \times_{N} \mathbf{K}_{N}^{-1}$$

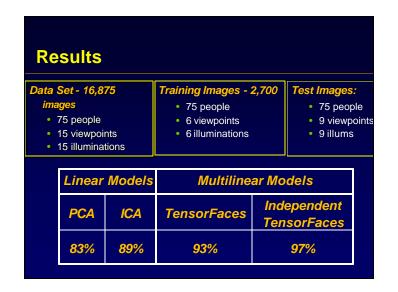
$$S = Z \times_{1} \mathbf{W}_{1}^{-T} \times_{2} \mathbf{W}_{2}^{-T} \times \cdots \times_{n} \mathbf{W}_{n}^{-T} \times \cdots \times_{N} \mathbf{W}_{N}^{-T}$$

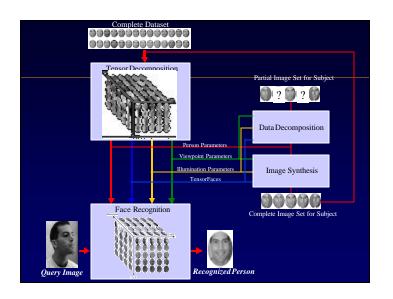












Other Applications

• Human Motion Signatures

- 3-Mode Decomposition, Recognition, & Synthesis
[Vasilescu ICPR 02, CVPR 01, SIGGRAPH 01]

• Multilinear Image-Based Rendering [Vasilescu & Terzopoulos, SIGGRAPH 04]

Conclusion

Multilinear algebraic framework for computer vision and computer graphics

- Tensor approach to the analysis and synthesis of image ensembles
 - Multilinear PCA and Multilinear ICA
 - Multilinear Projection
 - Tensor Mode-Identity, Tensor Pseudo-Inverse
 - TensorFaces and TensorTextures
- Applications in many other fields of science