Lecture 9
Image Formation

How do we see the world?

Let's design a camera
- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

It receives light from all directions

Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Pinhole camera model

- Pinhole model:
 - Captures pencil of rays – all rays through a single point
 - The point is called Center of Projection (COP)
 - The image is formed on the Image Plane
 - Effective focal length f is distance from COP to Image Plane
Pinhole size?

From Photography, London et al.

Lenses

- gather more light!
- But need to be focused

From Photography, London et al.

Dimensionality Reduction Machine
(3D to 2D)

3D world

2D image

- What have we lost?
 - Angles
 - Distances (lengths)

From Photography, London et al.

Funny things happen…

Parallel lines aren’t…

Distant objects are smaller

…but humans adopt!

Müller-Lyer Illusion

We don’t make measurements in the image plane

http://www.michaelbach.de/ot/sze_muelue/index.html
Perspective projection

- Abstract camera model - box with a small hole in it
- In an ideal pinhole camera everything is in focus

\[
\begin{align*}
\text{image plane} & \quad \text{pinhole} & \quad \text{virtual image}
\end{align*}
\]

The equation of projection

- Cartesian coordinates:
 - We have, by similar triangles, that
 \[
 (x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z}, -f \right)
 \]
 - Ignore the third coordinate, and get
 \[
 (x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
 \]

The camera matrix

- Turn previous expression into HC’s
 - HC’s for 3D point are \((x, y, z, 1)\)
 - HC’s for point in image are \((u, v, w)\)

\[
\begin{pmatrix}
\frac{x}{f} \\
\frac{y}{f} \\
\frac{z}{f}
\end{pmatrix}
\]

- Position of the point in the image from HC

\[
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & f/f_w & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]

Weak perspective

- Issues:
 - perspective effects, but not over the scale of individual objects
 - collect points into a group at about the same depth, then divide each point by the depth of its group
 - Adv: easy
 - Disadv: wrong

Orthographic projection

Telescope projection can be modeled by orthographic projection
Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

 Also called “parallel projection”
 What’s the projection matrix?

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x' \\
y' \\
z' \\
1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\]

Building a real camera

Camera Obscura

- The first camera
 - Known to Aristotle
 - Depth of the room is the effective focal length

Camera Obscura, Gemma Frisius, 1558

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects…

Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/
The reason for lenses

A lens focuses light onto the film
- There is a specific distance at which objects are “in focus”
- Other points project to a “circle of confusion” in the image
- Changing the shape of the lens changes this distance

Focus and Defocus

Focus and Defocus

Thin lenses

- Thin lens equation: \(\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \)
 - Any object point satisfying this equation is in focus
 - What is the shape of the focus region?
 - How can we change the focus region?
 - Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

Varying Focus

Depth Of Field
Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Changing the aperture size affects depth of field
- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light – need to increase exposure

Varying the aperture

Large aperture = small DOF Small aperture = large DOF

Nice Depth of Field effect

Field of View (Zoom)

From London and Upton
Field of View (Zoom)

From London and Upton

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

\[\varphi = \tan^{-1} \left(\frac{d}{2f} \right) \]

Smaller FOV = larger Focal Length

Field of View / Focal Length

From Zisserman & Hartley

Large FOV, small \(f \) - Camera close to car
Small FOV, large \(f \) - Camera far from the car

Lens Flaws: Chromatic Aberration

- Dispersion: wavelength-dependent refractive index
 - (enables prism to spread white light beam into rainbow)
 - Modifies ray-bending and lens focal length: \(f(\lambda) \)

- color fringes near edges of image
- Corrections: add ‘doublet’ lens of flint glass, etc.
Chromatic Aberration

- Near Lens Center
- Near Lens Outer Edge

Radial Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Radial Distortion

- Radial distortion: straight lines curve around the image center

Radial Distortion

- Examples: 'Barrel' and 'pin-cushion'