Lecture 8

Image Transformations
(global and local warps)

Handouts: PS#2 assigned

Last Time

Idea #1: Cross-Dissolving / Cross-fading

il tivira
T

| =
-
b

= Interpolate whole images:

-— * *
Ihalfway =o'l + (1- a) l

= This is called cross-dissolving in film industry

= But what if the images are not aligned?

Idea #2: Align, then cross-disolve

= Align first, then cross-dissolve
o Alignment using global warp — picture still valid

Failure: Global warping

M_’Mlhﬁal

= What to do?
o Cross-dissolve doesn’t work
o Global alignment doesn’t work
= Cannot be done with a global transformation (e.g. affine)
o Any ideas?
= Feature matching!
o Nose to nose, tail to tail, etc.

o This is a local (non-parametric) warp

Idea #3: Local warp & cross-dissolve

L wap
A tf?
< .-
_.M - "?ﬁ
i ¥ .
3 J B)
Avg. Shape Cross-dissolve Avg. Shape

Morphing procedure:

1. Find the average shape (the “mean dog"®©)
o local warping

2. Find the average color
o Cross-dissolve the warped images

Triangular Mesh

e

1. Input correspondences at key feature points
> Define a triangular mesh over the points
(ex. Delaunay Triangulation)
o Same mesh in both images!
o Now we have triangle-to-triangle correspondences
3. Warp each triangle separately
o How do we warp a triangle?
o 3 points = affine warp!
o Just like texture mapping Slide Alyosha Efros

Transformations

(global and local warps)

Parametric (global) warping

Parametric (global) warping

= Examples of parametric warps:

E . [=3 .
translation rotation aspect
affine perspective cylindrical

o

p=(xy) Py

= Transformation T is a coordinate-changing machine:
P’ =T(p)
= What does it mean that T is global?
a s the same for any point p
o can be described by just a few numbers (parameters)
= Let's represent T as a matrix:

p’=Tp

paN

Scaling

Scaling

= Scaling a coordinate means multiplying each of its
components by a scalar

= Uniform scaling means this scalar is the same for all
components:

g

= Non-uniform scaling: different scalars per component:

Scaling

= Scaling operation: x'=ax
y'=by

= Or, in matrix form:

4

scaling matrix S

What's inverse of 8?

2-D Rotation

(] (X,a Y’)
(X,)
x’ =x cos(0) - y sin(0)
0 y’ =x sin(0) +y cos(0)

2-D Rotation

X =r cos (¢)
y=rsin (¢)

'(X,, y’) x’ =rcos (¢ +
y’ =rsin (¢ +0)
(X’ Y) Trig Identity...
x* =r (cos(9) cos(0) — sin(¢) sin(0))
¢ y” =r (sin(¢) cos(0) + cos(¢) sin(0))

Substitute. ..
x” =x cos(0) - y sin(0)
y’ =xsin(0) +y cos(0)

2-D Rotation

= This is easy to capture in matrix form:

— []-[ror

|
R

X =x cos(0) -y sin(6)
y =xsin(0) +y cos(6)

= Even though sin(0) and cos(0) are nonlinear functions
of 0,
ox’ is a linear combination of x and y
ay’ is a linear combination of x and y

= What is the inverse transformation?
uRotation by — 6
aFor rotation matrices R~ =R’

2x2 Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
xX'=x _x'_ _ _1 0:||:x:|
y'=y V'] |0 1]y

2D Scale around (0,0)?

x'=s, *x [x] [s. O]x
yv:sy*y y' 1o s, Ly

2x2 Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=cos®@*x—sin@* y x'| |cos® -—sin® | x
y'=sin®@*x+cos®@*y y'| |sin® cos® |y

2D Shear?

x'=x+sh *y x' 1 sh, | x
y'=sh *x+y y B shy I |y

2x2 Matrices

2x2 Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
RN
y'=y V' 0 1]y
2D Mirror over (0,0)?

= BHE AL

= What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=x+t,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

All 2D Linear Transformations

Homogeneous Coordinates

= Linear transformations are combinations of ...
o Scale,

o Rotation, x' a bix
o Shear, and T d
a Mirror y ¢ y

= Properties of linear transformations:
o Origin maps to origin

Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

KRB A N

a
a
a
a

= Q: How can we represent translation as a
3x3 matrix?

'
x'=x+t,

y'=y+t,

Homogeneous Coordinates

Homogeneous Coordinates

= Homogeneous coordinates
urepresent coordinates in 2 dimensions with a 3-vector

X

Y

homogeneou s coords

X
>y
1

= Add a 3rd coordinate to every 2D point
o (x, y, w) represents a point at location (x/w, y/w)
o (x, y, 0) represents a point at infinity
o (0, 0, 0) is not allowed

X

2 (2,1,1) or (4,2,2) or (6,3,3)

Convenient T 5 X
coordinate system to

represent many

useful

transformations

Homogeneous Coordinates

Translation

= Q: How can we represent translation as a
3x3 matrix?
xX'=x+t,

y':y+ty

= A: Using the rightmost column:

1 0 ¢,
Translation=|0 1 t,
0 0 1

= Example of translation
Homogeneous Coordinates

¥ 3 &

1 [1 o0 ¢
V=0 1
1] o o

Basic 2D Transformations

Matrix Composition

= Basic 2D transformations as 3x3 matrices

X 1.0 ¢ |x [x] [s, 0 Ofx
YI=[0 1 ¢ |y "= 0 s, Oy
1 00 1]1 L1] [0 0 1]1
Translate Scale
x' cos® -sin®@ Ofx [x] [1 sh. Ofx
y'|=|sin® cos® 0y y|=|sh, 1 0]y
1 0 0 1)1 Lt] Lo 0 1]1
Rotate Shear

= Transformations can be combined by
matrix multiplication

X' 1 0 tx|cos® —sin® Ofsx 0 Of)x
y'|={10 1 #&|sin® cos® 00 sy Off»
w' 0 0 1 0 0 Ifo o 1|)|w

P = T(tt) R(®) S(sysy) P

X7y,

Affine Transformations

Projective Transformations

a Linear transformations, and
o Translations
= Properties of affine transformations:
Origin does not necessarily map to origin
Lines map to lines
Parallel lines remain parallel
Ratios are preserved
Closed under composition
Models change of basis

= Affine transformations are combinations of {x} {

(sl

0O 00 0o

= Will the last coordinate w always be 1?

= Projective transformations ... F} :F
o Affine transformations, and W g
o Projective warps
= Properties of projective transformations:
Origin does not necessarily map to origin
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved
Closed under composition
Models change of basis

=0 o
~ 0

}{

]

=]
Q
=]
Q
Q
=]

2D image transformations

Recovering Transformations

&
! /’ similarity Q projective
| trans| hum: D
a

T Eucliden

af I|||c

.\'

Name Mairix | # D.OF. | Preserves [leon |

wranslation 1)t],

rigid (Euclidean) | | R | ¢

similarity | sr|t

afline [al

projective [#],

These transformations are a nested set of groups
* Closed under composition and inverse is a member

Sxy) gx"y)
= What if we know fand g and want to recover the
transform T?

o willing to let user provide correspondences
= How many do we need?

Translation: # correspondences?

= How many correspondences needed for translation?
= How many Degrees of Freedom?
= What is the transformation matrix?

10 pp.
T=\0 1 p'\,-p,
00 1

Euclidian: # correspondences?

. YL

= How many correspondences needed for translation +
rotation?
= How many DOF?

cosf —sinf 1,

T=ssin@ cost ¢,

0 0 1

Affine: # correspondences?

= How many correspondences needed for affine?

= How many DOF?

= An affine transformation is a composition of translations, rotations,
dilations, and shears.

10 ¢ cosd —sind 0 s. 00 1 &k 0
01 1 sind cos® 0O 0 s, 0 k, 1 0
00 1 0 0 1 0 0 1 0 0 1

translations rotation dilations shear

Projective: # correspondences?

= How many correspondences needed for projective?
= How many DOF?

Warping triangles

Hint: Warping triangles

q;

T(p) s

P source P 91 Destination
= Given two triangles: p,p,p; and q,’q,’q;’ in 2D (6 constraints)
= Need to find transform T to transfer all pixels from one to the other.
= What kind of transformation is T?
o affine
= How can we compute the transformation matrix:
X' a b c|x
Y'j=ld e fly
1 00 11

(Barrycentric ((0:1)oordinates)

(0,0) (1,0)
\2 9z
Inverse change
change of basis
of basis
s
p
Source 3 91 Destination

Trick: Computing T

Warping sequence

0.1)

(0,0) (1,0)
T
\2 9,
change
of basis
ds
TZ = [qz -4 9;—q; ql] 91 Destination

91 Destination

P4 P3
Source Project and Event Manager

v= p + abq-p)

Forward warping

= Send each pixel f(x,y) to its corresponding location
(x,y’) = T(x,y) in the second image

Q: what if pixel lands between four pixels?

Forward warping

. v

T fx) T gy

= Send each pixel f(x,y) to its corresponding location
(x%y’) = T(x,y) in the second image

Q: what if pixel lands between four pixels?

A: distribute color among neighboring pixels (x',y’)
— Known as “splatting”
— Check out gri ddat a in Matlab

Inverse warping

Inverse warping

T Ay gy
= Get each pixel g(x’,y’) from its corresponding location
(xy) = T(x’y) in the first image

Q: what if pixel comes from between four pixels?

- YL

T Ay T gy

= Get each pixel g(x’y’) from its corresponding

location
(x,y) = TY(x’y’) in the first image

Q: what if pixel comes from between four pixels?

A: Interpolate color value from neighbors
— nearest neighbor, bilinear, Gaussian, bicubic
— Check out i nt er p2 in Matlab

Forward vs. inverse warping

= Q: which is better?

= A: usually inverse—eliminates holes
o however, it requires an invertible warp function—not
always possible...

