
1

Lecture 8

Image Transformations

(global and local warps)

Lecture 8Lecture 8

Image Transformations

(global and local warps)(global and local warps)

Handouts: PS#2 assigned

Last Time

Idea #1: Cross-Dissolving / Cross-fading

� Interpolate whole images:

Ihalfway = α*I1 + (1- α)*I2

� This is called cross-dissolving in film industry

� But what if the images are not aligned?

Idea #2: Align, then cross-disolve

� Align first, then cross-dissolve
� Alignment using global warp – picture still valid

Failure: Global warping

� What to do?
� Cross-dissolve doesn’t work
� Global alignment doesn’t work

� Cannot be done with a global transformation (e.g. affine)

� Any ideas?
� Feature matching!
� Nose to nose, tail to tail, etc.
� This is a local (non-parametric) warp

Idea #3: Local warp & cross-dissolve

Morphing procedure:
1. Find the average shape (the “mean dog”☺)

� local warping
2. Find the average color

� Cross-dissolve the warped images

Warp Warp

Cross-dissolveAvg. Shape Avg. Shape

2

Triangular Mesh

1. Input correspondences at key feature points
2. Define a triangular mesh over the points

(ex. Delaunay Triangulation)
� Same mesh in both images!
� Now we have triangle-to-triangle correspondences

3. Warp each triangle separately
� How do we warp a triangle?
� 3 points = affine warp!
� Just like texture mapping Slide Alyosha Efros

Transformations

(global and local warps)

Transformations

(global and local warps)(global and local warps)

Parametric (global) warping
� Examples of parametric warps:

translation rotation aspect

affine perspective cylindrical

Parametric (global) warping

� Transformation T is a coordinate-changing machine:

p’ = T(p)
� What does it mean that T is global?

� Is the same for any point p
� can be described by just a few numbers (parameters)

� Let’s represent T as a matrix:

p’ = Tp

T

p = (x,y) p’ = (x’,y’)












=













y

x

y

x
T

'

'

Scaling
� Scaling a coordinate means multiplying each of its

components by a scalar
� Uniform scaling means this scalar is the same for all

components:

* 2

� Non-uniform scaling: different scalars per component:

Scaling

x * 2,
y * 0.5

3

Scaling

� Scaling operation:

� Or, in matrix form:

byy
axx

=
=
'
'

















=








y
x

b
a

y
x

0
0

'
'

scaling matrix S
What’s inverse of S?

2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation

x = r cos (φ)
y = r sin (φ)
x’ = r cos (φ + θ)
y’ = r sin (φ + θ)

Trig Identity…
x’ = r (cos(φ) cos(θ) – sin(φ) sin(θ))
y’ = r (sin(φ) cos(θ) + cos(φ) sin(θ))

Substitute…
x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

θ

(x, y)

(x’, y’)

φ

2-D Rotation
� This is easy to capture in matrix form:

� Even though sin(θ) and cos(θ) are nonlinear functions
of θ,
�x’ is a linear combination of x and y
�y’ is a linear combination of x and y

� What is the inverse transformation?
�Rotation by – θ
�For rotation matrices

() ()
() () 















 −
=








y
x

y
x

θθ
θθ

cossin
sincos

'
'

TRR =−1

R

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2x2 Matrices
� What types of transformations can be

represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'










=





y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

=

=
















=








y
x

s
s

y
x

y

x

0
0

'
'

2x2 Matrices
� What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

Θ+Θ=
Θ−Θ=

















ΘΘ
Θ−Θ

=







y
x

y
x

cossin
sincos

'
'

2D Shear?

yxshy
yshxx

y

x

+=
+=

*'
*'

















=








y
x

sh
sh

y
x

y

x

1
1

'
'

4

2x2 Matrices
� What types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'










−=





y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'












−
−=





y
x

y
x

10
01

'
'

2x2 Matrices
� What types of transformations can be

represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx

+=
+=

'
'

Only linear 2D transformations
can be represented with a 2x2 matrix

NO!

All 2D Linear Transformations

� Linear transformations are combinations of …
� Scale,
� Rotation,
� Shear, and
� Mirror

� Properties of linear transformations:
� Origin maps to origin
� Lines map to lines
� Parallel lines remain parallel
� Ratios are preserved
� Closed under composition

















=








y
x

dc
ba

y
x
'
'




















=





y
x

lk
ji

hg
fe

dc
ba

y
x

'
'

Homogeneous Coordinates
� Q: How can we represent translation as a

3x3 matrix?

y

x

tyy
txx

+=
+=

'
'

Homogeneous Coordinates
� Homogeneous coordinates
�represent coordinates in 2 dimensions with a 3-vector
















 →









1

coords shomogeneou y
x

y
x

Homogeneous Coordinates
� Add a 3rd coordinate to every 2D point

� (x, y, w) represents a point at location (x/w, y/w)
� (x, y, 0) represents a point at infinity
� (0, 0, 0) is not allowed

Convenient
coordinate system to
represent many
useful
transformations

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y

5

Homogeneous Coordinates
� Q: How can we represent translation as a

3x3 matrix?

� A: Using the rightmost column:

















=
100

10
01

y

x

t
t

ranslationT

y

x

tyy
txx

+=
+=

'
'

Translation
� Example of translation
















+
+

=
































=
















11100
10
01

1
'
'

y

x

y

x

ty
tx

y
x

t
t

y
x

tx = 2
ty = 1

Homogeneous Coordinates

Basic 2D Transformations
� Basic 2D transformations as 3x3 matrices
































ΘΘ
Θ−Θ

=
















1100
0cossin
0sincos

1
'
'

y
x

y
x
































=

















1100
10
01

1
'
'

y
x

t
t

y
x

y

x
































=

















1100
01
01

1
'
'

y
x

sh
sh

y
x

y

x

Translate

Rotate Shear
































=

















1100
00
00

1
'
'

y
x

s
s

y
x

y

x

Scale

Matrix Composition
� Transformations can be combined by

matrix multiplication


















































ΘΘ
Θ−Θ












=













w
y
x

sy
sx

ty
tx

w
y
x

100
00
00

100
0cossin
0sincos

100
10
01

'
'
'

p’ = T(tx,ty) R(Θ) S(sx,sy) p

Affine Transformations

� Affine transformations are combinations of
� Linear transformations, and
� Translations

� Properties of affine transformations:
� Origin does not necessarily map to origin
� Lines map to lines
� Parallel lines remain parallel
� Ratios are preserved
� Closed under composition
� Models change of basis

� Will the last coordinate w always be 1?
























=













w
y
x

fed
cba

w
y
x

100
'
'

Projective Transformations

� Projective transformations …
� Affine transformations, and
� Projective warps

� Properties of projective transformations:
� Origin does not necessarily map to origin
� Lines map to lines
� Parallel lines do not necessarily remain parallel
� Ratios are not preserved
� Closed under composition
� Models change of basis
























=













w
y
x

ihg
fed
cba

w
y
x

'
'
'

6

2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

Recovering Transformations

� What if we know f and g and want to recover the
transform T?
� willing to let user provide correspondences

� How many do we need?

x x

T(x,y)
y y

f(x,y) g(x’,y’)

?





































=



















′

′

11001

y

x

fed

cba

y

x

Translation: # correspondences?

� How many correspondences needed for translation?
� How many Degrees of Freedom?
� What is the transformation matrix?

x x

T(x,y)
y y

?



















−

−

=

100

'10

'01

yy

xx

pp

pp

T

Euclidian: # correspondences?

� How many correspondences needed for translation +
rotation?

� How many DOF?

x x

T(x,y)
y y

?

















 −

=

100

cossin

sincos

y

x

t

t

sT θθ

θθ

Affine: # correspondences?

� How many correspondences needed for affine?
� How many DOF?
� An affine transformation is a composition of translations, rotations,

dilations, and shears.

x x

T(x,y)
y y

?

















 −

100

0cossin

0sincos

θθ

θθ



















100

00

00

y

x

s

s



















100

01

01

y

x

k

k



















100

10

01

y

x

t

t

rotationtranslations dilations shear

p2

p3

q3
q1

q2

Projective: # correspondences?

� How many correspondences needed for projective?
� How many DOF?

x x

T(x,y)
y y

?

p2

p3

p4
q2

q3

q4

q1

7

Warping triangles

� Given two triangles: p1p2p3 and q1’q2’q3’ in 2D (6 constraints)
� Need to find transform T to transfer all pixels from one to the other.
� What kind of transformation is T?

� affine
� How can we compute the transformation matrix:

T(p)

?

p1 Source Destination
































=

















11001
'
'

y
x

fed
cba

y
x

p3

p2

q1

q3

q2

Hint: Warping triangles
(Barrycentric Coordinates)

Source Destination

(0,0) (1,0)

(0,1)

change
of basis

Inverse
change
of basis

2T1
1
−T

p1 p3

p2

q1

q3

q2

Trick: Computing T

Destination

(0,0) (1,0)

(0,1)

change
of basis

2T

q1

q3

q2

[]113122 qqqqqT −−=

p1 Source
Destinationp3

p2

q1

q3

q2

Warping sequence

V
α

(1-α)

p

q

()
()
() Tppv

qp

pqpv

)()(1

)()(1

)(

tt

tt

t

αα

αα

α

+−=

+−=

−+=

where α is a function of time

Project and Event Manager

f(x,y) g(x’,y’)

Forward warping

� Send each pixel f(x,y) to its corresponding location
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands between four pixels?

y y’
f(x,y) g(x’,y’)

Forward warping

� Send each pixel f(x,y) to its corresponding location
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands between four pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)
– Known as “splatting”
– Check out griddata in Matlab

8

f(x,y) g(x’,y’)x
y

Inverse warping

� Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-1(x’,y’) in the first image

x x’

Q: what if pixel comes from between four pixels?

y’
T-1(x,y) f(x,y) g(x’,y’)x

y

Inverse warping

� Get each pixel g(x’,y’) from its corresponding
location

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from between four pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic
– Check out interp2 in Matlab

Forward vs. inverse warping
� Q: which is better?

� A: usually inverse—eliminates holes
� however, it requires an invertible warp function—not

always possible...

