

#### **Averaging vectors**

 $\mathbf{v} = \mathbf{p} + \alpha (\mathbf{q} - \mathbf{p})$ 

= 
$$(1 - \alpha) \mathbf{p} + \alpha \mathbf{q}$$
 where  $\alpha = ||\mathbf{q} - \mathbf{v}||$ 



- p and q can be anything:
  - points on a plane (2D) or in space (3D)
  - Colors in RGB or HSV (3D)
  - □ Whole images ... etc.

#### Idea #1: Cross-Dissolving / Cross-fading







Interpolate whole images:

$$\mathbf{I}_{halfway} = \alpha^* \mathbf{I}_1 + (1 - \alpha)^* \mathbf{I}_2$$

- This is called **cross-dissolving** in film industry
- But what if the images are not aligned?

#### Idea #2: Align, then cross-disolve



- Align first, then cross-dissolve
  - □ Alignment using global warp picture still valid

#### Failures: Averaging Images

Global alignment doesn't work.













#### **Dog Averaging**



- What to do?
  - □ Cross-dissolve doesn't work
  - Global alignment doesn't work
    - Cannot be done with a global transformation (e.g. affine)
  - □ Any ideas?
- Feature matching!
  - □ Nose to nose, tail to tail, etc.
  - □ This is a local (non-parametric) warp

# Idea #3: Local warp & cross-dissolve Warp Avg. Shape Morphing procedure:

- 1. Find the average shape (the "mean dog" ©)
  - local warping
- 2. Find the average color
  - Cross-dissolve the warped images

#### **Morphing Sequence**

Input: two images I<sub>0</sub> and I<sub>N</sub>





■ Output: image seq. I<sub>i</sub>, with *i*=1..*N*-1



- User specifies sparse correspondences on the images
  - $\square$  Pairs of vectors  $\{(\mathbf{p}^0_i, \mathbf{p}^N_i)\}$





#### **Morphing**



- For each intermediate frame I,
  - □ Interpolate feature locations  $\mathbf{p}_{i}^{t} = (1 \alpha(t)) \mathbf{p}_{i}^{0} + \alpha(t) \mathbf{p}_{i}^{1}$
  - $\square$  Perform **two** warps: one for  $I_0$ , one for  $I_1$ 
    - Deduce a dense warp field from a few pairs of features
    - Warp the pixels
  - Linearly interpolate the two warped images



# Warping

#### Warping

- Imagine your image is made of rubber
- warp the rubber



#### Careful: warp vs. inverse warp

How do you perform a given warp:

- Forward warp
  - Potential gap problems





- Inverse lookup the most useful
  - For each output pixel
    - Lookup color at inversewarped location in input





#### Image Warping - non-parametric

- Move control points to specify a spline warp
- Spline produces a smooth vector field



Slide Alvosha Efros

#### Warp specification - dense

- How can we specify the warp? Specify corresponding spline control points
  - interpolate to a complete warping function



But we want to specify only a few points, not a grid

Slide Alvosha Efros

#### Warp specification - sparse

- How can we specify the warp? Specify corresponding points
  - interpolate to a complete warping function
  - How do we do it?



How do we go from feature points to pixels?

Slide Alyosha Efros

#### **Triangular Mesh**





- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points (ex. Delaunay Triangulation)
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately
  - How do we warp a triangle?
  - □ 3 points = affine transformation!
  - Just like texture mapping

Slide Alyosha Efros

#### **Example: warping triangles**



- Given two triangles: ABC and A'B'C' in 2D (3 points = 6 constrains)
- Need to find transform T to transfer all pixels from one to the other.
- What kind of transformation is T?
- affine
- How can we compute the transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

## **HINT:** warping triangles



Don't forget to move the origin too!

#### **Problems with triangulation morphing**

Not very continuous - only C<sup>0</sup>



Fig. L. Darsa

 Folding problems - relationship between feature locations may not be the same between two objects.

**—** 

#### Warp as interpolation

- We are looking for a warping field
  - A function that given a 2D point, returns a warped 2D point
- We have a sparse number of correspondences
  - $\hfill \square$  These specify values of the warping field
- This is an interpolation problem
  - □ Given sparse data, find smooth function

#### **Linear Interpolation**

- How do we create an intermediate warp at time t?
  - $\square$  Assume  $\alpha(t) = [0,1]$
  - Simple linear interpolation of each feature pair
  - $\Box$  (1- $\alpha$ (t))  $\mathbf{p}_0$ + $\alpha$ (t)  $\mathbf{p}_1$  for corresponding features  $\mathbf{p}_0$  and  $\mathbf{p}_1$





#### Applying a warp: USE INVERSE

- Forward warp:
  - For each pixel in input image
    - Paste color to warped location in output
  - □ Problem: gaps
- Inverse warp
  - For each pixel in output image
    - Lookup color from inversewarped location









# Morphing

#### Input images





#### **Feature correspondences**





■ The feature locations will be our y<sub>i</sub>

# Interpolate feature location

Provides the x<sub>i</sub>



#### Warp each image to intermediate location



Two different warps: Same target location, different source location

i.e. the x<sub>i</sub> are the same (intermediate locations), the y<sub>i</sub> are different (source feature locations)

Note: the y<sub>i</sub> do not change along the animation, but the x<sub>i</sub> are different for each intermediate image

Here we show  $\alpha$ =0.5 (the  $y_i$  are in the middle)



#### Warp each image to intermediate location







#### Interpolate colors linearly



# Bells and whistles

















The actual structure of a face is captured in:

- the shape vector  ${\bf S}=(x_1,y_1,x_2,...,y_n)^T,$  containing the (x,y) coordinates of the n vertices of a face, and
- □ the appearance (texture) vector  $\mathbf{T} = (R_1, G_1, B_1, R_2, ..., G_n, B_n)^T$ , containing the color values of the mean-warped face image.



Shape S

Appearance T

## **Subpopulation Means**

- Examples:
  - □Happy faces
  - □Young faces
  - □Asian faces
  - □Etc
  - □Sunny days
  - □Rainy days
  - □Etc.
  - □Etc.



Average female



Average male

#### Using 3D Geometry: Blanz & Vetter, 1999

















show SIGGRAPH video



 Given two photos, produce a 60-frame morph animation