

Ymir: A Generative
Model of Psychosocial
Dialogue Skills

7.

In the past chapters we have looked at the complex issues involved in
human face-to-face interaction. Some of those have been addressed
individually in the literature, while some have not. The biggest piece
missing though is a general way to put these items together to create a
full model of face-to-face communication. The argument made here is
the following: We need to look at the full loop of perception-action of
an agent to come up with a correct model, because actions in dialogue
are a mixture of closed-loop (guided with perceptual feedback) and
open-loop (ballistic), and dialogue is interactive, with real-time plan-
ning happening on many levels. To do this we need a foundation where
components that have already been developed can be accommodated,
and new developments in the theory of multimodal dialogue can be
Òplugged inÓ, tested, redesigned and retested.

In this chapter I propose a new generative model of human psychosocial
dialogue skill. Instead of dealing with a single issue, or a few small ele-
ments of face-to-face, multimodal dialogue, this model is intended to be
a bridge, addressing all issues necessary to fill the gaps which in the past
have prevented us from creating artificial characters that can engage in
such dialogue.

The model is Ymir. Ymir does essentially what Fehling et al. [1988]
call resource-bounded problem solving. The problem is dialogue; the
resources are time, information and computational power. On the prac-
tical side, the general thought is that Ymir be used for creating softbots
(and robots) whose purpose in life is to receive commands from
humans, ask questions when appropriate, but otherwise do the job as
best their knowledge allows them to. In the following discussion we
can therefore envision building up to a humanoid robot who receives
commands and turns them into executable actions in its domain of
expertise. On the theoretical side, Ymir could be used to test theories
about human discourse, because it provides the possibility to turn cer-

Why ÒYmirÓ?
Nordic religion, as preserved in
Icelandic Sagas [Sturluson
1300~1325], tells about YmirÑa
giant who lived in times before the
heaven and earth. Ymir was
killed by the Nordic gods îÝinn,
Vili and V�, who turned YmirÕs
Òblood into the seas, his bones into
the mountains, his teeth and
broken bones into rocks and
gravel, his head into the heaven
and his flesh into the earth.Ó The
earth then became a source of
many new imaginative humanoid
life-forms.

Ymir is pronounced e-mir, with the
accent on the first syllable.

Thi d d i h F M k 4 0 2

Communicative Humanoids

90

Chapter 7.

tain dialogue actions on and off at willÑsomething that was impossible
to do before, even with a skilled actor.

The approach taken to dialogue expertise can be likened to that taken to
an expert system: we want a system that is expert at multimodal, face-
to-face communication. The justification comes from the fact that
unlike expert systems that tackle a niche area for limited purposes, mul-
timodal dialogue is a general communication method used by all, and
therefore we need only build this system once.

7.1 Overview of Architectural Characteristics

Following the model of face-to-face dialogue introduced in Chapter 5.
(ÒMultimodal Dialogue as Layered Feedback LoopsÓ on page 77), Ymir
is a layered system. It employs one or more topic knowledge bases, and
it uses a special action scheduler module for composing and scheduling
motor actions. Motor actions are expected to be carried out by an ani-
mation system that either has addressable absolute positions for each
ÒmuscleÓ (analogueÑe.g. a servo system, or digitalÑe.g. computer
graphics or stepper motors), that lies below the system itself.

Sensory input is expected to be multimodal, and although the system

works

 with a single mode input, no advantages would be taken of multi-
modal synergistic effects in that case. Ymir can accommodate any
number of sub-modules, running in parallel or serial, that work in con-
cert to interpret and respond to the dialogue as it unfolds. By being
modular, Ymir offers researchers opportunities to experiment with vari-
ous computational schemes for handling specific sub-tasks of multimo-
dal interaction, such as natural language parsing, natural language
generation and arbitration of multimodal motor responses. At the high-
est level, Ymir makes no specifications about the content of particular
agent behaviors or interpretive processes and is therefore culture-inde-
pendent.

1

Ymir addresses all the features of dialogue presented in Chapter 5.
(page 65). A summary of these manifests itself as the following list of
requirements, all of which Ymir fulfills:

1.

Co-existence of

reactive

 and

reflective

 behaviors,

2.

incremental interpretation

 co-exists with

real-time response

generation, providing

seamlessness

, and

3.

it handles

multiple data

types

 (spatial, boolean, symbolic,
analogic).

1. Just like a telephone asks no questions about the language spoken on it,
Ymir

is not limited to the conversational rules of any single culture.

Ymir: A Generative Model of Psychosocial Dialogue Skills

91

A Computational Model of Psychosocial Dialogue Skills

Features of three AI approaches have been adopted in Ymir:

Blackboard
systems

 [Adler 1992, Nii 1989, Engelmore & Morgan 1988, Selfridge
1959],

Schema Theory

 [Arbib 1992] and

behavior-based

 systems [Maes
1990a, 1989]. In the broadest sense, Ymir uses multiple knowledge
sources that cooperate to provide a solution to a problemÑin this case
to interpret user actions and generate appropriate responses. Like
Schema Theory, Ymir is highly distributed and contributes therefore to
research in distributed artificial intelligence (DAI) [cf. Bond & Gasser
1988, Huberman 1988, Huhns 1987]. In contrast to the many
approaches proposed various problem domains in the AI literature, the
main novel and distinguishing features of Ymir are:

1.

A distributed, modular approach to perception, decision and
action.

2.

A layered combination of reactive and reflective behaviors.

3.

Dialogue-related interpretation is separated from topic inter-
pretation.

4.

Dialogue management is viewed as having complete process
control (

when

 something happens as opposed to

what

 hap-
pens) of overt and covert actions.

5.

Motor actions are split into two phases; a decision (or inten-
tional) phase and a composition/execution phase.

6.

Intentions to act vary in their specificity: the more specific an
intention is (e.g. blinking) the fewer morphologies (ways to
do it) exist; the less specific it is (e.g. looking confused) the
more options there are in the way it will eventually be real-
ized.

7.

The final morphology of an intention is chosen at run-time.

Following Nii [1989] we can describe a computational system at any of
three levels: The

model

 is the least specific, showing the ideology
behind the approach, the

framework

 is more specific, detailing the
pieces of the system and their interconnections, and the

specification

being the most detailed one, showing how to implement the particular
system. In this chapter we will focus on the model and framework per-
spectives. We will turn to a more in-depth look at the implementation in
the next chapter (page 111). Now letÕs get an overview of YmirÕs main
elements.

7.2 The 6 Main Elements of Ymir

The six main types of elements in Ymir are:

1.

A set of semi-independent processing layers,

G

.

2.

A set of blackboards,

F

.

3.

A set of perceptual modules,

r.

4.

A set of decision modules,

P

.

Communicative Humanoids

92

Chapter 7.

5.

A set of behaviors,

b

, and behavior morphologies,

b

m (spe-
cific motor programs).

6.

A set of knowledge bases,

k

.

Starting with the layers, we will now take a closer look at these six ele-
ments. Then we will go into the Blackboards, followed by a discussion
on virtual sensors, multimodal descriptors and decision modules (start-
ing on page 97), and the behaviors and behavior morphologies.

7.2.1 Layers

There are four layers in Ymir:

1.

Reactive Layer (RL)

.

2.

Process Control Layer (PCL)

.

3.

Content Layer (CL)

.

4.

Action Scheduler (AS)

.

Each of these layers contains particular element types:

Each layer contains processes with similar time-specificity and func-
tionality. The PCL is the main control element, with partial control over
the other three layers. Processes in the RL can exert limited process
control. Processes in the he Reactive and Content Layers perform func-
tional

2

 and content analysis of input. The AS produces specific motor
morphologies, while knowledge bases in the CL interpret input about a
specific domain and produces actions that are applicable in response to
the content of that input. Different kinds of delays and delay constants
exist at each of its four levels. Time stamping and the use of synchro-
nized clocks is a general way to deal with temporal constraints: Using
time stamping, delays are logged and treated like any other data in the
system. We will now take a closer look at each of the layers.

2. See ÒFunctional Analysis: A Precursor to Content Interpretation and (some-
times) Feedback GenerationÓ on page 71.

FIGURE 7-1. The Reactive Layer
contains mainly two types of
processes, {1} perceptual (sphere
and prism), and {2} decision
modules (cube).

G RL() r P,{ }=

G PCL() r P,{ }=

G AS() b bm,{ }=

G CL() k{ }=

Ymir: A Generative Model of Psychosocial Dialogue Skills

93

A Computational Model of Psychosocial Dialogue Skills

Reactive Layer (RL)

The role of processes in the Reactive Layer is to compute timely infor-
mation on user actions and make these available to decision modules in
the same layer. Sensory data from each mode is processed with mod-
ules called

virtual sensors

, and mode-specific data is combined in pro-
cesses called

multimodal descriptors.

Reactive

Decision Modules use
this data to issue actions with a relatively high speed/accuracy trade-off.
I.e. as long as the results are quick, and correct more than 50% of the
timeÑabove chance performance

3

Ñit doesnÕt matter that they are less
than 100% accurate, because

a

 response is more important than it being
correct.

Computation at this lowest level is assumed to be ÒimmediateÓ, i.e.
without delay. This simplification can be made by using computing
mechanisms that are significantly faster than the fastest response needed
in human interaction, ideally a fraction of 100 msec. In spite of actions
being immediate in this layer, every event at the RL level is nonetheless
time stamped for the benefit of computations in other layers.

Process Control Layer (PCL)

The role of processes PCL is to control global aspects of dialogue: to
turn the correct kinds of internal processes on and off, recognize the glo-
bal context of dialogue and manage communicative behavior of the
agent. It deals with issues such as

when

 a question should be answered;
what to do when information is missing, when to greet; etc. It also con-
trols internal actions related to the dialogue such as starting to listen,
making predictions about the knowledge needed in a particular interac-
tion; making predictions about what to expect next; managing multi-
turn information exchange, etc. Modules in the PCL can control (turn
on and off; change thresholds in) the processes in the Reactive Layer, as
well as its own. This feature is essential since many of the lower level
processes donÕt have global enough information to decide when they
should be active and when not.

3. This is not to say, of course, that striving for as high a recognition accuracy
as possible should not be tried.

ACTION: smile
CREATOR: PCL
EL: 600 ms
STAMP: 35243

FIGURE 7-2. Example of a behavior
request message sent from the
Process Control Layer to the Action
Scheduler.

FIGURE 7-3. The Process Control
Layer contains two kinds of
processing modules (in multiples), {1}
perceptual modules (sphere and
prism) and {2} decision modules
(cube).

Communicative Humanoids

94

Chapter 7.

In addition to the perceptual and decision modules, the PCL also has a
few processes specifically related to Òbook keepingÓ. These will be dis-
cussed in Chapter 8.

Action Scheduler (AS)

The AS can be thought of as a kind of ÒcerebellumÓ. Its role is to
receive

 behavior reques

ts (

b

r) from the Reactive, Process Control and
Content Layers, prioritize these and choose a specific morphology for
them (see ÒMorphological and Functional SubstitutabilityÓ on page 76).
There are many ways to realize behavior requests, which can be thought
of as the ÒintentionÓ to perform a specific act: one example is given in
Figure 7-2. A behavior request is thus a decision to do a specific action,
independent of its form. Behavior requests can be specified at various
levels of detail. Specific behavior morphologies (

b

m) are chosen from a
library of alternatives

4

. Increasing generality in the specification of a
behavior, e.g. Òpull left corner of mouth up halfwayÓ vs. ÒsmileÓ, means
more options in its morphology (see page 101).

To chose between

b

m options, the AS uses a trade-off algorithm. To
take an example of how the algorithm works, if the AS receives a
request for the behavior

acknowledge

, it can use dialogue state and the
amount of load on the various degrees of freedom of the agentÕs motor
system to choose a way to express this. The usual method could be to
say ÒyesÓ, but if the user is speaking, perhaps a nod would be more
appropriate; however, if the agentÕs head is moving, it might choose to
give verbal back channel feedback anyway. There are many ways to
realize such a scheduling algorithm; we will see one particular method
in the next chapter.

4. Complex behaviors that span long stretches of time need to be interruptible,
as well as computed incrementally to allow relevant, unexpected events to
be taken into consideration.

FIGURE 7-4. The Action
Scheduler Layer contains {1} a
lexicon of behaviors and behavior
morphologies (cylinder), as well
as {2} scheduling mechanisms for
requests to perform these (not
shown).

Ymir: A Generative Model of Psychosocial Dialogue Skills

95

A Computational Model of Psychosocial Dialogue Skills

Content Layer (CL)

The role of the CL is to host the processes that make sense of the

con-
tent

 of the input and generate acceptable responses based on this. For
example, given the multimodal input ÒDelete [gesture] thoseÓ, the CL
should be able to combine the verbal and gestural actions, and come up
with a correct action in the topic domain (i.e. remove a set of objects).

The Content Layer contains one or more Topic Knowledge Bases
(TKBs), which contain information about how to interpret a personÕs
multimodal acts, how to generate responses to those acts, and how to
communicate its status to other parts of the system, particularly the Pro-
cess Control Layer. The CL also contains a Dialogue Knowledge Base
(DKB), which stores meta-knowledge about all other knowledge bases
in the layer. A meta-knowledge DKB allows the system to select the
most relevant TKB at any point in time.

5

 To take an example, if the
agent knows the two topics of music and computer graphics, and hears
the utterance ÒTurn the blue box sidewaysÓ the DKB will recognize that
this utterance probably refers to the computer graphics topic, and will
notify the TKB containing the knowledge necessary to interpret com-
puter graphics-related utterances, which will in turn interpret the input
and generate some actions that will make the userÕs wish come true.

6

Once a Topic Knowledge Base has generated usable output, it will
notify the DKB, which has the necessary knowledge to know

when

 to
execute this action in the dialogue.

5. Alternatively, we can run a DKB in parallel with any one (or more) TKBs
which is considered relevant at any point in time. Output from the KB that
produces the best interpretation will be selected. This has two consequences:
{1} The KBs have to give a measure of their success and{2} equally good
interpretations from different KBs have to arbitrated. This can be done in
many ways, including asking the speaker a question, and because the conflict
happens at the meta-level, that question would be composed in the DKB.

6. If the DKB is uncertain which KB to pipe the input to, it might pipe it to
more than one TKB and choose the outcome that is rated as a Ògood recogni-
tionÓ by the TKB.

FIGURE 7-5. The Content Layer
contains several knowledge
bases (shown as cloud-like blobs).

Communicative Humanoids

96

Chapter 7.

In Ymir, the DKB is considered a central part of the systemÕs psychoso-
cial skills. In fact, any knowledge that has to do with dialogue, such as
knowledge about participants, their body parts, instruments used in
interaction (mouths, hands, eyes, etc.), greetings, good-byes, etc., right-
fully belongs in the DKB and are considered a topic (albeit a meta-
topic) in and of itself. The argument behind this view is the same as
behind the push to embody the computer: knowledge about interaction
is intrinsic to the interaction and necessary to conduct it correctly.
While history about the taskÑbe it excavation or moon landingsÑis
stored in the relevant TKB, history about the interaction, and references
to the interaction (ÒGo back to when I told you ...Ó), are stored and
treated in the DKB. The big win in this modular approach is that it
allows for the one-time creation of dialogue knowledge (ÒLook over
hereÓ, ÒListen to meÓ), with domain-dependent knowledge being
Òplugged inÓ by the agentÕs designer (and by the system at run-time) in
a modular fashion.

7

Summary of Layers

Placing these four parts of Ymir within Coordination Theory (see
Figure 5-2 on page 69) [Malone & Crowston 1991, Crowston et al.
1988, Malone et al. 1988], the Reactive Layer and the Process Control
Layer are product-oriented hierarchies: they contain a complete set of
heterogeneous processes to produce a productÑthe product being exter-
nal and internal actions. The Content Layer is also a product-oriented
hierarchy: its job is to produce descriptions from the userÕs commands
that can be executed in the agentÕs world. (For example, upon hearing
the words ÒDelete the blue boxÓ, the system should be able to locate the
I.D. of the blue box, find the correct command to remove items, and
apply that command to the I.D. of the requested object.) The Action
Scheduler, however, repetitively carries out the same kind of process,
and is thus what Coordination Theory calls a functionally-oriented hier-
archy.

7.2.2 Blackboards

How do all these processes talk to each other? Psychological research
has shown that in perceptual processing, different information becomes
available at different times: for example, low-frequency visual informa-
tion and motion becomes available sooner than higher-frequency infor-
mation [Card et al. 1983]. A person can select how long to wait before
reacting to a particular stimulus, depending on the current trade-off
between cost of delay and cost of errors. This points to a process where
information that has already been computed is made available to the rest

7. I would like to thank Richard A. Bolt for pointing me to the issue of modu-
larity; see also Walker & Whittaker [1990].

FIGURE 7-6. Blackboards contain
information accessible to a certain
set of modules.

Ymir: A Generative Model of Psychosocial Dialogue Skills

97

A Computational Model of Psychosocial Dialogue Skills

of the system. In A.I. a blackboard is a metaphor for a global informa-
tion exchange [Selfridge 1959]. Any process with access to a black-
board can look for information relevant to its own processing. In Ymir
we use the idea of more than one blackboards, each with limited access.
There are three main blackboards. The first one is for information
exchange primarily between the Reactive Layer and the Process Control
Layer. This blackboard is called the

Functional Sketchboard

(FS). It
stores intermediate and final results of low-level (high-speed) percep-
tual processes such as motion, whether the agent hears something or not,
and first-pass multimodal descriptions.

The second is the

Content Blackboard

 (CB), servicing communication
between the PCL and the Content Layer. This blackboard is the key to
the separation of process control and content analysis in Ymir. Here
results are posted that are less time-critical than those on the Functional
Sketchboard.

The third blackboard in Ymir is the

Motor Feedback Blackboard

(MFB), where the Action Scheduler posts the progress of behaviors cur-
rently morphing and executing. In the MFB the PCL and CL can read
status of formerly initiated behaviors and replace those that are can-
celled or have failed for some reason.

7.2.3 Perceptual Modules

This section explains input processes of an agent, and input data repre-
sentation. There are currently two kinds of perceptual processes in
Ymir,

virtual sensors

 and

multimodal descriptors

. But before describ-
ing these, letÕs look at the philosophy behind the approach.

Background

The organization of low-level perceptual processes in Ymir follows the
so called purposive, qualitative, or animate perception approaches
[Aloimonos 1993] in that it is purpose-directed and ego-centric. It is
based on the general idea that a situation is an important factor in select-
ing the perceptuo-motor skills of an animal, to maximize attentional and
mental faculties for the particular tasks that situation calls for. This is
closely related Agre & ChapmanÕs [1990, 1987]

indexical-functional

representation in their

Pengi

 system, where objects and dependencies
are represented in terms of the effect they have on the agentÕs goals, in
ego-centered terms, e.g. instead of representing a flying bee with the
symbol

BEE-23

 it uses labels like

the-bee-I-am-now-chasing

, defin-
ing the bee in direct relationship to the perceiver [Lyons & Hendriks
1992].

Communicative Humanoids

98

Chapter 7.

At higher levels the systemÕs perception becomes more complex, slower
and more general. Here we can expect the agent to be recognizing
objects, faces, body parts, and relating them to its lexical and relational
knowledge bases, to generate verbal output for instance. These kinds of
processes are not specified in Ymir (this is quite a research topic), but
general ideas about how these could be handled in a dialogue system
will become apparent as we continue.

The perceptual abilities of an agent are assumed to be grounded in
knowledge about the

interaction

, such as knowledge about participants,
body parts, turn taking, etc., by

situational indexing

. Thus, an agent
created in this architecture is not expected to be trying to avoid obsta-
cles, prevent itself from getting killed, etc., while it engages in interac-
tion with humans, and therefore does not require any non-
communication based perception. For instance, upon hearing a voice in
a given (perceived) location, an orienting response toward that voice
could be triggered. The architecture could of course be expanded to
include perceptions of other things than only those relating to communi-
cation. How broad the ego-centered approach can be made is an open
question. Now, letÕs take a look at the two perceptual elements in Ymir,
Virtual Sensors and Multimodal Descriptors.

Virtual Sensors

The simplest processes in YmirÕs perceptual system are the virtual sen-
sors, which process simple features of the dialogue and output Boolean
values. These sensors are considered to lie at least one level above the
energy transducer layer, such as a retina or cochlea, or, in the case of the
Gandalf system (Chapter 9.), the space sensing cubes, eye tracker and
microphone. A virtual sensor is usually associated with a single mode:
an example would be a vocalization sensor that turns on or off depend-
ing on whether the user is making sounds with his or her throat.

The virtual sensors in the Ymir system fall into the following categories:

1.

Prosodic

2.

Speech

3.

Positional

4.

Directional

Prosodic

 sensors track the intonation of the speech, pauses and volume
of vocalization;

speech

 sensors are a general class of processes that look
at the speech content. They could for example be sensitive to certain
words that play a role in dialogue orchestration such as cue phrases;
they would also track the global functional aspects of speech, such as
determining whether an utterance is syntactically correct, whether it
makes sense pragmatically, what the topic is, etc., as much as these can
be gleaned from just looking at the speech (more extensive analysis of

Ymir: A Generative Model of Psychosocial Dialogue Skills

99

A Computational Model of Psychosocial Dialogue Skills

these is done at higher levels, albeit at a slower pace). Examples of each
of these classes will be given in the chapter on Gandalf.

Positional

 sen-
sors track the absolute position of objects (position in real-space) or the
relative position of two or more objects, e.g. displacement of the eye-
brows from a resting position, and

directional

 sensors track the direction
of objects (e.g. gaze, trunk or head). Two fundamentally different kinds
of virtual sensors are postulated:

1.

Static sensors

, which report a current static state to be true or
false, and

2.

dynamic sensors

, which track the change of a certain feature
of a single mode over time and report on the conditions over a
given duration of time.

For example, a static sensor could report whether a person was looking
at the agentÕs face or not. A dynamic sensor could report whether the
person glanced away quickly and then back. The theory behind this is
that short patterns of activity may have significance for the interaction
[cf. Argyle, Lefebvre & Cook 1974].

Multimodal Descriptors

Processing the output provided by the virtual sensors is a net of what I
call

Multimodal Descriptors

. The descriptors aggregate information
from the Virtual Sensors to compute intermediate, multimodal Òfunc-
tional sketchesÓ of the userÕs behavior. An example is a descriptor that
tries to determine whether the user is giving the turn. Another might
combine information from a spatial sensor and a speech sensor to pro-
vide a

{SOUND, LOCATION}

 pair that can be used by the agent for ori-
enting itself toward a person. Two kinds of descriptors are proposed,

1.

static

descriptors

and

2.

dynamic descriptors.

As with Virtual Sensors,

static

 descriptors simply respond to a static sit-
uation, whereas

dynamic

 descriptors detect patterns over time inter-
valsÑas reported by the virtual sensorsÑsuch as a specific combination
of arm and eye movements for a given interval. For example, bringing
up your hand and uttering something (ÒahhhÓ) while the agent is talking
may constitute a wish to interrupt. This could be detected by a static
descriptor sensitive to the conditions of either hand in gesture space and
vocalization present. A head nod and a particular vocalization (ÒahaÓ)
combines into a single Òback channel feedbackÓ report, detected with a
single dynamic descriptor.

Communicative Humanoids

100

Chapter 7.

Summary of Virtual Sensors and
Multimodal Descriptors

We can now summarize the perceptual system. The virtual sensors
receive data from the sensing equipment and do initial computations to
prepare it. Multimodal descriptors monitor the status of the virtual sen-
sors through a blackboard and change states. In the implementation of
Ymir, this is based on first-order logic combinations of these, as well as
the states of other descriptors. Later versions of Ymir might use Fuzzy
Logic [c.f. Kacprzyk 1992] for this purpose, or other methods, provided
they are fast and flexible enough.

7.2.4 Decision Modules

Decision modules look at the state of the agentÕs knowledge, which
includes a representation of the outside world as well as the state of its
own processing, and make decisions about what to do from moment to
moment. These decision can affect both the outward behavior of the
agent or the internal processing inside the agentÕs ÒmindÓ, and thus fall
broadly into two categories:

1.

External Decision Modules

Ñthose that initiate overt actions, and

2.

Internal Decision Modules

Ñthose that only change the inter-
nal state.

Granularity of the modules varies according to their task. Each decision
module contains knowledge about where to look for data (which black-
board), what to do with it and how to communicate its status to other
modules by posting information to the blackboards.

Decision modules in the Reactive Layer search for specific conditions in
the Reactive LayerÕs Functional Sketchboard; the Process Control
LayerÕs decision modules can look for conditions in both the Functional
Sketchboard and the Content Blackboard (see ÒBlackboardsÓ, above).

7.2.5 Representation of Behaviors

We are now ready to look in detail at the fourth and last layer in Ymir,
the Action Scheduler.

Background

Research on errors in human and animal locomotion have supported a
model in which distinct levels of representation are at work for any
motor act [Rosenbaum et al. 1992]. For example, levels activated ear-
lier provide information spanning longer stretches of time, e.g. the glo-
bal act of moving your arm/hand/finger to enter the expression Ò27 + 9
+ 3Ó into a calculator. Levels actuated later provide smaller and smaller
constituents for that behavior, e.g. individual key presses. This model

Ymir: A Generative Model of Psychosocial Dialogue Skills

101

A Computational Model of Psychosocial Dialogue Skills

would indicate that

information

 needed to execute an act like that would
also need to be represented at multiple levels: locating the calculator in
real-space is more coarse than locating its individual buttons. Rosen-
baum et al. [1992] have proposed what they call the Knowledge Model:
Motor control is performed by autonomously functioning modules that
compete for execution, and that these modules carry information about
postures. This model, and similar ones [Rosenbaum et al. 1991, Albus
et al. 1987] are aimed at explaining complex motions like those of the
arm moving the hand to press a button in an elevator, all the way down
to the feedback provided from the muscles.

Behaviors & Behavior Morphologies

The approach taken here is in some ways similar to Rosenbaum et al.Õs
[1992]. The idea of stored postures is used in the Action Scheduler, as
is the idea of hierarchical storage of increasingly smaller units. How-
ever, choosing between alternative actions is done by a monolithic algo-
rithm, not competing individual modules. In Ymir, action is split into
two phases: an action request (or intentional, decision) phase and a com-
position/execution phase. As discussed in the section on the Reactive
and Process Control layers, the first phase is based on a collection of
decision modules that can request specific actions, specified at varying
levels of detail. The second phase happens here, in the AS. This
method for representing behavior leads to a database where functional
and morphological definitions co-exist in the same space, with no dis-
tinct division lines between the two classes. An example of what such a
database could look like is given in the chapter on Gandalf
(Section 9.7.1 on page 153).

Behaviors are indexed at various levels of detail:

smile

,

pull-corners-
of-mouth-up

,

move-motor-x-to-position-y

. Obviously, there
must be hundreds of ways a person could smile, fewer ways in which
one could pull the corners of mouth up, and perhaps only one way to
move a muscle to a particular location. We can make a tree, where par-
ticular morphologies are given as the treeÕs leafs (Figure 7-7). As we
travel up the tree, the flexibility for various implementations of a partic-
ular act, like smile, or show-taking-turn, increases. Of course, given
more options, it takes longer to choose the best one. Decision modules
in the Reactive Layer related to external behavior generally request
highly specific actions; those in the Process Control Layer usually make
a more general specification.

Action requests issued by the RL are generally specified at a lower level
than those in the PCL, since these are under tighter time constraints
(with the effect that the ASÑsee belowÑdoesnÕt have to spend valu-
able time composing a set of motor commands for the action involved,
but simply looks up the default motor schema and sends it to the anima-

Communicative Humanoids

102

Chapter 7.

tion module). Examples of actions issued by the RL are

show-taking-
turn

 and

look-at-person

. Examples of the more extensive actions
included in the PCL are

indicate-response-delay

 and

express-
confusion

. To determine which layer a potential action should belong
to, one can use time-specificity (i.e. those that typically have expectied
lifetimes under 1 second are likely to belong in the RL than the PCL;
see ÒTemporal ConstraintsÓ on page 69), and/or the time the actions
spans (RL if less than 1 second). Another criteria is the kind of percep-
tual data the behavior needs to be executed reliably; those requiring
complex data are less likely to belong to the RL. Guidelines for deter-
mining which layer a particular behavior belongs to are likely to emerge
out of further research on this topic.

Generating Manual Gesture

The dialogue management system, by itself, can support the generation
of four classes of dialogue-related manual gesture [Rim� & Schiaratura
1991], independent of the topic knowledge base(s) used

8

. These are {1}

emblem gestures

 related to the dialogue (e.g. holding up a hand to signal
ÒStop speaking!Ó), {2}

deictic gestures

 (involving objects in the dia-
logue knowledge base), {3}

beats

 and {4}

butterworths

 (see Figure 3-2

8. Since iconic, pantomimic and deictic gestures related to the topic of discus-
sion cannot be generated without reference to knowledge of the topic, and
the knowledge residing in the dialogue system contains no topic knowledge,
these would be generated in the corresponding knowledge base.

Show-Taking-Turn

Look-Away-From-User
Face-Away-From-User

Open-Mouth

H [Diff(User-Pos, 30), t=350]

Pl [Diff(User-Pos, 20), t=30]

Mb [60, t=300]

Pr [Diff(User-Pos, 20), t=30]*

*

FIGURE 7-7. The hypothetical behavior Show-Taking-Turn has two
possible instantiations, Turn-Away-From-User and the parallel pair {Look-
Away-From-User, Open-Mouth}. Each of these point to low-level motor
commands with degrees and time in milliseconds. The function Diff
returns a setting that is guaranteed to not include the userÕs position in the
agentÕs line of sight. Parallel actions are marked with a star.

H = agentÕs head, P = pupil (left and right), t = time in milliseconds, other numbers
represent degrees (and relative position in the case of motor Mb), Mb = bottom mouth
motor (see Figure 8-11 on page 123).

Ymir: A Generative Model of Psychosocial Dialogue Skills

103

A Computational Model of Psychosocial Dialogue Skills

on page 44). These are all requested from the RL and PCL by calling
the appropriate type of gesture with the optional parameters (such as a
3-D vector for deictic gestures) and treated in the same way as other
actions in the Action Scheduler.

Any gesture related to the topic should be generated in the correspond-
ing Topic Knowledge Base.

Spatio-Motor Skills

To allow an agent to move in relation to surrounding objects such as a
person or a task area, the AS needs access to a spatial knowledge base.
Examples of such actions would be

Look-at-User

 and

Turn-to-
Area-[

X

]

9

. I propose that this should be done with access to a common
spatial knowledge base that is fed with information from the sensors

10

(Figure 7-8).

9. This behavior, unlike the other examples, contains a variable. There is noth-
ing in Ymir that excludes such modulesÑin fact, for complex behaviors they
will prove essential.

10.A simplified version of this approach has been implemented in Gandalf
(Chapter 9., page 129).

Spatial &
Lexical

Knowledge
BaseSensation/

Perception

Low-level
Action

Initiation

Action
Scheduler

High-level
Action

Initiation

Look-in-
direction-
of-sound

Look-at-user

FIGURE 7-8. The Action Scheduler has access to a spatial knowledge
base that is kept updated by the sensory and perceptual mechanisms.
Examples of messages sent to the AS from the Reactive and Process
Control layers are shown in italic letters.

Communicative Humanoids

104

Chapter 7.

When do we go Ballistic?

When, in the process from intention to execution, does an action, or part
of an action, become impossible to cancel? This question about where
to go ballistic is an important one. As we established in Chapter 5. the
incrementality and reactive nature of dialogue allows participants to
interrupt each other at a momentÕs notice. In Ymir, once the AS has
sent the commands out, the agentÕs behavior is ballistic, i.e. there is no
way to cancel their effect after this point. This last part of the path
should therefore be kept very short, typically less than a second. For
actions longer than a second, one would expect them to be composedÑ
or at least

executed

 [Kosslyn & Koenig 1992]Ñincrementally so that
they can be cancelled at any time.

Creating Behavior Classes with Cascaded
Decision Modules

The idea behind cascaded decision modules is this: Suppose youÕre
walking along a narrow trail in the woods and youÕve decided to put
your food down somewhere, when suddenly you realize it looks like a
puddle and you donÕt want to get wet. So you cancel your original
motion goal and replace it with a new one. The new goal results in a
motion that moves your foot to a different location along a different
path. The new goal in this example is one decision module of a group of
cascaded decision modules, all aimed at placing your foot in various
ways on the ground. By cascading a number of decision modules, cor-
responding to a number of behavior morphologies, each triggered in the
case of anotherÕs cancellation, inappropriateness or failure, whole
classes of behaviors can be built up.

For example, if the agent performs the action

Show-Taking-Turn

 but
the user continues to speak, the

Show-Taking-Turn

 behavior must
have failed somehow, either in execution or in indicating to the user
what it was intended to showÑor perhaps the user just decided to
ignore it. The outcome in any case is the same: the user simply contin-
ues to speak, as measured by the virtual sensors. But how should the
agent respond? It has already decided to take the turn, and may have
stopped listening, yet has been unsuccessful in showing this to be the
case. And its

Show-Taking-Turn

 module has already fired (and wonÕt
fire again unless it is reset). The solution to this apparent deadlock lies
in designing a second module, called

Show-Take-Turn-2

, that acti-
vates if the two states of user-speaking and

Agent-Has-Turn

 occur
simultaneously for a longer-than-normal period, e.g. 500 ms. The out-
ward behavior resulting from this second decision might be more exag-
gerated than that of the first, including perhaps a manual gesture to try
to show the user that the agent really wants the turn.

FIGURE 7-9. Cascading decision
modules with slightly different
triggering timing (abscissa) and
conditions (mantissa) allows us to
cover classes of behaviors.

Ymir: A Generative Model of Psychosocial Dialogue Skills

105

A Computational Model of Psychosocial Dialogue Skills

Another example of using cascaded behaviors is the situation where you
know have been asked a question, and you have already shown that
youÕre taking the turn, but you havenÕt come up with the answer yet. To
deal with this delay, people engage in various verbal and non-verbal
activities; they look up, say ÒahhhÓ or fill in with more extensive elabo-
rations like ÒI know this...hang on a second.Ó With cascaded behaviors,
delays as these can be taken care of automatically depending on the
duration from the time you took the turn. The decision module/behavior

Produce-Filler

 could produce an initial ÒahhÓ,

Produce-Filler-2

might be designed to take care of an additional delay. Yet other deci-
sion modules could take care of pauses that hadnÕt been filled but
should have beenÑwe can imagine a collection of 10-20 such modules,
each with slightly differing conditions for triggering. This puts the cre-
ation of the behaviors in the hand of the agent designer, but the selection
of each option in the hands of the run-time system.

Using cascaded decision modules (Figure 7-9), whole classes of condi-
tion-action situations can be addressed. How this is done for a particu-
lar agentÑand this applies to all modules in the systemÑ is largely an
empirical task that depends on a number of factors including the poten-
tial users, their diversity, and cultural background.

7.2.6 Knowledge Bases: Content Interpretation
& Response Generation

A knowledge base provides a systemÕs ability to ÒunderstandÓ language,
gesture, facial expressions and gaze. The topic of an interaction could
revolve around car mechanics, architecture, plumbing, or the solar sys-
tem. The knowledge base will provide the ability to key together
actions such as pointing at a wall and the utterance Òremove that wallÓ
so that the multimodal act can be understood and an appropriate reaction
to the command generated.

Ymir contributes to our understanding of interpretation in that it pro-
vides a framework for better specifying the

limitations

 that interpretive
processes have to work underÑregardless of how they are exactly
implemented. The major requirements the TKBs used in a real-time
dialogue system have to fulfill:

1.

Processes have to be

incremental

.

2.

Processes have to be

reportable

.

Incrementality

 means that interpretation happens at a fine enough gran-
ularity to allow meaningful communication between knowledge bases
and the PCL to happen during a userÕs utterance.

Reportability

 refers
to the systemÕs ability to report on its own status and progress. These
principles are the basis for allowing a modular approach to knowledge

Communicative Humanoids

106

Chapter 7.

representation. Other benefits are also expected. If these principles are
adhered to, the systemÕs ongoing topic interpretation of a userÕs multi-
modal act can be constrained by the information posted to the functional
sketchboard. For example, if the Sketchboard has an indication that a
communicative gesture was made during the userÕs turn, gestural analy-
sis of the segment can be started up in the TKB even before the user has
stopped speaking. If the interpretation process encounters problems, an
ordered list of progressively less likely functional roles for the multimo-
dal act in question can be used to provide a next viable candidate. The
Process Control Layer will take care of any delays that such a disruption
may introduce into the interaction.

For each TKB, and the DKB, non-real time blackboards could be used
for more exact functional analysis

11

, using a high accuracy/speed trade-
off, but still working along the same lines as the sensor/descriptor sys-
tem. An important requirement of this design is that the sketches pro-
vided by the fast analysis match more than 50% (= chance) of the
analysis performed at the higher levels, because otherwise any real-time
feedback based on these sketches is not correlated with the higher-level
functioning of the system. To be sure, people often make mistakes in
their functional analysis (e.g. mistaking a deictic nod for an acknowl-
edgment) which they effectively mend in the process of the dialogue.
But such mistakes are disruptive and hence should be avoided in a com-
puter agent. We will come back to this issue in Chapter 9.

If achieving good correlation between low-level analysis and high-level
interpretation proves to be a difficult task, there is at least one reason to
be optimistic about this being a problem: If the user is following GriceÕs
maxim [Grice 1989] about mutual cooperation in dialogue, over time,
she is likely to modify her own behavior to make the two consistent in
the agent. This modification would probably take only a few hoursÑ
certainly less than daysÑof interaction. So, if the agent consistently
displays the same inconsistency between the real-time feedback and
higher-level analysisÑi.e. as long as there exists a morphology of user
behavior that results in the same analysis on both levelsÑwe may
expect such problems to disappear over time.

12

11.The exact implementation of the KBs is not specified in our architecture;
this is one of the issues that should be left to later research.

12.In fact, data in the evaluation experiment of the Gandalf system (Chapter
10.) seemed to support this claim.

Ymir: A Generative Model of Psychosocial Dialogue Skills

107

A Computational Model of Psychosocial Dialogue Skills

7.3 Ymir: Summary of all Elements

Figure 7-10 summarizes the layers in Ymir and provides an overview of
their interconnections. Hollow arrowheads show the flow of informa-
tion; the black arrowhead indicates absolute commands. Notice that
flow between layers is not deterministic; each layer decides what to do
with the data received from elsewhere according to time-constraints and
the type of data. Layers further down the page are generally slower lay-
ers, with the exception of the Action Scheduler, which uses time as a
variable to determine its processing. Not shown is the ability of State
Decision Modules to turn the activity of perceptual modules in the PCL
and RL on and off.

FIGURE 7-10. Overview of the Ymir architecture, showing the four
layers, types of processes in each layer (square, sphere, prism, blobs,
cylinder), communication links (hollow arrows) and motor control
(black arrow), as well as the blackboards used for communication
between the layers (br = behavior requests, RL = Reactive Layer; PCL =
Process Control Layer; CL = Content Layer; AS = Action Scheduler; FS =
Functional Sketchboard; CB = Content Blackboard; MFB = Motor
Feedback Blackboard). Not shown are the direct control links from the
decision modules in the PCL to the Multimodal Descriptors in the RL.
Multimodal information is assumed to be streaming in to each of the RL,
PCL and CL as needed.

br
br

AS

PCL

CL

RL

FS

CB

MFB

Communicative Humanoids

108

Chapter 7.

7.4 A Notation System for Face-to-Face
Dialogue Events

To facilitate the discussion about the model presented above, and the
way it treats dialogue, it would help to have some kind of simplified,
clear way of presenting the complexities of face-to-face events.

We start by defining the following concepts:

A.

Dialogue Condition

 (

C

d

)

B.

Action

 (

A

)

C.

Action Trigger

 (

A

t

)

D.

Expected Lifetime of an Action

 (

A

el

)

E.

Action Execution Time

 (

A

et

)

F.

Dialogue Participant

 (P

d

)

Any dialogue condition (

C

d

) could be a situation appropriate to respond
to. It consists of a collection of necessary states of the dialogue partici-
pantsÕ modes (hands, face, gaze, etc.), dialogue (e.g. who is speaking),
mental state, etc. A

C

d

 of significance to a particular dialogue partici-
pant, P

d

, is indexed in this participant with an Action Trigger (

A

t

). A
response

A

 to a condition

C

d

 gets initiated upon the

A

t

 event, if the con-
dition is detected.

(7.1)

The actionÕs execution time (

A

et

) determines how long after the

A

t

 the
action starts to take effect. The expected lifetime of an action (

A

el

) is
used to determine the likelihood that an action is outdated when it
comes time to execute it (move the ÒmusclesÓ).

Execute

 (

A

)

 IF

A

et

 <

A

el

(7.2)

For example, a ball comes flying in your direction (

EVENT

1

, or

E

1

). You
decide to [catch the ball]-(

AÕ

), but at a critical moment you [see that you
wonÕt be able to]-(

E

2

), and you decide to [give up]- (

E

3

) on the action,
before itÕs been fully executed. In this example,

A

t

 =

E

1

. Action

AÕ

 gets
initiated at

time

[

E

1

]. The

A

et

 of

A

 was too long, and the actionÕs

A

el

allowed you to cancel the action before it was over. In this example,

A

el

 is computed

during

 execution of the action: you compare the
progress of the action (distance between hand and ball) to its goal (ball
in hand); before the goal is reached you decide, based on your predic-
tion, to cancel it. For very fast, reactive responses,

A

el

 has to be pre-
computed, because the perception necessary to assess the progress of
such short actions would take too long. For an intention spanning a long
period,

A

el

 can be computed during execution. We will see an imple-

Detect Cd() AtÛ

Ymir: A Generative Model of Psychosocial Dialogue Skills

109

A Computational Model of Psychosocial Dialogue Skills

mentation of these mechanisms for reactive behaviors in the next chap-
ter.

7.5 Summary

We presented YmirÑa generative model of psychosocial dialogue skill.
The model supports the necessary framework for the creation of a com-
puter controlled character capable of real-time orchestration of seam-
less, multimodal input and output. The model proposes the distinction
between dialogue management and topic expertise; emphasis is on the
former rather than the latter. As a result, the model underspecifies char-
acteristics of topic knowledge but makes instead some specifications for
the interaction protocol between the administrative tasks of multimodal
dialogue on the one hand and topic knowledge on the other.

The model is multi-layered, with each layer providing a specific set of
processes. These processes provide certain computational services,
with the ability to communicate their results to other modules via black-
boards. Actions in the system offer various degrees of ÒreactivenessÓ,
from very reflex-like to highly ÒintelligentÓ. The morphology of actions
is not fixed for any but the lowest level actions: the form of behaviors
can be modelled at various levels of detail, with various combinatorial
options. Execution of actions is prioritized according to where the
ÒintentionÓ to perform them originated, in the Reactive Layer, the Pro-
cess Control Layer, or the Reflective Layer. The model as described
here is not fixed; it is presented with enough flexibility as to be able to
meet various demands on the implementation of its parts. Hopefully,
this will allow it to become a guide to various approaches within the
topic of face-to-face dialogue and real-time interaction. In the next
chapter we will se one example of implementation of Ymir.

Communicative Humanoids

110

Chapter 7.

