

Gandalf:
Humanoid One

9.

Using Ymir as a foundation, a character can be built by specifying per-
ceptual, decision and behavior modules, plus the specific procedures
needed for data and internal computations. In this chapter we will
present the first character designed in Ymir,

Gandalf

. Gandalf (lower
right corner, this page) is a Òstraw-cartoonÓÑit has been given the min-
imal set of modules necessary for face-to-face interaction.

1

 It shows
that Ymir is a sufficient and appropriate platform for developing com-
municative characters. It also points to issues that need to be addressed
further in future research. These will be discussed in the conclusion
chapter, page 185.

9.1 The Gandalf Prototype: Overview

Gandalf is a collection of control rules implemented in Ymir Alpha, in
Lisp (Chapter 8.), plus the necessary hardware and support software for
sensing, acting and embodiment.

9.1.1 Prototype Setup

Gandalf appears to users on its own monitor (Figure 9-1). A model of
the solar system (Figure 9-2) appears on a large screen in front of the
user. Gandalf is an expert in the solar system and can tell users facts
about the planets. It can also travel to the planets, zoom in and out, and
start and stop the planetsÕ moons in their orbits. The speech recognition
used is a speaker-independent, continuous speech recognizer from BBN
called HARK [BBN 1993]. This recognizer is grammar based and has

1. See also Chapter 10.3.2, page 162 about analysis and action schemes for
responding to deictic gestures.

The computer ... can give you the
exact mathematical design, but whatÕs
missing is the eyebrows.

ÑFrank Zappa

Why ÒGandalfÓ?

As told in the Icelandic Sagas
[Sturluson 1300~1325], after the gods
îÝinn, Vili and V� had killed the
giant Ymir (pronounced e-mir), and
used his carcas to make the heaven
and the earth, worms sprung to life
in the newly created soil. The gods
subsequently changed these worms
to dwarfs, 63 of them to be exact.
GandalfÑor GandalfrÑwas one of
these worms-turned-to-dwarf
creatures (predating J.R.R. TolkienÕs
[1937] character of the same name by
about a millenium :-)

Thi d d i h F M k 4 0 2

Communicative Humanoids

130

Chapter 9.

been programmed to recognize utterances like ÒTake me to JupiterÓ and
ÒTell me about SaturnÓ. Intonation analysis is performed by a custom-
built analyzer. Gandalf ÒseesÓ the user via a body-tracking suit that uses
magnetic space-sensing cubes, and an eye tracker that the user wears
[Bers 1995, 1996]. By mapping out GandalfÕs monitor in real-space he
knows his own position in real space. Mapping the big-screen display
allows him to know the real-space position of the planets.

Eight computers are used to run GandalfÕs software:

1.

A Digital Equipment Corporation Alpha 3000/300 workstation
runs most of Ymir: Reactive Layer, Process Control Layer and
Knowledge Base.

2.

A Digital Equipment Corporation 5000/240 workstation runs
the Action Scheduler.

FIGURE 9-1. A user gets ready for interacting with Gandalf.

FIGURE 9-2. Gandalf knows general facts about our solar system. It
commands a graphical model of the planets with logarithmically scaled
distances and moon sizes.

Gandalf: Humanoid One

131

A Computational Model of Psychosocial Dialogue Skills

3.

A PC is used to collect data from a body tracking suit.

4.

A PC is used to collect data from an eye tracker.

5.

A Macintosh Quadra 950, with a Roland CP-40 pitch-to-
MIDI converter is used to track and analyze intonation.

6.

A Silicon Graphics Iris is used for speech recognition.

7.

A Silicon Graphics Indigo2 is used to animate the character.

8.

A Hewlett-Packard Apollo 9000/750 animates a virtual solar
system.

The configuration is presented graphically in Figure 9-3. An Ethernet
connection provides data flow between all computers (a serial line con-

FIGURE 9-3. Gandalf system layout. Grey arrows show display
connections; grey line is Ethernet. Eye tracker is connected to computer
4 via a serial port and the data is fed to computer 3 via another serial
connection; output from the jakcet is connected to computer 3 via serial
connections (dark arrowheads). Black cube (connected to computer 3)
generates the magnetic field for sensing the posture of userÕs upper
body. Microphone signal is split to two computers (6 & 7) via an audio
mixer (connections not shown).

1

2

3

4

5

6

7

8

Legend
1. DEC 5000/240
2. DEC Alpha 3000/300
3. PC (Intel 486)
4. PC (Intel 386)
5. Macintosh Quadra 950
6. SGI Iris
7. SGI Indigo
8. HP Apollo 9000/750

to 4

Communicative Humanoids

132

Chapter 9.

nects computers 3 & 4). Further detail on the hardware and software
can be found in Appendix A2 on page 203.

9.2 Gandalf: Technical Description

Gandalf consists of a collection of virtual sensors, decision modules and
a behavior lexicon. Its knowledge base, whose mechanisms were men-
tioned in the last chapter, is also presented here in full detail, along with
each module and communication primitives. Most of GandalfÕs mod-
ules aimed toward generating appropriate turn taking and maintaining
the flow of the interaction: very little has been done in terms of provid-
ing it with sophisticated perceptual mechanisms or extensive topic
knowledge. Needless to say, Ymir provides the necessary hooks to inte-
grate such mechanisms into the control of the agentÕs behavior. To give
the reader a complete picture of what it takes to design a (minimal)
agent in Ymir, in this chapter we will look at all the modules needed to
get Gandalf working.

9.2.1 Where do GandalfÕs Control Rules Come From?

GandalfÕs modules are designed with the single purpose of supporting
intelligent dialogue behavior on behalf of the agent: enabling it to look
where youÕre pointing

1

, glance at you when youÕre done speaking, turn
its head back to you when itÕs finished doing what you asked it to do,
etc. For the most part, this was done by data-mining the psychological
literature (Chapter 3., page 37). Most of its Decision and Behavior
modules, therefore, trace their origin to one or more papers reviewed in
that chapter. Some fine-tuning and modification of modules was also
performed after user testing (ÒHuman Subjects ExperimentÓ on
page 147).

9.2.2 Virtual Sensors

Gandalf has a total of 16 virtual sensors (Table 9-1), of which 3 are
prosody sensors, 9 are body sensors and 3 are speech sensors. One sen-
sor is specialized for monitoring body data input, and is called vision-
sensor (sensor number 10, Table 9-1). It allows Gandalf to know
whether its vision is working properly. It

POST

s

FALSE

 if any of the
data from the body tracking stops updating normally.

The prosody sensors are added for homogeneity; the features they repre-
sent are computed on a separate machine (see above) and sent over a

1. See Table 10-1 on page 172 for perception and action modules designed for
deictic gestures.

Gandalf: Humanoid One

133

A Computational Model of Psychosocial Dialogue Skills

NAME: facing-work-screen 1
TYPE: body-sensor-fix-ref
DATA-1: nil
DATA-2: work-screen
INDEX-1: get-head-direction
INDEX-2: nil
FUNC: facing?

NAME: looking-at-me 2
TYPE: body-sensor-fix-ref
DATA-1: nil
DATA-2: agent-screen
INDEX-1: get-gaze-direction
INDEX-2: nil
FUNC: u-looking-at-me?

NAME: facing-me 3
TYPE:body-sensor-fix-ref
DATA-1: nil
DATA-2: agent-screen
INDEX-1: get-head-direction
INDEX-2: nil
FUNC: facing?

NAME: r-hand-in-gest-space 4
TYPE: body-sensor-var-ref
DATA-1: nil
DATA-2: nil
INDEX-1: get-r-wrist-position

INDEX-2: get-trunk-direction

FUNC: hand-in-gest-space?

NAME: turned-to-me 5
TYPE: body-sensor-fix-ref
DATA-1: nil
DATA-2: agent-screen
INDEX-1: get-trunk-direction

INDEX-2: nil
FUNC: turned-to?

NAME: l-hand-in-gest-space 6
TYPE: body-sensor-var-ref
DATA-1: nil
DATA-2: nil
INDEX-1: get-l-wrist-position

INDEX-2: get-trunk-direction

FUNC: hand-in-gest-space?

NAME: complete-synt 7
TYPE: speech-sensor
DATA-1: nil
INDEX-1: index-1
FUNC: syntax-complete?

NAME: speaking 8
TYPE: prosody-sensor
DATA-1: nil
INDEX-1: speech-on-idx
FUNC: u-speaking?

NAME: looking-at-l-hand 9
TYPE: body-sensor-var-ref
DATA-1: nil
DATA-2: nil
INDEX-1: get-gaze-direction

INDEX-2: get-l-wrist-position

FUNC: u-looking-at-hand?

NAME: see-user 10
TYPE: vision-sensor
DATA-1: *socket-object1*
DATA-2: nil
INDEX-1: nil
INDEX-2: nil
FUNC: body-socket-monitor

NAME: facing-domain 11
TYPE: body-sensor-fix-ref
DATA-1: nil
DATA-2: work-screen
INDEX-1: get-head-direction
INDEX-2: nil
FUNC: facing?

NAME: looking-at-r-hand 12
TYPE: body-sensor-var-ref
DATA-1: nil
DATA-2: nil
INDEX-1: get-gaze-direction

INDEX-2: get-r-wrist-position

FUNC: u-looking-at-hand?

NAME: complete-gram 13
TYPE: speech-sensor
DATA-1: nil
INDEX-1: index-2
FUNC: grammar-complete?

NAME: complete-pragm 14
TYPE: speech-sensor
DATA-1: nil
INDEX-1: index-3
FUNC: pragmatics-complete?

NAME: intonation-up 15
TYPE: prosody-sensor
DATA-1: nil
INDEX-1: nil
FUNC: inton-direction?

NAME: intonation-down 16
TYPE: prosody-sensor
DATA-1: nil
INDEX-1: nil
FUNC: inton-direction?

TABLE 9-1. Virtual sensors used in the Gandalf prototype. The Òagent-
screenÓ variable holds the plane of the GandalfÕs monitor (substituting
for the plane of its face).

Communicative Humanoids

134

Chapter 9.

socket. These sensors provide a simple way to receive the intonation
data and

POST

 it to the Sketchboard.

Sensor

compl-pragm

 is currently always trueÑthere is no checking for
pragmatic correctness yet in Gandalf. In addition to sensors 13 and 14,
a Multimodal Descriptor called

complete-utter

POST

TRUE

 immedi-
ately after the user stops speaking, unless either 13 or 14 are false.

9.2.3 Multimodal Descriptors

Gandalf has a total of 10 Multimodal Descriptors (Table 9-3, page 136).
Module 7,

is-active

, is an example of a descriptor that takes the state
of another Descriptor as well as that of a Sensor into account. Module
9,

complete-utter

, works in a very primitive way: if a template in
either the Dialogue Knowledge Base or the Topic Knowledge Base has
been filled completely, it

POST

s as

TRUE

. The full implementation of
this scheme is currently precluded by the inability of the speech recogni-
tion to recognize words incrementally. In an ideal system, this module
would allow a character to respond with appropriate facial expression or
body languageÑeven verballyÑbefore actually generating a complete
response to the content of an utterance.

9.2.4 Decision Modules

Gandalf has a total of 35 Decision Modules. Of these, 16 belong to the
Reactive Layer and 19 to the Process Control Layer. The three types of
Decision Modules are: State Decision Modules, Internal Decision Mod-
ules and External Decision Modules.

State Decision Modules

Six Decision Modules are used to keep states (Figure 9-7 on page 144).
These are based on a generalized finite state machine approach, where
one or more State Decision Modules are associated with a single state.
Each state module has an associated list of perceptual modules (Multi-
modal Descriptors) that should be active while that module is true.
When two or more modules are activated, all the perceptual modules
associated with the old state are turned off, and the perceptual modules
in the newly entered state modules are turned on (meaning they are
called on every update in the main loop). This way various internal pro-
cesses can be turned on and off depending on the particular conditions
of a collection of state modules, which in turn are only active during
their associated state.

Gandalf: Humanoid One

135

A Computational Model of Psychosocial Dialogue Skills

NAME: giving-turn 1
POS-CONDS: (looking-at-me 0.3)(facing-me 0.3)
NEG-CONDS: (gesturing 0.3)(speaking 0.4)
THRESH: 1.0

NAME: taking-turn 2
POS-CONDS: (gesturing 1.0)(speaking 1.0)
NEG-CONDS: (looking-at-me 0.5)
THRESH: 1.0

NAME: wanting-turn 3
POS-CONDS: (speaking 0.5)(hand-in-gest-space 0.6)
NEG-CONDS: nil
THRESH: 1.0

NAME: want-back-ch-feedb 4
POS-CONDS: (looking-at-me 0.5)(speaking 0.5)
NEG-CONDS: nil
THRESH: 1.0

NAME: looking-at-hands 5
POS-CONDS: (u-looking-at-r-hand 0.5)(u-looking-at-l-hand 0.5)
NEG-CONDS: nil
THRESH: 1.0

NAME: hand-in-gest-space 6
POS-CONDS: (l-hand-in-gest-space 0.5)(r-hand-in-gest-space 0.5)
NEG-CONDS: nil
THRESH: 1.0

NAME: is-active 7
POS-CONDS: (hand-in-gest-space 1.0)(speaking 1.0)
NEG-CONDS: nil
THRESH: 1.0

NAME: gesturing 8
POS-CONDS: (hand-in-gest-space 0.5)(speaking 0.6)
NEG-CONDS: nil
THRESH: 1.0

NAME: complete-utter 9
POS-CONDS: (complete-pragm 0.5)(complete-syntax 0.5)
NEG-CONDS: nil
THRESH: 1.0

NAME: addressing-me 10
POS-CONDS: (turned-to-me 1.0)(facing-me 1.0)(facing-domain 1.0)
NEG-CONDS: nil
THRESH: 1.0

TABLE 9-2. Multimodal Descriptors used in the Gandalf prototype. In
descriptor 10, any one of its conditions will trigger an addr-me message
to get POSTed to the Functional Scketchboard.

Communicative Humanoids

136

Chapter 9.

NAME: take-turn-1 1
TYPE: RL-State-Dec-Mod
MSGS: take-turn
NEXT-STATES: (give-turn dial-on)
POS-CONDS: (addressing-me wanting-turn)
NEG-CONDS: (KB-Exe-Act Spch-Data-Avail)
ACTIVE-DESCR: (taking-turn wanting-turn gesturing addressing-
me saying-goodbye concluding hand-in-gest-space is-active looking-
at-hands)

NAME: take-turn-2 2
TYPE: RL-State-Dec-Mod
MSGS: take-turn
NEXT-STATES: (give-turn dial-on)
POS-CONDS: (addressing-me wanting-turn)
NEG-CONDS: (KB-Exe-Act)
ACTIVE-DESCR: (taking-turn wanting-turn gesturing addressing-
me saying-goodbye concluding hand-in-gest-space is-active looking-
at-hands)

NAME: give-turn-1 3
TYPE: RL-State-Dec-Mod
MSGS: give-turn
NEXT-STATES: (take-turn dial-on)
POS-CONDS: ((FS-time-since Ôspeaking 50) giving-turn)
NEG-CONDS: (taking-turn)
ACTIVE-DESCR: (taking-turn giving-turn gesturing addressing-me
saying-goodbye concluding is-active looking-at-hands want-back-
ch-feedb complete-utter)

NAME: dial-on-1 4
TYPE: PCL-State-Dec-Mod
MSGS: dial-on
NEXT-STATES: (dial-off)
POS-CONDS: (saying-goodbye)
NEG-CONDS: (dial-off)
ACTIVE-DESCR: (saying-goodbye)

NAME: dial-off-1 5
TYPE: PCL-State-Dec-Mod
MSGS: dial-off
NEXT-STATES: (give-turn dial-on)
POS-CONDS: (saying-my-name)
NEG-CONDS: (dial-off)
ACTIVE-DESCR: (addressing-me gesturing)

NAME: dial-off-2 6
TYPE: PCL-State-Dec-Mod
MSGS: dial-off
NEXT-STATES: (give-turn dial-on)
POS-CONDS: (addressing-me)
NEG-CONDS: (dial-off)
ACTIVE-DESCR: (addressing-me)

TABLE 9-3. State Decision Modules used in the Gandalf prototype.
These are part of the Reactive Layer. The ACTIVE-DESCR slot contains
the names of all Multimodal Descriptors that should be operative during
the state. They are the descriptors that are essential to determine
transitions to the next state, as specified in the NEXT-STATES slot. When
a state node gets posted its MSGS value is put on the Functional
Sketchboard.

Gandalf: Humanoid One 137

A Computational Model of Psychosocial Dialogue Skills

Internal Decision Modules

Five internal Decision Modules are used to deal with speech data
(Table 9-4), four of which are PCL modules, one a reactive. Currently
the only internal processes have to do with ÒcleaningÓÑsuch as deleting
old speech from the parse buffer, etc.

External Decision Modules

Of the twenty-six external Decision Modules in Gandalf, fourteen
belong to the PCL and have to do with content delivery and process
control (Table 9-8 & Table 9-7 on page 140); twelve are dedicated to
reactive behaviors (Table 9-6, page 139 & Table 9-8, page 141). Two
of the PCL decision modules decide execution of content-related mate-
rial (Table 9-8). These POST available actsÑthat is, acts that were suc-
cessfully generated in response to a userÕs multimodal inputÑto the
BEHAVIOR-REQUESTS queue (see ÒBehavior RequestsÓ on page 118).
Two different periodic decision modules were made in the Reactive
Layer to produce eye blinks (Table 9-8, page 141); one is active during
interaction, the other before and after the dialogue.

9.3 Spatial Data Handling

The body of a user is represented geometrically. This is not a require-
ment of Ymir, and is obviously not the only way to represent a userÕs
body in a multimodal system. Certain computations, however, are sim-
ple to deal with in geometric terms, such as gaze direction and deictic

NAME: exe-DKB-act 1
TYPE: PCL-Dec-Mod
EL: 2000
MSGS: (post-DKB-act)
POS-CONDS: (dial-on TKB-act-avail take-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: (CL-act-avail)
NEG-RESTR-CONDS: nil

NAME: exe-TKB-act 2
TYPE: PCL-Dec-Mod
EL: 2000
MSGS: (post-TKB-act)
POS-CONDS: (dial-on TKB-act-avail take-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: (CL-act-avail)
NEG-RESTR-CONDS: nil

TABLE 9-5. External Decision Modules in the Process Control Layer
involved in deciding the timing of content delivery.

Ò...gesture is not simply a way to dis-
play meaning but an activity with dis-
tinctive temporal, spatial, and social
properties that participants not only
recognize but actively use in the orga-
nization of their interaction.Ó

ÑCharles Goodwin (1986, p. 47)

(continued on page 141)

Communicative Humanoids

138 Chapter 9.

NAME: parse-speech 1
TYPE: PCL-Int-Dec-Mod
EL: 200
MSGS: (parse-speech)
POS-CONDS: (giving-turn spch-data-avail)
NEG-CONDS: nil
POS-RESTR-CONDS: (give-turn)
NEG-RESTR-CONDS: nil

NAME: rem-spch-addr-to-others 2
TYPE: PCL-Int-Dec-Mod
EL: 200
MSGS: (remove-speech-to-others)
POS-CONDS: ((FS-time-since Ôspeaking 50))
NEG-CONDS: (addressing-me KB-exe-act)
POS-RESTR-CONDS: (speaking)
NEG-RESTR-CONDS: nil

NAME: remove-partial-parses 3
TYPE: PCL-Int-Dec-Mod
EL: 100
MSGS: (rem-part-parses)
POS-CONDS: (KB-succ-parse KB-exe-act)
NEG-CONDS: (addressing-me)
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (KB-exe-act)

NAME: report-no-words 4
TYPE: PCL-Int-Dec-Mod
EL: 50
MSGS: (compose-DKB-trouble-report Ôno-words)
POS-CONDS: ((CB-time-since Ôrcv-spch 350) addressing-me
giving-turn)
NEG-CONDS: (CL-act-avail KB-succ-parse KB-exe-act speaking)
POS-RESTR-CONDS: (give-turn)
NEG-RESTR-CONDS: nil

NAME: clear-spch-buffers 5
TYPE: RL-Int-Dec-Mod
EL: 10000
MSGS: (clear-spch-buffs)
POS-CONDS: (give-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: (take-turn)
NEG-RESTR-CONDS: nil

TABLE 9-4. Internal Decision Modules used in GandalfÕs Reactive and
Process Control layers. The function CB-time-since returns true if the
time since the passed message (e.g. rcv-spch) was posted to the Content
Blackboard exceeds the passed time (e.g. 350 centiseconds). EL =
Expected Lifetime; FS = Functional Sketchboard.

Gandalf: Humanoid One 139

A Computational Model of Psychosocial Dialogue Skills

NAME: show-take-turn 1
TYPE: RL-Ext-Dec-Mod
EL: 500
MSGS: show-take-turn
POS-CONDS: (take-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (take-turn)

NAME: show-give-turn-1 2
TYPE: RL-Ext-Dec-Mod
EL: 200
MSGS: show-give-turn
POS-CONDS: (give-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (give-turn)

NAME: show-addr-me-1 3
TYPE: RL-Ext-Dec-Mod
EL: 20
MSGS: smile
POS-CONDS: (TKB-exe-speech-act)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (turned-to-me)

NAME: show-give-turn-2 4
TYPE: RL-Ext-Dec-Mod
EL: 200
MSGS: show-give-turn
POS-CONDS: (give-turn)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (give-turn)

NAME: show-addr-me-2 5
TYPE: RL-Ext-Dec-Mod
EL: 20
MSGS: eyebrow-greet
POS-CONDS: (saying-my-name turned-to-me
facing-me)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (turned-to-me)

NAME: show-listen 6
TYPE: RL-Ext-Dec-Mod
EL: 20
MSGS: brows-in-pensive-shape
POS-CONDS: (saying-my-name turned-to-me
facing-me)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (turned-to-me)

NAME: initialize 7
TYPE: RL-Ext-Dec-Mod
EL: 20
MSGS: face-neutral
POS-CONDS: (dial-off)
NEG-CONDS: nil
POS-RESTR-CONDS: (dial-on)
NEG-RESTR-CONDS: nil

NAME: show-not-addr-me 8
TYPE: RL-Spatial-Dec-Mod
EL: 100
MSGS: (turn-to Ôwork-space)
POS-CONDS: (dial-off)
NEG-CONDS: (turned-to-me)
POS-RESTR-CONDS: (taking-turn)
NEG-RESTR-CONDS: nil

NAME: look-puzzled 9
TYPE: RL-Ext-Dec-Mod
EL: 100
MSGS: look-puzzled
POS-CONDS: (turned-to-me facing-me (FS-time-
since Ôfacing-me 400))
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (turned-to-me)

NAME: look-aloof 10
TYPE: RL-Ext-Dec-Mod
EL: 100
MSGS: look-aloof
POS-CONDS: (turned-to-me facing-me (FS-time-
since Ôfacing-me 800) dial-off)
NEG-CONDS: (speaking KB-parsing)
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (turned-to-me)

TABLE 9-6. External Decision Modules used in GandalfÕs Reactive Layer. Expected
Lifetime (EL) values are in centiseconds. These modules control GandalfÕs reactive
behavior.

Communicative Humanoids

140 Chapter 9.

NAME: hesitate-1 1
TYPE: PCL-Ext-Dec-Mod
EL: 100
MSGS: hesitate
POS-CONDS: (dial-on take-turn spch-data-avail
(FS-time-since Ôspeaking 70))
NEG-CONDS: (CL-act-avail speaking)
POS-RESTR-CONDS: (give-turn)
NEG-RESTR-CONDS: nil

NAME: show-done-exe-1 2
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Look-At Ôuser)
POS-CONDS: nil
NEG-CONDS: (TKB-exe-world-act)
POS-RESTR-CONDS: (TKB-exe-world-act)
NEG-RESTR-CONDS: nil

NAME: turn-to-user 3
TYPE: PCL-Ext-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôuser)
POS-CONDS: (TKB-exe-speech-act)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (TKB-exe-speech-act)

NAME: show-done-exe-2 4
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôuser)
POS-CONDS: nil
NEG-CONDS: (TKB-exe-world-act)
POS-RESTR-CONDS: (TKB-exe-world-act)
NEG-RESTR-CONDS: nil

NAME: show-content-delivery 5
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Look-At Ôuser)
POS-CONDS: (DKB-exe-act looking-at-me)
NEG-CONDS: nil
POS-RESTR-CONDS: (take-turn)
NEG-RESTR-CONDS: nil

NAME: show-know-addressing 6
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôuser)
POS-CONDS: (TKB-exe-world-act looking-at-me
facing-me speaking)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (TKB-exe-world-act)

NAME: pay-attention-to-act 7
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôwork-space)
POS-CONDS: (TKB-exe-world-act)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (TKB-exe-world-act)

NAME: show-idle 8
TYPE: PCL-Ext-Dec-Mod
EL: 2000
MSGS: restless
POS-CONDS: nil
NEG-CONDS: (facing-me)
POS-RESTR-CONDS: (facing-me)
NEG-RESTR-CONDS: nil

NAME: show-listening-1 9
TYPE: PCL-Ext-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôuser)
POS-CONDS: (speaking addressing-me)
NEG-CONDS: nil
POS-RESTR-CONDS: (take-turn)
NEG-RESTR-CONDS: nil

NAME: look-at-domain 10
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Turn-To Ôwork-space)
POS-CONDS: (facing-domain take-turn)
NEG-CONDS: (speaking)
POS-RESTR-CONDS: (taking-turn)
NEG-RESTR-CONDS: nil

NAME: look-relaxed 11
TYPE: PCL-Ext-Dec-Mod
EL: 2000
MSGS: face-neutral
POS-CONDS: (TKB-exe-world-act)
NEG-CONDS: nil
POS-RESTR-CONDS: nil
NEG-RESTR-CONDS: (TKB-exe-world-act)

NAME: show-listening-2 12
TYPE: PCL-Ext-Spatial-Dec-Mod
EL: 2000
MSGS: (Look-At Ôuser)
POS-CONDS: (speaking addressing-me)
NEG-CONDS: nil
POS-RESTR-CONDS: (take-turn)
NEG-RESTR-CONDS: nil

TABLE 9-7. External Decision Modules used in GandalfÕs Process Control Layer.
Expected Lifetime (EL) values are in centiseconds.

Gandalf: Humanoid One 141

A Computational Model of Psychosocial Dialogue Skills

gestures. All spatial features in the system are computed from data sup-
plied by a body model server [Bers 1996, 1995a] which provides a geo-
metric model of a personÕs upper body. We will now look at the
representation of geometric elements derived from this model.

9.3.1 Spaces & Positional Elements

Space is divided into volumes, planes and points. The hope is that one
can get away with this simplification without sacrificing too much of the
agentÕs perceptuo-motor skills. Three spatial features are of crucial
importance to conversants in multimodal dialogue:

1. Work volume
2. Gesture volumes
3. Face planes

These are important because they mark the boundary (albeit in a some-
what fuzzy manner) that events, objects or information can be located
in. But knowing the size and shape of these is not enough; one needs to
know the positions of these volumes and planes, and, in particular,
objects within these. To point your eyes at any particular location in
space, you need to be able to define that point relative to yourself.
Coarse body movements can be generated on the basis of coarse knowl-
edgeÑe.g. the boundaries of a volume. This can help you to point your
head in the general direction (e.g. if you know someone is standing to
your left, you turn your head to the left to get your eyes pointing in the
right direction.) But to fixate on an object, its position needs to be
defined more precisely. Accurate positional information allows one to
apply the necessary force on the muscles of oneÕs eyes to move them
into the particular configuration that points them at the spot. In conver-
sation, these positional data are essential to the information exchange:

TABLE 9-8. Periodic Decision Modules used in the Gandalf prototype.
These belong to the Reactive Layer.

NAME: blink 1
TYPE: RL-Per-Dec-Mod
EL: 1000
MSGS: blink
PERIOD: 300
POS-CONDS: (dial-on)
NEG-CONDS: nil

NAME: blink-slowly 2
TYPE: RL-Per-Dec-Mod
EL: 1000
MSGS: blink-slowly
PERIOD: 300
POS-CONDS: (dial-off)
NEG-CONDS: nil

(continued from page 137)

Communicative Humanoids

142 Chapter 9.

1. Position of work volume
2. Position of gesture volumes
3. Position of face planes
4. Position of hands (or hand volumes)

Volumes are mapped out as shown in Figure 9-4. Work space and faces
are simply three-dimensional planesÑa circular one for the face and a
square one for the work space display (not shown). Position is given by
the planesÕ centers.

The gesture spaceÕs primary role is to be an indicator of intentional ges-
turing, which mainly happens in the space right in front of the speakerÕs
body [Rim� & Schiaratura 1991]. Self-adjusters [Ekman & Friesen
1969], which seldom have a communicative function, are automatically
excluded by lifting the gesture space approximately 10 cm from the
body of the user (plane B in Figure 9-4) because these happen close to
the body. McNeillÕs research [1992] has indicated that the type of ges-
ture and its place of articulation may be correlated. If this turns out to
be the case, a finer division of gesture space would be useful for deter-
mining the function of manual gestures.

The userÕs hands are surrounded by a 20 cm diameter sphere, in order to
give their position a larger margin, making it into a volume. This is
especially useful when computing whether the user is looking at his or
her hands. The following method is used for checking if a hand is inside
gesture volume:

where h is a hand, is gesture space (S1 in Figure 9-4), defines the
center of hand space (S2 in Figure 9-4), defines the center of ges-
ture space, is the radius of gesture space, is the center of plane
B, and ¥ is dot product (refer to Figure 9-4).

9.3.2 Directional Elements

When is a person ÒfacingÓ someone or something? When is a person
ÒturnedÓ in a given direction? These are questions that need to be
answered by any multimodal agent, because their answers are required
for successful participation in a face-to-face conversation. There are
undoubtedly numerous ways to answer it. Here, as before, we use geo-
metric definitions. The directional features extracted in Gandalf are:

1. Direction of gaze.
2. Direction of head.
3. Direction of trunk.

FIGURE 9-4. Geometric definitions
of gesture space (S1), face space (A)
and hand space (S2), along with
normals showing direction of head
(a) and trunk (b).

inside Sg h(,)
0if C

Sh
C

Sg
R

Sg
>Ð() or C

sh
C

B
Ð b·()acos 90°>()

1otherwiseè ø
æ ö

= {9.1}

Sg CSh
CSg

RSg CB

FIGURE 9-5. Directional elements
of the userÕs upper body are treated
as cones (gaze not shown) whose
overlap on objects in the
environment (such as the agentÕs
face and the workspace screen)
constitutes ÒfacingÓ the objects in
question.

Gandalf: Humanoid One 143

A Computational Model of Psychosocial Dialogue Skills

Absolute direction is computed after the position and relative orienta-
tion of relevant body parts is known. Figure 9-4 shows the two normals
used for head and trunk (gaze direction not shown). The head, gaze and
trunk normals are further modified by making them cones (Figure 9-6)
so that their interception with other spaces, such as the agentÕs face
space, is broader: interception happens if the inside of the cone overlaps
the area or point in question. The angle of the cones is graded such that
gaze has the narrowest (a 20° cone), then the head (35°), and lastly the
trunk (40°).

The user is facing point p if point p falls within the boundary of head
cone. More generally, to find if plane A is facing a point p in space, the
following method is used:

where defines the center of plane A, is plane AÕs normal and
is the angular threshold of plane AÕs cone (Figure 9-6).

9.4 Prosody

Methods have been suggested for automatic analysis of prosody [Wang
& Hirschberg 1992], but very few have tried to do analysis in real-time.
I use a real-time intonation analyzer that I designed, that detects the fol-
lowing boolean, time-stamped events:

1. Speech on/off.
2. Intonation going up.
3. Intonation going down.

Notice that although detecting a feature like Òspeech on/offÓ may seem
trivial, this is only true if we use a dedicated microphone which is
unlikely to pick up anything besides the dialogue participantÕs speech.
Using a signal processing approach with artificial ears, this may be a
significantly more difficult task.

The intonation analysis is performed using a windowing technique,
where a window is 300 ms. Each new window starts where the last one
ended. The slope of the intonational contour is tracked in each window
and checked against a threshold. If over the threshold and different
from last window, a time stamped status report is given about intona-
tional direction.

To analyze direction, a time-dependent algorithm is used whose output
depends on the prior output, one window back in time. The robustness

facing A p T A, ,()
1if p C

A
Ð() n

A
·() T

A
<acos

0otherwiseè ø
ç ÷
æ ö

= {9.2}

CA nA T A

FIGURE 9-6. Geometry defining
the ÒfacingÓ function (see Equation
9.2). Center of Face Plane A is
defined by vector a, d is plane AÕs
normal. Center of plane B is defined
by vector b. q defines plane AÕs
cone. By comparing the angle
betwen vectors d and c to a
threshold, one can determine
whether the person on the right is
ÒfacingÓ plane B, which couldfor
example represent the agentÕs face.

Reference
Coordinate
System

Communicative Humanoids

144 Chapter 9.

of intonation analysis is relatively high, considering that this is a real-
time system. (We estimate that in normal interaction, about every tenth
utterance is impossible to analyze. This reliability is high enough for an
interactive systemÑkeep in mind that the agent can always ask the user
a question when the data doesnÕt make ÒsenseÓ.) Other modes of course
help correct for occasional failures in the analysis process.

By running this intonation system on a dedicated machine, real-time
response can be assumed. To give the reader a feel for the performance
of the algorithm, several examples are given (Figures 9-7, 9-8 & 9-9).

9.4.1 Future Additions

Future work includes using temporal multimodal descriptors to extract
information regarding the intonation pattern over a full utterance, for
determining whether an utterance could be a filler (relatively short and
flat pitch pattern), question (final rise) or command (final fall) [Pierre-

FIGURE 9-7. Example of intonation for the utterance ÒTake me to
JupiterÓ plotted to a logrithmic frequency scale. On the right we see the
result of the real-time intonation analysis. Segmentation of pitch
direction is marked with vertical bars, giving timing (in msec) and
direction of the audio stream. Slanting lines from the grey dots on the
graph to the markers (e.g. ÒDOWN / 730Ó) indicate time delay. Where
no slant is seen, the analysis took less than 10 ms to compute. The last
ÒDOWNÓ marked may have taken about 10-15 ms.

FIGURE 9-9. Results of analysis of
the question ÒWhat planet is that?Ó.

Gandalf: Humanoid One 145

A Computational Model of Psychosocial Dialogue Skills

humbert & Hirschberg 1990]. More extensive analysis would of course
be preferable, including volume of speech and absolute high/low point
recognition [Pierrehumbert & Hirschberg 1990] instead of relative.
With such data one could more easily find pitch accents that could be
synchronized with the words provided by the speech recognizer, and
thus distinguish between the theme and rheme of an utterance [Clark &

(defun compute-direction (datapoints)
(let* ((beginning (first-half datapoints))

(ending (last-half datapoints))
(pitch-a (compute-average-pitch beginning))
(pitch-b (compute-average-pitch ending)))
(slope 0)
(snap-anlge 0) ;degrees
(up-thresh 20) ;degrees
(down-tresh -20) ;degrees
(duration 200)) ;ms

(setf slope (compute-angle pitch-a pitch-b duration)))
(cond ((eq *last-direction* ÔUP)

 (setf snap-angle (expt slope 1.5)))
((eq *last-direction* ÔDOWN)

 (setf snap-angle (expt slope 2.5)))
(t (setf snap-angle (expt slope 0.8)))))

(cond ((> snap-angle up-thresh)
(setf *last-direction* ÔUP))

((< snap-angle down-thresh)
(setf *last-direction* ÔDOWN))

(t (setf *last-direction* ÔFLAT)))))

ALGORITHM 9-9. This function sets the global variable *last-
direction* to the current direction. If *last-direction* is either UP
or DOWN, it is trasmitted, along with frequency and a time-
stamp, to Ymir.

FIGURE 9-8. Another example of pitch contour for the utterance ÒTake
me to JupiterÓ. On the right is the result of the real-time analysis of the
direction of intonation.

Communicative Humanoids

146 Chapter 9.

Brennan 1990, Prevost 1996]. This is a more difficult problem, but one
that should be solvable in the near future. We are testing a method that
adds absolute pitch (Hz) to the UP/DOWN markers and are hoping that
this representation of the intonational contour will make it relatively
straight forward to find pitch accents.

One problem with absolute scales is that pitch range varies between
individuals and even highs and lows may vary highly between utterance
for the same individual. A third source of difficulty is obtaining accu-
racy in the pitchtracking itself. These issues will have to be addressed
in future work.

9.5 Topic & Dialogue Knowledge Bases

9.5.1 Speech Recognition

As mentioned in the beginning of this chapter, the current prototype
uses a beta version of the HARK system from BBN [1993]. Time
stamping is a necessity in any real-time system where different pieces of
the same puzzle are analyzed separately, to piece them back together
again. HARK provides time stamps (using additional in-house devel-
oped post-processing) for each word. Incremental interpretation is cru-
cial for not disrupting the natural flow of multimodal behavior. Ideally
the speech recognition would be continuous, although in reality it
doesnÕt happen until a significant pause (250 msec1) is found in the
audio stream.

As discussed in the section on interpretive knowledge, and as supported
by user testing (page 155), more robust results would be achieved by
using multiple speech recognizers: one that spots keywords, one that
spots transitional cues (e.g. cue phrases [Grosz & Sidner 1986, Cahn
1992]), one that has grammar and vocabulary for a particular topic and
one that recognizes fillers. Transitional cues would be used to weight
various parts of the topic grammar (or turn them on or off) according to
what the system thought the current topic is. Ymir is very well suited
for this kind of ÒdistributedÓ speech recognition scheme: We are cur-
rently designing Internal Decision Modules for this task, interfacing
with the built-in features of HARK.

1. This number is user-definable.

Gandalf: Humanoid One 147

A Computational Model of Psychosocial Dialogue Skills

9.5.2 Natural Language Parsing & Interpretation

The natural language parser/multimodal output generator used in Gan-
dalf is based on a continuous speech recognition model (in spite of the
current speech recognition being a Òbatch processingÓ recognizer), i.e. if
fed with one word at a time, it will try to fit the words together even
before all of them have arrived. A selected sample of utterances it rec-
ognizes are shown in Figure 9-10. It uses semantic templates to parse
the utterances. This works quite well for a small domain, and can be
extended to handle multimodal interpretation. The parser is indifferent
to word order (i.e. it makes no distinction between ÒThat planetÑtell
me about itÓ and ÒTell me about that planetÓ). While it may not be the
most sophisticated way to parse natural language, there is little reason at
the current state of technology to apply complex grammar rules when
parsing in a real-time, face-to-face multimodal system, since word order
and actions in such an interaction are much more loosely connected by
grammar than for example words written on a page.

Outline of Parsing Process

For each word received, the parser tries to fit it into a semantic template.
If a template has already been activated that can accommodate the word,
it puts it there, otherwise it finds all templates that could possibly fit the
word and marks them as active. A template gets a score depending how
many of its slots have been filled. Whenever this score is higher than
the templateÕs pre-set threshold, the knowledge base tries to produce a
response based on the content in the template. If it does, it posts this
fact to the Content Blackboard (see section 8.3.2, page 98). If it
doesnÕt, time passes and no message is posted to the Content Black-
board. This condition is monitored by decision modules in the PCL,
which will then initiate a Òproblem reportÓ generated by the Dialogue
Knowledge Base. The DKB will look at the messages posted by the
TKB and generate an appropriate response, e.g. ÒIÕm sorry, I didnÕt get
thatÓ. For partially filled templates, the DKB could generate more intel-
ligent responses such as ÒWhich planet did you want to go to?Ó or
ÒPlease repeat the name of the planetÓ. The response itself is kept in a
list in the knowledge base, and executed when Decision Modules in the
PCL decide to.

When the agent takes the turn, a module in the PCL fetches the response
and sends it to the {1} virtual world if it is an action (TKB-world-act) or
to the {2} Action Scheduler if it is a speech act (TKB-speech-act or
DKB-speech-act). If the TKB-world-act contains complimentary facial
expressions, speech or manual gesture, the action is split to each desti-
nation.

FIGURE 9-10. A sample of the
utterances Gandalf recognizes. X
stands for the name of any planet in
the solar system, and the sun.
Brackets show options.

Show me X
Take me to X
Tell me about X
What else?
Tell me more
Is that [deictic gesture] X?
What planet is that [deictic gest]?
Zoom [in | out]
Tilt it this way [wrist gesture].
Stop [the] animation
Start [the] animation
Tell me about the moon[s]
Hello [Gandalf]
Goodbye [Gandalf]
Gandalf?

Communicative Humanoids

148 Chapter 9.

9.5.3 Multimodal Parsing & Interpretation

The above scheme was intended to be extended to multimodal parsing.
Ongoing work involves extending it by adding multimodal meta-templates
with slots for each mode. A deictic meta-template could for example con-
tain slots for sentences involving use of deictic phrases (ÒThat oneÓ, Ò...these
twoÓ) and a slot for deictic gestures. Extensive rules about how to fill the
templateÕs slots can make this scheme quite flexible. While for example
SparrellÕs VECIG system [Sparrell 1993] was completely driven by speech,
my approach combines top-down with bottom-up processing in each mode,
as well as a across modes: The idea is that maximum information be gleaned
from a bottom-up approach (e.g. morphology, combinations of mode-depen-
dent information) and that this will guide top-down hypotheses regarding the
content of the multimodal acts. An intonation pattern typical for questions
can for example activate a speech-parsing template for questions; a gesture
that looks very much like an iconic gesture could activate a template for spa-
tial information. Likewise, a speech template could be marked for probabil-
ity of co-verbal gesture, thus initiating gesture analysis, even if the bottom-
up approach fails. This would of course not be useful unless the speech rec-
ognition is incremental.

A nice feature of this approach is that a template activated by events in one
mode can indicate what kinds of multimodal actions could be expected.
Another big advantage is that interpretation is not solely driven by speech
content: over the course of a multimodal action, any mode can contribute to
the hypothesis-building about its content and meaning. Information posted
to the Functional Sketchboard will obviously play a large part in this exten-
sion.

9.5.4 Topic: The Solar System

The systemÕs knowledge is based on a lexico-spatial database of planets.
Each planet, represented as a CLOS object, is defined as a point in the virtual
world, and is accessed through its unique name. Four functions provide the
Gandalf with the ability to generate responses to action-related queries, {1}
Go-To, {2} Zoom {3} Freeze-Anim, and {4} Tilt. The first takes a planet
object as an argument, the second takes a direction as an argument (zoom
ÒinÓ or ÒoutÓ). Freeze-Anim takes a boolean state and stops or starts the
clock of the world animation engine. Tilt takes a direction, given with a
wrist gesture. A number of utterances lead to the same use of these func-
tions, for example ÒShow me JupiterÓ and ÒLetÕs go to JupiterÓ both result in
the Go-To function being called with the ÒJupiterÓ object.

Gandalf: Humanoid One 149

A Computational Model of Psychosocial Dialogue Skills

9.6 Action Scheduler

9.6.1 Behaviors

GandalfÕs Behavior Lexicon contains 83 behaviors, specified at various
levels of detail. Below is a full listing of the specification of the lexicon.
Notice that only a subset of this lexicon is used so far by the decision
modules. A number of these will have to wait for future extensions of
Gandalf.

9.6.2 Motor System

GandalfÕs motor system, the ToonFace Animator (Appendix A1), runs
on a Silicon Graphics Indigo2. Currently the loop time for a complete
redraw of the face and hand is 150 ms.

9.6.3 Behavior Lexicon

At the end of the chapter (page 153) is the list used to generate CLOS
behavior objects for Gandalf, alias the Behavior Lexicon, by calling the
function Make-Behaviors with the list *behavior-lexicon*. The
list, albeit minimal, is sufficient for rudimentary dialogue skills.

Behaviors come into two main groups: {1} Morphological and {2}
Functional. Morphological behaviors are named after the way they
look, for example, the behavior brows-in-u-shape specifies a shape
for the brows to take. Nothing is said about what circumstances such a
behavior should or could be used in, nor what possible meanings such a
behavior could carry. On the other hand, the behavior show-taking-
turn specifies a dialogue function. There are many ways for showing
that you are going to say something, one being opening the mouth
slightly, another is glancing away briefly [Kleinke 1986, Goodwin
1981, Duncan 1972]. Within these classes, various sub-classes of facial
and manual gesture have been implemented.

9.7 Examples of System Performance

Now that we have shown how a complete character is built in Ymir,
letÕs look at some run-time data from this prototype to get a better idea
of how it performs. All modules shown in these graphs can be found in
the tables in this chapter.

Figure 9-11 shows the internal events of Gandalf in its interaction with
the actor Alan Alda during a visit from the television series ÒScientific

Communicative Humanoids

150 Chapter 9.

1

2

3

4

5
6

7

8

9

10

11

FIGURE 9-11. Graph showing internal states of Gandalf during
interaction over a 16 second interval (each vertical line marks a second).
When the person starts speaking Gandalf gives turn [1], turns to the user
and shows that he is giving turn [2]. When the person falls silent
Gandalf takes the turn [3], and shows that it is doing so [4]. At about the
same time something is recieved from the speech recognizer [5] and
shortly thereafter they are reported as available words [6]. These are
then parsed and reported as successfull parse [8] (meanwhile Gandalf
hesitates because he has taken the turn but has nothing to say as of yet
[7]). When a response is available [9], Gandalf delivers this [10] and this
event is posted internally [11]. (The highly rythmic gaze pattern
observed at the top of the graph indicates a bad eye calibration.) Notice
that modules 1 through 34 all relate to the userÕs behavior.

Gandalf: Humanoid One 151

A Computational Model of Psychosocial Dialogue Skills

American FrontiersÓ. Several features of the system are displayed in this
example, as explained in the Figure text. The request made was ÒTell me
more about MarsÓ.

Figure 9-13 shows yet another example of internal events during interaction
with a user. This example spans 23 seconds, during which time the user
makes three different requests, ÒTake me to the SunÓ, ÒTake me to JupiterÓ
and ÒWhat planet is thatÓ. Notice that although everything seems to have
worked correctly internally in the first request, Gandalf does not execute the
action (there is no line drawn for TKB-EXE-ACT after the request). This is
because the Sun was already on the screen at the time of the request, and
instead of executing the action, the DKB produces the utterance ÒThis is
Sun, dudeÓ.

Figure 10-11 on page 170 and Figure 10-13 on page 171 show another
example of GandalfÕs internal events when interacting with a human.

FIGURE 9-12. Interaction example in Figure 9-11 plotted at a high
resolution. Each vertical line marks a second.

Communicative Humanoids

152 Chapter 9.

FIGURE 9-13. Example of internal events during an interaction betwen a user
and Gandalf. Words spoken by the user are shown in lines 46 through 58
(beginning of line marks the time the word was uttered; end of line maks the time
when Gandalf received the word.) See text for more details.

Gandalf: Humanoid One 153

A Computational Model of Psychosocial Dialogue Skills

9.7.1 Behavior Lexicon Listing
(setf *behavior-lexicon*
 ;GENERAL LAYOUT: (<list-of-acts> (<first-act>(<first-act-element>)(<second-act-element>))
 ; (<second-act (<...>))
 ;)
 ;ACT TEMPLATE: (name class (((act-name-of-option-1 delay exec-time)(act-name delay exec-time) etc*)
 ; (etc*)))
 ;MOTORS: (motor-name class delay exec-time pos/data)

 '(
 ; MORPHOLOGICAL DEFINITIONS1

 ;Features
 ;neutral
(face-neutral act (((mouth-neutral 100 400)

 (eyes-neutral 0 300)
 (brows-neutral 0 500))))

 (brows-neutral act (((left-brow-neutral 0 400)(right-brow-neutral 0 400))))
(left-brow-neutral mot-lev (((Bll 0 400 30)

 (Blc 0 400 30) ;Brow, left, central
 (Blm 0 400 30)))) ;Brow, left, medial

(right-brow-neutral mot-lev (((Brm 0 400 30)
 (Brc 0 400 30)
 (Brl 0 400 30))))

(eyes-neutral act (((upper-lids-neutral 0 100)(lower-lids-neutral 0 100))))
(upper-lids-neutral mot-lev (((Eru 0 100 75)(Elu 0 100 80))))
(upper-lids-open-wide mot-lev (((Eru 0 100 89)(Elu 0 100 94))))
(lids-neutral act (((upper-lids-neutral 0 300)(lower-lids-neutral 0 200))))
(mouth-neutral mot-lev (((Mb 0 200 15) ;Mouth, bottom

 (Mlv 0 200 60) ;Mouth, left, vertical
 (Mlh 0 200 40)

 (Mrv 0 200 60)
 (Mrh 0 200 40))))

(mouth-in-n-shape mot-lev (((Mb 0 200 15)(Mlv 0 40)(Mrv 0 40)(Mlh 0 50)(Mrh 0 50))))
(head-at-zero-zero mot-lev (((Hh 0 800 0)(Hv 0 150 0))))
(head-diag-up-left mot-lev (((Hh 0 1000 20)(Hv 0 1000 20)))) ;for debugging
(gaze-at-zero-zero mot-lev (((Plv 0 50 0)(Plh 0 50 0)(Prv 0 50 0)(Prh 0 50 0))))

;actions
(raise-brows mot-lev (((Bll 0 400 90)(Blc 0 300 100)(Blm 0 400 90)

 (Brl 0 400 90)(Brc 0 300 100)(Brm 0 400 90))))
(lower-brows mot-lev (((Bll 0 400 5)(Blc 0 400 5)(Blm 0 400 5)

 (Brl 0 400 5)(Brc 0 400 5)(Brm 0 400 5))))
(brows-in-v-shape mot-lev (((Bll 0 400 90)(Blc 0 300 40)(Blm 0 400 10)

 (Brl 0 400 90)(Brc 0 300 40)(Brm 0 400 10))))
 (brows-in-roof-shape mot-lev (((Bll 0 400 10)(Blc 0 300 50)(Blm 0 400 90)

 (Brl 0 400 10)(Brc 0 300 50)(Brm 0 400 70))))
(brows-in-n-shape mot-lev (((Bll 0 400 50)(Blc 0 300 90)(Blm 0 400 50)

 (Brl 0 400 50)(Brc 0 300 90)(Brm 0 400 50))))
(brows-in-pensive-shape mot-lev (((Bll 0 400 95)(Blc 0 300 40)(Blm 0 400 40)

 (Brl 0 400 50)(Brc 0 300 10)(Brm 0 400 5))))
(squint mot-lev (((Elu 0 300 60)(Eru 0 300 60)(Ell 0 300 20)(Erl 0 300 20))))
(half-closed-eyes mot-lev (((Elu 0 500 50)(Eru 0 500 60))))
(lower-lids-neutral mot-lev (((Erl 0 300 30)(Ell 0 300 50))))
(lower-lids-up mot-lev (((Ell 0 300 0)(Erl 0 400 0))))
(pull-l-mouth-corner mot-lev (((Mlh 0 500 90))))
(quickly-glance-sideways-and-back act (((gaze-right 0 100)(gaze-at-zero-zero 100 100))))

;emblems
(shake-head act (((turn-head-left 0 50)

 (turn-head-right 50 100)
 (turn-head-left 100 100)
 (head-at-zero-zero 150 50))))

(nod mot-lev (((Hv 0 105 -15)(Hv 105 100 0))))

1. Morphological behaviors are behaviors that are named after the way they look.
Contrast with behaviors that are named after what they doÑi.e. functional defi-
nitions.

Communicative Humanoids

154 Chapter 9.

(wink mot-lev (((Elu 0 100 0)(Elu 300 100 90))))
(say-ahh mot-lev (((Sp 0 250 "[_<,110>aa<550,100>]"))))
(gaze-up mot-lev (((Plv 0 100 30)(Plh 0 100 40)(Prv 0 100 30)(Prh 0 100 40))))
(gaze-away mot-lev (((Plv 0 100 20)(Plh 0 100 -30)(Prv 0 100 20)(Prh 0 100 -30))))
(gaze-right mot-lev (((Plv 0 100 20)(Plh 0 100 40)(Prv 0 100 20)(Prh 0 100 40))))

;emotional emblems
(smile mot-lev (((Mlh 0 400 99)(Mrh 0 400 99)(Mlv 0 200 99)(Mrv 0 200 99))))
(smile-a-little mot-lev (((Mlh 0 400 99)(Mrh 0 400 99)(Mlv 0 200 88)(Mrv 0 200 88))))
(grin-broadly mot-lev (((Mrh 0 1000 80)(Mrv 0 500 60)(Mlh 0 1000 80)(Mlv 0 500 60))))
(grin-a-little mot-lev (((Mrh 0 1000 75)(Mrv 0 500 55)(Mlh 0 200 40)(Mlv 0 200 50))))

 ;self adjustors
(blink act (((close-eyes 0 50)(open-eyes 50 50))))
(blink-slowly act (((close-eyes 0 300)(open-eyes 300 200))))

 ; FUNCTIONAL DEFINITIONS
 ;Back channel feedback / turn control
(say-aha mot-lev (((Sp 0 250 "[_<,110>aahxaa<250,130>]"))))
(look-pensive act (((gaze-away 0 100)(pull-l-mouth-corner 300 500))))
(look-aloof act (((gaze-away 0 50)(turn-head-left 200 1000)(raise-brows 800 800))))
(look-puzzled act (((squint 200 200)(brows-in-roof-shape 0 400))))
(look-drowsy act (((half-closed-eyes 0 800)(lower-lids-neutral 0 400))))
(show-give-turn act (((face-neutral 0 200)(gaze-at-zero-zero 0 100)

 (head-at-zero-zero 0 600)(raise-brows 0 200))))
 (show-take-turn act (((open-mouth-wide 0 100)

 (quickly-glance-sideways-and-back 0 300)(blink-slowly 300 400)) ;option 1
 ((eyebrow-greet 0 500)(quickly-glance-sideways-and-back 0 200)))) ;option 2

(hesitate act (((say-ahh 0 400)) ;option 1
 ((gaze-up 0 200)) ;option 2
 ((look-pensive 0 600)))) ;option 3

; Notice that show-give-turn is controlled from the DKB, but should be composed completely here.
; Below action for illustrative purposes only - 2/19/96
;(show-give-turn act (((look-at user))))

(show-listening act (((blink-slowly 0 500))))
(back-ch-feedb-normal act (((say-aha 0 100)) ;option 1

 ((nod 0 200)))) ;option 2

;other
(happy act (((raise-brows 0 400)(brows-in-n-shape 400 200)(lower-lids-up 0 300)

 (open-eyes-wide 0 300)(smile 0 200))))
(greet act (((eyebrow-greet 0 1500))))
(eyebrow-greet act (((raise-brows 0 200)(upper-lids-open-wide 0 200)

 (brows-neutral 900 200)(eyes-neutral 1000 300))))
;acknowledge
(ack-normal act (((say-ok-normal 0 250))))
(say-ok-normal mot-lev (((Sp 0 250 "[_<,120>ow<,130>kehiy<250,95>]")))) ;speech - sent to DecTalk
(say-ok-bored mot-lev (((Sp 0 250 "[ow<,130>k<100,100>ehiy]")))) ;speech - sent to DecTalk
(say-all-right-normal mot-lev (((Sp 0 250 "[<,120>ow<,130>lraet<250,95>]"))))

;other
(close-eyes mot-lev (((Eru 0 300 10)(Elu 0 300 10))))
(open-eyes mot-lev (((Eru 0 300 75)(Elu 0 300 80))))
(open-mouth-wide mot-lev (((Mb 0 400 60))))
(close-mouth-tight mot-lev (((Mb 0 300 15))))
(open-eyes-wide mot-lev (((Elu 0 100 99)(Eru 0 100 95)(Ell 0 100 95)(Erl 0 100 95))))

 ; WILDCARD SPEECH
 ;Star is replaced by a value from the TKB [topic knowledge base] or the DKB [dialogue knowledge
base]
(deliver-speech mot-lev (((Sp 0 250 *))))

 ; SPATIAL BEHAVIORS
 ;gaze ;Star is replaced by a value from the spatial knowledge base
(gaze-at-user spatial-mot-lev (((Plh 0 250 *)(Plv 0 250 *)(Prh 0 250 *)(Prv 0 250 *))))
(look-at spatial-mot-lev (((Plh 0 250 *)(Plv 0 250 *)(Prh 0 250 *)(Prv 0 250 *))))
(turn-to spatial-mot-lev (((Hh 0 1000 *)(Hv 0 800 *))))

Gandalf: Humanoid One 155

A Computational Model of Psychosocial Dialogue Skills

 ;head (mostly for debugging)
 (turn-head-toward spatial-mot-lev (((Hh 0 900 *)(Hv 0 900 *))))
(turn-head-left mot-lev (((Hh 0 150 -20))))
 (turn-head-right mot-lev (((Hh 0 150 20))))
(turn-head-up mot-lev (((Hv 0 300 20))))
(turn-head-down mot-lev (((Hv 0 300 -20))))
(head-at-zero-horiz mot-lev (((Hh 0 500 0))))
(head-at-zero-vert mot-lev (((Hv 0 500 0))))
(turn-head-90-left mot-lev (((Hh 0 150 -90))))
(turn-head-90-right mot-lev (((Hh 0 150 90))))
(turn-head-45-right mot-lev (((Hh 0 500 45))))
(turn-head-45-left mot-lev (((Hh 0 500 -45))))

 ; MANUAL GESTURE
 ;morphological defs
 (gest-rest mot-lev (((Gr 0 1000 0))))
(hand-raise-palm-fwd mot-lev (((Gw 0 600 0))))
(drum-with-fingers mot-lev (((Gd 0 600 0))))
(point-to-big-screen mot-lev (((Gp 0 1000 0))))

 ;functional defs
(gest-slow-beat mot-lev (((Gb 0 1500 0))))
 (gest-fast-beat mot-lev (((Gb 0 600 0))))
(manual-hold-it-signal act (((hand-raise-palm-fwd 0 900))))
(gest-greet act (((hand-raise-palm-fwd 0 600)) ;option 1 - fast

 ((hand-raise-palm-fwd 0 1000)))) ;option 2 - slower
(restless act (((drum-with-fingers 0 400))))
)) ;End all

Communicative Humanoids

156 Chapter 9.

