

Character Animation A
PPENDIX

A1
This appendix describes ToonFace, the system used for animating Gan-
dalfÕs face and hand. It employs a simple scheme for generating effec-
tive facial animation (Figure A1-1). It differs from prior efforts for
character animation primarily in its simplicity and its way of represent-
ing facial features. The next section discusses the background for this
work, as well as its motivation and goals. Section A1.2 describes the
particulars of the drawing and animation routines. Section A1.3 gives a
comparison between ToonFace and the Facial Action Coding Scheme
(FACS, Ekman & Friesen 1978). Lastly, current applications and future
enhancements are described in section A1.4. A quick user guide to the
Editor and Animator are found in Th�risson [1996].

FIGURE A1-1. Examples of faces and expressions generated in
ToonFace.

Communicative Humanoids

204

Appendix A1.

FIGURE A1-2. In ToonFace, seven
objects comprise the animated parts
of the face: Two eye brows, eyes and
pupils, and one mouth. Control
points (shown as dots) can be
positioned anywhere within the
face, by selecting and moving them
with the mouse.
A1.1 Background, Motivation, Goals

While computer graphics work concerned with faces has to date focused
extensively on visual appearance, interactivity and effectiveness for
information transmission via the face has not been of primary concern.
As the modes of speech, gesture and gaze become a routine part of the
computer interface [Th�risson 1995, Koons et al. 1993, Bolt & Herranz
1992, Bolt 1980, Th�risson et al. 1992, Britton 1991, Neal & Shapiro
1991, Tyler et al. 1991] the demand increases for effective facial dis-
plays on the computerÕs side that can facilitate such multi-modal inter-
action.

Making facial computer animation look convincing has proven to be a
difficult task. A common limitation of physically-modeled faces [Essa
1995, Essa et al. 1994, Waters 1990, Waite 1989] and computer-manip-
ulated images of real faces [NASA Tech Briefs 1995, Takeuchi &
Nagao 1993] is that their expressions is often strange looking or vague.
An ideal solution to this would be to exaggerate facial expression, but
within a physical modeling framework this may look unconvincing or
awkward. An alternative is what might be called a ÒcaricatureÓ
approach [Th�risson, 1994, 1994a, 1993a, Britton 1991, Laurel 1990]
where details in the face are minimized and the important features there-
fore exaggerated (see Hamm [1967] for an excellent discussion on car-
tooning the head and face). In this fashion, Brennan [1985] created a
system that could automatically generate caricature line-drawings of
real people from examples that had been entered by hand. Librande
[1992] describes a system called Xspace that can generate hundreds of
artistically acceptable two-dimensional drawings from a small example
base. Simplified faces seem like a very attractive alternative to physical
modeling for animating interface agents, both in terms of computational
cost and expressive power.

Most current systems for facial animation are very complex, include
between 70 and 80 control parameters [Essa 1995, Essa et al. 1994, Ter-
zopoulos & Waters 1993, Waters & Terzopoulos 1991, Waters 1987]
require powerful computers and seldom run in real-time. There is a
clear need for a simple, yet versatile method of animation that allows for
interactive control. ToonFace is an attempt to create such an animation
package. The primary goal of ToonFace is to create facial expressions
in real time in response to a human interacting with it. ToonFace meets
this requirement by being simple: mostly two-dimensional graphics
with five kinds of polygons (three of which are user-definable) and four
kinds of polygon manipulations. It employs very simple linear interpo-
lation methods for achieving the animationÑa clear win under time-
constraints. By reducing the degrees of freedom in the movements of
the face to a managable number (21 df), it is easier to control of the face
than in most other approaches. A secondary goal of the system is that it

A Computational Model of Psychosocial Dialogue Skills

Brl Brc Brm Blm Blc Bll

Eru Elu

Erl Ell

Pr Pl

MlMr

Mb

FIGURE A1-3. Codes used for the
animated control points (seealso
Figure 8-11 on page 123).

FIGURE A1-4. Eye brows have
three control points, each with one
degree of freedom in the vertical.

Eu

El
L

R

FIGURE A1-6. Each eye has four
control points, but only two of those
move. Upper (Eu) and lower (El)
control points have one degree of
freedom each in the vertical.
meet mininal criteria for graphical quality and look. The scheme
employed allows people to use their own artistic abilities to create the
look that they need for their system.

A1.2 ToonFace Architecture

ToonFace consist of two parts, an Editor and an animation engine or
Animator. The Editor allows a user to construct a face within a point-
and-click environment. The Editor runs on an Apple Macintoshª com-
puter in Macintosh Common Lisp (MCL) [Macintosh Common Lisp
Reference 1990, Steele 1990]. The Animator is a C/C++ program run-
ning on an SGI using OpenGL [Neider et al. 1993] routines for real-time
rendering. We will now look at how a face is represented in ToonFace
and the drawing and animation routines.

A1.2.1 Facial Coding Scheme

A face is divided into seven main features: Two eye brows, two eyes,
two pupils and a mouth. The eye brows have three control points each,
the eyes and mouth four and pupils one each (Figure 2).

Control points that can be animated are given the codes shown in
Figure 8-11 on page 123. These points were selected to maximize the
expressive/complexity tradeoff. In the case of points that can move in
two dimensions, each dimension is denoted as either ÒhÓ for horizontal
or ÒvÓ for vertical. The following is a complete list of all one-dimen-
sional motors that can be manipulated in a face [control point number in
brackets]:

BRL = BROW/RIGHT/LATERAL [3];
BRC = BROW/RIGHT/CENTRAL [2];
BRM = BROW/RIGHT/MEDIAL [1]
BLL = BROW/LEFT/LATERAL [6];
BLC = BROW/LEFT/CENTRAL [5]; BLM = BROW/LEFT/MEDIAL [4]
ERU = EYE/RIGHT/UPPER [7]; ERL = EYE/RIGHT/LOWER [9]
ELU = EYE/LEFT/UPPER [8]; ELL = EYE/LEFT/LOWER [10]

Mr
Mb

Ml
U U

Mr

Ml

Ml

Mb Mb

U

Mr

FIGURE A1-5. The mouth has four control points, three of which
actually move. The ones on the sides (Ml & Mr) have two degrees of
freedom, the bottom control point (Mb) has one.
Character Animation 205

Communicative Humanoids

206

Appendix A1.

MAX

MIN

MAX

MIN

MAX

MAX

MAX

MAX

FIGURE A1-7. Limits of control
point movement and direction of
their dimensions.

FIGURE A1-8. Free polygons are
used for objects that donÕt have to
move relative to others, like hats,
hair, nose and ears.
PLH = PUPIL/RIGHT/HORIZONTAL [15];
PLV = PUPIL/LEFT/VERT [15]
PRH = PUPIL/RIGHT/HORIZ [16-H];
PRV = PUPIL/RIGHT/VERT [16-V]
MLH = MOUTH/LEFT/HORIZONTAL [14-H];
MLV = MOUTH/LEFT/VERTICAL [14-V]
MRH = MOUTH/RIGHT/HORIZONTAL [13-H];
MRV = MOUTH/RIGHT/VERTICAL [13-V]
MB = MOUTH/BOTTOM [12]
HH = HEAD/HORIZONTAL [17-H]; HV = HEAD/VERTICAL [17-V]

Horizontal motion is coded as 0, vertical as 1. Each of the motors can
move a control point between a minimum and a maximum position (for
a given dimension). Thus, max and min values mark the limits of
movement for each motor. For the eyes and head, these are given in
degrees, (0,0) being straight out of the screen; upper left quadrant being
(pos, pos), lower left quadrant being (pos, neg). Figure A1-1 shows
these limits as they appear graphically in the Editor. A line extends the
full range of a control pointÕs path. The limits can be changed by click-
ing on and dragging the ends of these lines.

A1.2.2 Drawing Scheme: Polygons

As mentioned before, drawing is done by filled, two-dimensional poly-
gons. There are three kinds of user-manipulable polygons which all can
have an arbitrary number of vertices. A new polygon is created by
selecting the desired type from a menu, then selecting the feature or
control point to attach it to (unless it is a free polygon). A polygon is
moved by dragging it; its vertices are changed by dragging them to the
desired locations. A new polygon always has eight vertices, which can
be deleted or added to as desired.

Free Polygons

This is the simplest kind of polygon in the system. Free polygons are
simply drawn in place and cannot be animated. They are used for con-
structing features that do not need to move relative to other features,
including hair, ears, decorations, scars, etc. An example is given in
Figure A1-8.

Feature-attached Polygons

These polygons are associated with a whole feature. An example is a
polygon representing an eye brow (Figure A1-9). These polygons are
animated in relation to the whole feature: if one point in the feature
moves, all the points on that polygon are recalculated and redrawn: as a
result, the polygon changes shape.

A Computational Model of Psychosocial Dialogue Skills

Point-attached Polygons

A point-attached polygon only changes form/position when a single
control pointÑthe point to which it is attachedÑchanges position. The
user defines two states for the polygons, one showing how it should
look when its control point is at its max position, the other correspond-
ing to its min value (Figure A1-9). When the control point is moved
during animation, a linear interpolation is performed between the poly-
gonÕs two states.

P
Blc

FIGURE A1-9. As the central
control point on the left eye brow
(Blc) is moved down, the vertices
of its attached polygon (P) are
recalculated according to how the
angle of the lines between the
control points changes. The left
side shows the control points of
the eye brow with connecting
lines, the right side shows the
polygons when filled.

FIGURE A1-10. Polygons attached to a single control point have two
defined states (shown in the upper right with lines connecting common
vertices). As the control point moves (in this case the bottom mouth
point), the vertices of the polygon are interpolated between the two pre-
defined states.
Character Animation 207

Communicative Humanoids

208

Appendix A1.

Drawing Order

For purposes of making features overlap correctly, three kinds of spe-
cial-case polygons are used. Hole polygons, pupils and the face poly-
gon. Hole polygons are the insides of the eyes and mouth. When the
face is drawn, the hole polygons are drawn first, then the pupils, then the
face polygonÑexcept for the regions defined by the hole polygonsÑ
then the free polygons, then point-attached polygons, and lastly the fea-
ture-attached polygons:

STEP
 1.DRAW (HOLE POLYGONS)
 2.DRAW (PUPIL POLYGONS)
 3.DRAW (FACE POLYGON) Ñ (AREAS DEFINED BY HOLE POLYGONS)

 4.DRAW (FREE POLYGONS)
 5.DRAW (POINT-ATTACHED POLYGONS)
 6.DRAW (FEATURE-ATTACHED POLYGONS)

A1.2.3 Interpolation Algorithms

Figure 12. Example of polygon point interpolation (see text).

The control points of a faceÕs feature are connected by lines, as shown
in figures 4, 5, 6 and 10. These lines are used to determine how the fea-
ture-attached polygonÕs vertices move when any single control point on
the feature is moved. A feature like the left eyebrow has three control
points (Bll, Blc, Blm) which all move in the vertical dimension. In Fig-
ure 12 h0 and h1 are the horizontal positions of Blm and Blc; the verti-
cal would be {v0, v1}. From these the slope of L1 is determined:

SL = (V1 - V0) / (H1 - H0) (A1.1)

The y-intercept of line L1 is given by:

IYL = V0 - (SL * H0) (A1.2)

The following method is then used to calculate the position {x,y} of a
vertice v on a feature-attacghed polygon P

P = {V1, V2, V3, ... }

V = {X , Y}

X = H0 + (VRL * (H1 - H0)) (A1.3)

Y = (X * SL) + IYL + D (A1.4)

where vrl is the relative horizontal position of point v betweeen h0 and
h1 (along line L1) and d is the distance of point v from L1. This is
exemplified in Figure 10: When the control point Blc is moved down,
vertices on polygon P move to keep a constant distance to the lines
between the control points, resulting in a new shape for the eyebrow.)

A Computational Model of Psychosocial Dialogue Skills

The feature lines are not used for point-attached polygons. These sim-
ply have two states, one for the control pointÕs max position, and
another for its min position (Figure 11). The following linear interpola-
tion method is used to calculate a point-attached polygonÕs vertice (v)
value {x,y}:

V = {MIN-X , MIN-Y, MAX-X, MAX-Y}

X = VMIN-X + (PCTRL * (VMAX-X - VMIN-X)) (A1.5)

Y = VMIN-Y + (PCTRL * (VMAX-Y - VMIN-Y)) (A1.6)

where PCTRL is the position of the associated control point along its
min-max dimension (a float between 0.0 and 1.0).

A1.2.4 Animation Scheduling Algorithms

The Animator part of ToonFace uses a multi-threaded scheduling algo-
rithm to simulate parallel execution of motors. The main loop has a
constant, loop-time, which determines the number of animation frames
per second. The value for this constant should be equal to the maximum
time the main loop could ever take to execute one loop. In the current
implementation this constant is set to 100 ms, giving a fixed rate of 10
animation frames per second. When a command to move multiple
motors is received, the total time this action is supposed to take is
divided into loop-time slices. Since all motors are independent from
each other, separate slices are made for each motor. So for a close-left-
eye command (i.e. control point Elu) of a 500 ms duration, 5 slices
would be made for the left eye, each slice to be executed on each main-
loop. If the eye is fully open when the command is initially recieved,
the eye will be 20% closer to being fully closed on each loop, and fully
closed when the last slice has been executed. If a command for closing
both eyes in 500 ms were to be given, a total of 10 slices would initially
be produced and each time through main loop one slice for the left eye-
lid and one slice for the right eyelid would be executed, bringing both
eyes to a close in 500 ms. If all pending slices have been executed
before the 100 ms loop-time constant has been reached, the program
waits the remaining time, thus guaranteeing a constant loop time.

Here is a rough outline of the main loop in pseudo-code:

LOOP FOREVER
START-TIME = READ-CLOCK
COMMANDS-RECEIVED = READ SOCKET INPUT
IF COMMANDS-RECEIVED
FOR EACH MOTOR IN COMMANDS-RECEIVED
MAKE-SLICES
FOR EACH MOTOR
EXECUTE-ONE-SLICE
PAUSE (LOOP-TIME Ñ (READ-CLOCK Ñ START-TIME))
Character Animation 209

Communicative Humanoids

210

Appendix A1.

The faster the rendering, the lower the loop-time constant can be set,
resulting in smoother animation. The value for this constant is most
easily chosen by experimentation, since execution time of depends on
various factors, such as number of slices in each loop, amount of com-
mands received per second, etc., whose interactions are difficult to pre-
dict.

It is expected that the program connecting to the ToonFace Animator
contain libraries of standard motions, such as smiling, frowning, neutral
appearance, etc. This is a non-trivial issue and will not be discussed
here.

A1.3 The ToonFace Coding Scheme:
A Comparison to FACS

The Facial Action Coding System (FACS) [Ekman & Friesen 1978] is a
system designed for empirical coding of human facial expressions. The
FACS model is based on a simplification of the muscle actions involved
in producing human facial expression, where muscles are grouped
together into what the authors call Action Units. Waite [1989] modeled
a human face based on a control structure that incorporates several of
the action units described in Ekman & Friesen [1978]. In her system,
the action units are represented by collections of data points which are
covered by a single rendered surface that mimics human skin. The
approach taken does not automatically solve how to draw the eyes, con-
trol gaze, or add other decorative features (such as ears or hair) to the
rendered face. Because the system relies on a model of muscles and
bone structure, it is computationally intensive. More recently, Takeuchi
& Nagao [1993] describe a system that tries to model a real face in three
dimensions based on a similar approach, and Essa [1995, Essa et al.
1994] describes a computational extension to FACS.

The ToonFace coding scheme is not intended to be a competitor to
FACSÑit simply provides a new way to code facial expressions that
requires less detail. Control points were selected to maximize the
expressivity/complexity tradeoff. Compared to prior computer systems
based on FACS, ToonFace allows for animation with more of a cartoon
style look. The motivation for the ToonFace control scheme has already
been discussed. However, a comparison to FACS may help the inter-
ested reader get a better understanding of the limits and possibilities of
this scheme. It should be noted that since the FACS coding scheme is
quite complex, the FACS Manual [Ekman & Friesen 1978] is recom-
mended for those who wish to seek a thorough understanding of the
issue.

A Computational Model of Psychosocial Dialogue Skills

ToonFace is a considerable simplification of FACS, but it is precisely
for this reason that it is an attractive alternative. The head motions of
humans have three degrees of freedom: head turn, medial (forward-
backward) head tilt , lateral (side to side) head tilt. ToonFace simplifies
this into two degrees of freedom, eliminating the lateral head tilt. For
the upper face, the only features that are identical between the two are
the eyes, which have 2 df each. Action unit (AU) 1 (inner brow raiser)
and AU 4 (inner brow lowerer) are represented in ToonFace by Bm,
with AU 4 approximated by motor Bm having an extended range down-
ward (this depends on the particular face design). AU 2 (outer brow
raiser) is approximated by motors Bc and Bl, which also help in captur-
ing motions involving AU 1. Eu, or Eu and El together, approximates
the following AUs: AU 5 (upper lid raiser), AU 7 (lid tightener), AU 41
(lid droop), AU 42 (eye slit), AU 43 (eyes closed), AU 44 (squint), AU
45 (blink), and AU 46 (wink). The only one left out from the upper face
is AU 6, cheek raiser and lid compressor.

For the lower face, AUs 9 (nose wrinkler), 10 (upper lip raiser) and 17
(chin raiser) are not addressed in ToonFace. Ml represents the motions
involving AUs 15 (vertical lip corner depressor), 25 (vertical lips part)
and 26 (jaw drop). No differentiation is made between AU 26 and AU
27 (vertical mouth stretch), since the jaw is not modeled separately from
the lower lip. Ml and Mr together can approximate the AUs 20 (hori-
zontal lip stretcher) and 14 (dimpler), as well as what Ekman and Frie-
sen [1978] call ÒobliqueÓ actionsÑpulling out and up diagonally on the
corners of the mouth.

Of course the ToonFace scheme provides nowhere near an exact match
to the action of a human face (for which even FACS is a simplification),
but that is a problem all computer graphics schemes to date have in
common, to various degrees. Where the ToonFace scheme falls espe-
cially short is in facial expression involving the physics of skin contrac-
tion and excessive exertion of muscle force, and in the combinatorial
explosion possible with combinations of the numerous action units
included in FACS. With patience, a skilled ToonFace designer could
possibly approximate FACS better than indicated here, but that would
be going against its design philosophy, which is simply to get a handful
of usable facial expressions relevant to multimodal dialogue, while
allowing for a playful design that doesnÕt get the userÕs expactations up.

A1.4 Future Enhancements

The ToonFace system is primarily a research tool. As such, it is still
missing a number of features that would be desirable and not too diffi-
cult to implement. For the Editor, a useful feature would for example be
multiple-level UNDOs, as well as improved user interface layout. Also,
Character Animation 211

Communicative Humanoids

212

Appendix A1.

adding animation libraries to the Editor would help a designer envision
what a face looks like when it moves. Currently the animator has no
user interface for adjusting such things as background color, size of the
face, or window. These would all make the system easier to use. Look-
ing further along, control points allowing the nose and ears to move
would extend the kinds of creatures that can be designed in the system.
A feature that allowed a face to be texture-mapped onto three-dimen-
sional shapes would of course improve the look of the system quite a
bit. The control point scheme described here is easily applicable to
more conventional three-dimensional computer graphics, keeping the
simplicity without compromizing facial expression.

Lastly, an interestingÑand usefulÑaddition would be a mechanism to
adjust the faceÕs direction of gaze as it appears to the viewer; research
has shown that factors such as face curvature, pupil placement and
screen curvature interact in determining where a two-dimensional pro-
jection of a face seems to be looking, from the observerÕs point of view
[Anstis et al. 1969]. The same would apply to head motion. This is
especially important for systems that track a userÕs line of gaze and thus
allow for reciprocal behavior from the machine.

	A1
	A1.1 Background, Motivation, Goals
	A1.2 ToonFace Architecture
	A1.2.1 Facial Coding Scheme
	A1.2.2 Drawing Scheme: Polygons
	Free Polygons
	Feature-attached Polygons
	Point-attached Polygons
	Drawing Order

	A1.2.3 Interpolation Algorithms
	A1.2.4 Animation Scheduling Algorithms

	A1.3 The ToonFace Coding Scheme: A Comparison to FACS
	A1.4 Future Enhancements

