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Abstract. Systems intended to operate in dynamic, complex environments – 
without  intervention from their  designers  or  significant  amounts  of  domain-
dependent  information  provided  at  design  time –  must  be  equipped  with  a  
sufficient  level  of  existential  autonomy.  This  feature  of  naturally  intelligent 
systems has largely been missing from cognitive architectures created to date,  
due in part to the fact that high levels of existential autonomy require systems to  
program  themselves;  good  principles  for  self-programming  have  remained 
elusive.  Achieving  this  with  the  major  programming  methodologies  in  use 
today is not likely, as these are without exception designed to be used by the  
human mind:  Producing self-programming systems that  can grow from first  
principles using these therefore requires first solving the AI problem itself – the  
very problem we are trying to solve. Advances in existential autonomy call for  
a  new programming paradigm,  with self-programming squarely at  its center. 
The principles of such a paradigm are likely to be fundamentally different from  
prevailing approaches; among the desired features for a programming language 
designed  for  automatic  self-programming  are  (a)  support  for  autonomous 
knowledge acquisition, (b)  real-time and any-time operation,  (c)  reflectivity,  
and (d) massive parallelization. With these and other requirements guiding our  
work, we have created a programming paradigm and language called Replicode. 
Here we discuss the reasoning behind our approach and the main motivations 
and features that set this work from apart from prior approaches. 

1     Introduction

Future artificially generally intelligent (AGI) systems, to deserve the label, must be 
able to learn a wide variety of tasks and adapt to a wide range of conditions, none of 
which can be known at design time. This requires some minimum level of existential  
autonomy – the ability of a  system to act without dependence on explicit  outside 
assistance, whether from a human teacher or, in the case of AGI, the system designer. 
Achieving  existential  autonomy  calls  for  unplanned  changes  to  a  system's  own 
cognitive  structures.  Too  be  capable  of  cognitive  growth  –  whether  measured  in 
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minutes,  days,  years,  or  decades  –  such  systems must  thus  ultimately  be  able  to 
program  themselves.  Provided  with  (minimal)  bootstrap  knowledge,  we  target 
systems that operate in in a way that, while initially limited, are capable of facing 
novel situations in their environment – simple at first – and grow their intelligence as 
experience accumulates. Given scalable principles, a system will continuously grow 
to ever-increasing levels of cognitive sophistication. 

In light of this goal, do any existing programming environments, paradigms, or 
languages  allow  us  to  get  started  on  building  such  systems?  After  thorough 
investigation,  having  carefully  considered  an  array  of  existing  alternatives  (for 
example  Schiffel  &  Thielscher  2006,  Schmidhuber  2004),  our  conclusion  is  that 
some,  sometimes  many,  features  of  all  prevailing  programming  paradigms  and 
languages makes them unsuited to achieve the level of  self-programming abilities 
required for the kind of AGIs we envision. Drescher (1991) proposes a paradigm that 
at first glance has some similarities with ours. Important and fundamental differences 
exist, however, which prevent us from building directly on his work – three of which 
we will mention here. First, operational reflectivity is not enforced in his approach, 
and thus his system cannot model its own operation. Second, as Drescher does not 
assume  resource  boundedness,  no  mechanisms  for  systems  adapting  to  resource 
scarcity is provided. Third, his proposed schema control mechanism is inappropriate 
for  real-time  parallel  operation.  In  fact,  because  all  mainstream  programming 
languages are created for human beings, their semantic complexity is too high to allow 
the  kind  of  low-level  self-programming needed for  the  kind  of  cognitive  growth 
necessary for realizing truly adaptive systems (Thórisson 2012). For this reason no 
human-targeted programming languages provide a  suitable  foundation for  systems 
capable of cognitive growth, which means a new paradigm must be developed. 

This paper introduces a new programming paradigm and language – Replicode – 
for building control systems that can autonomously accumulate and revise knowledge 
from  their  own  experience,  under  constraints  of  limited  time  and  computational 
resources  (Wang  2006),  through  self-programming.  Departing  from  traditional 
development methodologies that rely on human-crafted code, we follow the path of 
constructivist development (Thórisson 2012), which delegates the construction of the 
system in large part to the system itself. In our approach knowledge consists thus 
primarily of learned executable code. Replicode is an interpreted language designed 
to acquire, execute and revise vast amounts of fine-grained models in parallel and in 
(soft) real-time. The interpreter of Replicode – the executive – is a distributed virtual 
machine that runs on various hardware configurations,  from laptops to clusters of 
computers.  A thorough description of the language is beyond our scope here (see 
Nivel & Thórisson 2013 for the full language specification). Here we focus on how 
three  key requirements affect  the design of  the Replicode programming language, 
namely  automatic  acquisition  of  knowledge,  real-time  any-time  operation,  and 
adaptation. First  we  present  key  motivations  and  requirements,  alongside  the 
resulting design decisions.  Then follows a  quick overview of  the  main Replicode 
features, memory organization, and rules for governing model execution. The two last 
sections describe briefly how learning is implemented in Replicode-based systems 
and the control mechanisms for supporting adaptation to resource scarcity.



2 Key Requirements for Existential Autonomy

Autonomous expansion of a system's skill repertoire means the system must be 
outfitted with a principled way to govern the integration of new knowledge and skills. 
The rationale is threefold.

First,  as  informationally  rich  open-ended  complex  environments  cannot  be 
axiomatized beforehand, very few assumptions can be made about the knowledge that 
a system may have to acquire:  The information available to be perceived and the 
behavioral challenges that the system's future environment(s) may present, can be of 
potentially  multiple  types,  and  the  specifics  of  these  types  cannot  be  known 
beforehand. The generality of the system is thus constrained by its ability to deal with 
this  potentially  large  set  of  information  and  skills  in  a  uniform manner:  the  less 
specific to particular types of information the knowledge representation is, the greater 
the  system's  potential  for  being  general.  This  is  the  requirement  of  knowledge 
representation uniformity. 

Second, systems that improve all the time, while "on the job", must maintain and 
expand their  knowledge incrementally and continuously,  in order to discard faulty 
models as early as possible (before knowledge is built up on top of them – which by 
extension would also be faulty). To do this the system must perform frequent reality 
checks on its modeling (understanding) of the world, as the opportunities may arise, at 
any time, as the system steadily builds up its knowledge. This requirement directs us 
towards  low  knowledge  representation  ("peewee")  granularity;  fine-grained 
knowledge permits higher "clock rate", with smaller incremental checks and changes. 

Third, as the systems we envision should perform in (soft) real-time and any-time, 
knowledge integration speed is of the essence – in other words, the processes that 
perform integration shall be as simple and efficient as possible. What we aim for here 
is  knowledge representation plasticity:  A system must  be able  to add and remove 
knowledge very quickly and very often, irrespective of knowledge semantics.  The 
knowledge  must  also  have  a  high  degree  of  composability,  giving  the  system an 
ability to easily construct knew knowledge from existing knowledge.

Real-time  Control.  To  act  meaningfully  in  real-time,  control  systems  must 
anticipate  the behavior  of the controlled entities.  In other words,  the system must 
make predictions, based on its knowledge acquired to date. To apply continuously to 
any and all actions of the system, at any level of detail, predictions must essentially be 
produced all the time, as an integral part of the system's cognitive operation, and as 
quickly as possible, to be ahead of the reality to which they apply. As the system is 
doing this, however, it must also keep acting on its environment to satisfy its goals 
and constraints. This means that sub-goals should be produced as soon as top-level 
goals are produced. This gives us two sub-requirements.

First,  reality  checks  can  only  be  performed  by  monitoring  the  outcome  of 
predictions: this is how the reliability of the system's knowledge can be assessed – the 
quality cannot be judged based solely on the results of internal abduction; abduction 
can only produce a set of possible sub-goals, from which the system must then select, 
and discard the rest. As it does so, a potential problem is that the search (which sub-
goal to choose) may be faulty – not the knowledge. Therefore if we had two kinds of 



models for representing predictive knowledge and prescriptive knowledge, only the 
predictive models could be maintained at any point in time. Thus, it follows that both 
deduction  and  abduction  should  be  supported  in  a  single  model.  This  is  the 
requirement for a unified representation for abduction and deduction processes.

Second,  deduction  and  abduction  should  proceed  concurrently  at  runtime:  the 
control  system  cannot  be  put  on  hold  achieving  its  goals  while  predictions  are 
produced,  because  then  it  will  lag  behind  its  controlled  entities;  reciprocally,  the 
system cannot wait to monitor the outcome of predictions to act in due time. This is 
the requirement of simultaneous execution of abduction and deduction. 

Real-time Learning.  We target systems to learn as  they act,  and to  use newly-
acquired knowledge as soon as possible, as the need may arise during the system's 
operation. A programming language must not restrict these in such a way that they are 
mutually exclusive at runtime. Here again, a fine granularity is of the essence. If the 
granularity  of  knowledge  representation  was  so  coarse-grain  as  to  encode  large 
complex algorithms, instead of e.g. a single simple rule, then it will more difficult for 
the system to assess the model's performance, as increased complexity would mean 
that the encoded knowledge would cover broader and richer situations – which would 
increase the complexity of reality checks, thus degrading the system‘s responsiveness. 

Adaptation. In informationally rich open-ended environments conditions may arise 
at any time that an intelligent system is not equipped to handle, or that the system may 
only partially be able to address. A system which cannot prioritize its tasks according 
to the time and CPU power available is doomed in such conditions. As this kind of 
adaptability is critical for achieving experiential autonomy, methods for controlling 
resource expenditure is a hard requirement for such systems. Advanced levels of such 
resource control call for fully-fledged introspective capabilities; this is what we aim 
for in our work. We propose the following four principles to achieve this. 

First, the system's executive should periodically publish assessments of its  own 
performance (for example, the time it takes to execute a unit of knowledge, or the 
average lag behind deadlines).

Second,  the  executive  should  expose  several  control  parameters  that  allow  a 
system-wide tuning of its various computation strategies.

Third, operational reflectivity should be supported at every level of abstraction in 
the language, which means that every operation the system performs is reflected as a 
first-class  (internal)  input,  allowing the  modeling  of  causal  relationships  between 
strategy tuning and its effects (performance assessment).

Last, a programming language should also provide a way to reduce the amount of 
inputs to process (i.e. attention mechanisms) that discards irrelevant inputs.

3 Overview of Replicode

Taking a symbolic approach, Replicode1 is based on pattern-matching and is data-
driven: as input terms become available the executive continually attempts to match 
them to patterns; and when succeeding some computation is scheduled for execution, 

1 The Replicode language source code is available from http://cadia.ru.is/svn/repos/replicode



possibly resulting in the production of more input terms. Replicode is operationally 
reflective; the trace of every operation it performs is injected in memory as an internal 
input  to  allow a  system to  model  its  own operation,  a  necessary  prerequisite  for 
enabling some degree of  self-control  –  and thus of  adaptation.  Replicode is  goal-
driven:  the  programmer  defines  fixed  top-level  goals  (called  drives)  that  initiate 
abduction and eventually the effective acting on the environment (when the system 
commits to a goal containing a command on an effector, this command is executed).

Replicode  meets  the  requirement  of  uniform  knowledge  representation  by 
encoding all knowledge as executable models, forming a highly dynamic hierarchy 
that  models  the  behavior  of  entities  in  the  environment  –  including  the  system's 
internal behavior. The hierarchy is expanded incrementally: fine-grained models are 
added continuously as the system interacts in its environment, and said models are 
also deleted as soon as enough counter-evidences of their reliability is observed.

The execution of a single model produces predictions, given some observed facts, 
and at the same time generates sub-goals, given some top-level goal(s). In essence, 
the model hierarchy is thus traversed by two simultaneous flows of information: a 
flow of predictions, bottom-up (assuming the inputs come from the bottom) and a 
flow  of  goals,  top-down  (assuming  the  super-goals  come  from  the  top  and  the 
commands  to  the  effectors  are  located on the  bottom).  This  paves  the  way for  a 
system implemented in Replicode to drive its behavior in an anticipatory fashion to 
learn and act simultaneously, and achieve real-time and any-time performance.

Fig. 1. – Overview of a Replicode-based System

A system controls its environment or entities situated therein via dedicated sub-systems 
(I/O boxes) such as machine vision equipment or any kind of particular device driver.  
Notice that a system can be controlled by another one by means of the former’s internal  
inputs and control parameters.

Replicode relies  on  a  real-valued  temporal  term logic.  Terms encode  facts  (or 
absence thereof) that hold within some time interval (specified in microseconds) and 
with a certain confidence value (in [0,1]). Goals and predictions are also encoded as 
facts:  the  confidence value carried by a  goal  stands for  its  likelihood to succeed, 
whereas the confidence value of a prediction stands for its likelihood to come true. 



For goals, the time interval specifies the lower and upper deadlines in between which 
the goal shall be achieved, whereas for predictions, the time interval defines the time 
segment when evidences or counter-evidences shall be checked to assess the accuracy 
of the predictions.

4     Model Execution & Memory Management

The memory in Replicode is organized in groups of objects (for example models 
and facts) used to isolate subsets of knowledge. Each object in a group is qualified by 
three control values, saliency, activation and resilience. The saliency determines the 
eligibility  of  an  object  to  be  an  input  for  some  executable  object  (for  example 
models2),  the  activation  determines  the  eligibility  of  some  executable  object  to 
process any input and the resilience defines the object‘s time to live. A group defines 
several control parameters, of which the most essential are (a) a  saliency threshold 
(any object whose saliency is below the threshold becomes invisible to executable 
objects) and, (b) an activation threshold (any executable object whose activation is 
below the threshold will not be allowed to process any input).

Replicode models consists of two patterns (a left-side pattern, or l-pattern and a 
right-side  one,  or  r-pattern).  When  an  input  matches  an  l-pattern,  a  prediction 
patterned  after  the  r-pattern  is  injected  in  the  memory  (deduction,  or  forward 
chaining). Reciprocally, when a goal matches an r-pattern, a sub-goal patterned after 
the l-patterned is injected in the memory (abduction, or backward chaining). A system 
can thus be considered a dynamic model hierarchy based on pattern affordances.

Models carry two specific control values, a success rate and an evidence count. 
The success rate is the number of positive evidences (the number of times the model 
predicted correctly) divided by the total number of evidences (the number of times the 
model tried to predict). When a model produces an output from an input it computes 
the confidence value of the output as the product of the confidence value of the input 
and  the  success  rate  of  the  model.  The  confidence  value  carried  by  an  object  is 
assigned to its saliency. It follows that, in the model hierarchy, information resulting 
from traversal of many models will likely be less salient than information resulting 
from traversing fewer models (assuming identical success rates in both cases). If we 
picture predictions flowing bottom-up and goals top-down (see figure 2 below), then 
only predictions produced by the best models will reach the top of the hierarchy, 
whereas only goals produced by the best models will end up at the bottom where 
commands are issued to the actuators of the system. In addition, the success rate of a 
model is used as its activation value: as a result bad performers will be eventually 
deactivated. 

The  programmer  initially  defines  top-level  goals  (drives)  that  subsequently  are 
periodically injected into the hierarchy by the system. These drives are  fixed and 
encode the objectives and constraints of a given system – representing its reasons for 
being, as it were. By tuning their saliency values, the designer or the system itself can 

2  Replicode defines other types of executable code (programs). These are mere infrastructure  
constructs and are not essential for the present discussion.



activate  or  deactivate  some of  these  drives.  For  example,  when the resources are 
becoming dangerously deficient, the system can choose to ignore the least essential 
(salient) drives – provided it has been given (or has acquired) the knowledge to do so.

Fig. 2. – Model Hierarchy.

The bootstrap code is composed of drives (black boxes) and top-level models (grey boxes)  
that give the system the initial knowledge to satisfy its drives. New models are dynamically  
added to the hierarchy (white boxes) when the system learns how to predict inputs for the  
top-level models or to solve goals produced by said top-level models - or deleted from it if  
they turn out to be poor predictors. Only the best models will propagate predictions bottom-
up from the inputs received from the I/O devices and only the best models will generate sub-
goals top-down, eventually issuing commands to the I/O devices.

In Replicode  backward chaining  provides a  way to  perform abductions,  i.e.  to 
derive sub-goals given an input goal. It may turn out that given such an input goal,  
several sub-goals can be produced, each representing a particular way to achieve the 
super-goal.  In  addition,  several  sub-goals  resulting  from several  super-goals  may 
target conflicting states.  These situations call for a control policy over the search: 
before committing to any sub-goal, the executive simulates their respective possible 
outcomes, ranks them and commits to the best ones. The simulation phase is akin to a 
parallel  breadth-first  search  and  proceeds  as  follows.  The  executive  defines  a 
parameter called the simulation time horizon. When a goal matches an r-pattern a 
simulated sub-goal is produced which triggers the production of more sub-goals. At 
half  the  time  horizon,  backward  chaining  stops  and  simulated  predictions  are 
produced (these  predict  states  targeted  by  the  deepest  simulated  sub-goals).  Such 
predictions flow up in the hierarchy for another half the time horizon. At the time 
horizon,  and  on  the  basis  of  the  simulated  predictions,  branches  of  sub-goal 
productions are evaluated and the best ones selected for commitment (see Figure 3 
below for an example). 



Fig. 3. - Simulation.

Consider a model M0 producing a goal g0 at time t0.Simulated sub-goals (blue arrows) will  
be produced by relevant models until time t0+STHZ/2 where STHZ stands for simulation 
time horizon. At this time, simulated predictions will start to flow upward (red arrows) and  
at time t0+STHZ, models having produced goals (like M0 or M1) will assess the simulated  
predictions  for  committing  to  the  best  sub-goal(s).  For  example,  it  can  turn  out  that  
committing  to  g2  for  achieving  g1  will  predictably  (p1)  conflict  with the resolution of  
another goal (g1). In that case, and assuming g0 is less important than g1, M0 will  not  
commit to g2 and will chose another sub-goal (if available) whereas M1 will commit to g1. 

5     Learning

The formation of  new models  relies  on a  basic  heuristic:  temporal  precedence 
means  causation.  The  good  news  is  that,  at  least  in  our  pilot  tests,  temporal 
precedence  does  actually  indicate  causation,  and  some  models  will  capture  such 
causal  relationships  correctly.  The  bad  news  is  that  this  approach  leads  to  the 
construction of many faulty models. To address this we have implemented a model 
revision process that manages faulty model deletion. Learning in a Replicode-based 
system results from the interplay of the continuous and concurrent processes of model 
acquisition  and  revision.  In  that  sense,  Replicode  implements  learning  that  is 
incremental (the model hierarchy is built progressively as experience accumulates), 
continuous (the system never stops learning as long as it faces novelty), and real-time 
(the system learns on the fly while acting on its environment).

New models are built based on the exploitation of time-bound input buffers, which 
can be considered a kind of short-term memory. The buffers are allocated for each 
goal and predictions the system produces: the executive will attempt to model the 
success of a goal or the failure of a prediction provided these events have not been 
predicted by existing models. In addition, the executive will also attempt to model the 
change of a given state, provided said change has not been predicted. In any case, the 



executive takes every input from a buffer and turns it into an l-pattern paired with the 
target (the r-pattern), that is the goal, prediction or state it focuses on.

Each time a model produces a prediction, the executive monitors all inputs for a 
confirmation of the predicted fact (with respect to the predicted time interval). When 
the outcome is positive the success rate of the model will increase. If the predicted 
fact is not observed in due time or if a counter evidence is observed, then the success 
rate will decrease. If the success rate gets under the group‘s activation threshold, then 
the model is deactivated.3

6     Control Mechanisms

Given its  limited resources,  an existentially  autonomous system must  direct  its 
computation  at  the  most  interesting  inputs.  Some  advanced  designs  have  been 
proposed for such an attention mechanism (see Helgason et al. 2012, for example), 
however Replicode uses a simpler scheme. An input is said interesting if (a) it shares 
at least one variable with a goal the system currently pursues, (b) it shares at least one 
variable with a prediction the system is monitoring or, (c) it indicates a change of a 
state.  This  is  to  say  that  the  focus  is  driven  top-down  (triggered  by  goals  and 
predictions) and also bottom-up (detection of state changes).

There are several other ways to control the processing in Replicode. These are:
Adjusting  the  thresholds  of  the  primary  and  secondary  groups:  this  has  an 

immediate effect on the number of goals and predictions that constitute inputs for 
models, and thus affects the processing load.

Adjusting the saliency of drives: discarding less important drives will prune the 
(top-down) flow of goals.

Adjusting the  time horizons for  simulation:  this  will  narrow the breadth of  the 
search,  leading  to  more  responsiveness,  at  the  expense  of  discarding  valuable 
alternatives  perhaps  too  early  –  the  system  will  prefer  well  known  and  reliable 
solutions over less proven ones that might have been more efficient.

Adjusting the time horizon for the acquisition of models: by doing so, less model 
candidates  will  be inferred,  thus  reducing  the  size  of  the  model  hierarchy,  at  the 
expense of making the system more "short-sighted".

7 Conclusion and Future Work

Replicode  is  a  programming  paradigm  designed  to  meet  a  stringent  set  of 
requirements derived from the goal of producing systems exhibiting high levels of 
existential autonomy. Replicode is intended for creating model-based control systems 
that  control  other  systems in  a  general  fashion.  Given  (minimal)  bootstrap  code, 
Replicode systems are meant to continuously improve their understanding of their 
operating  environment  through  incremental  knowledge  accumulation  via  the 

3 Some advanced mechansims to reactivate models have been implemented, but these are out  
of the scope of this paper.



generation  of  models  that  describe  observed  causal  relationships,  both  in  the 
environment and within themselves.

The  language  has  already  been  implemented  and  tested  on  pilot  systems,  and 
proven  to  solve  all  the  requirements;  it  nevertheless  is  still  in  early  phases  of 
development. Features that we intend to address in the coming years include more 
sophisticated  inferencing,  like similarity  and equivalence identification,  and  the 
ability to make analogies. A lack of analogy capabilities makes a system singularly 
dependent  on  observation  of  explicit  causation  in  its  environment;  advanced 
inferencing abilities would allow the system to extract more knowledge from that 
same information. 
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