
Methods for Complex Single-Mind Architecture Designs
(Short Paper)

Kristinn R. Thórisson
CADIA / Dept. Comp. Science

Kringlunni 1
103 Reykjavik, Iceland

+354 898 0398

thorisson@ru.is

Gudny Ragna Jonsdottir
CADIA / Dept. Comp. Science

Kringlunni 1
103 Reykjavik

Iceland

gudny04@ru.is

Eric Nivel
Center For Analysis & Design of

Intelligent Agents
Kringlunni 1

103 Reykjavik, Iceland

eric@ru.is

ABSTRACT
The implementation of software systems with large numbers of
heterogeneous components calls for a powerful design
methodology. Although several such methodologies have been
proposed, many lack application to construction of single-mind
systems. We have employed the Constructionist Design
Methodology (CDM) in building several such systems, including
an autonomous radio show host. Proposing modules
communicating through messages via blackboards as key building
blocks for interactive intelligences, the methodology has been of
considerable help in the early stages of designing several large
architectures. This paper describes efforts to extend the CDM with
more detailed support for the modularization process. We detail
our use of a combination of abstraction and finite state machines
in modularizing the realtime turntaking system of the radio show
host. Our experience shows considerable benefits and added
flexibility in the creation of large architectures when using the
new modularization principles.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces. I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence – Coherence and coordination,
Intelligent agents. I.6.5 [Simulation and Modeling]: Model
Development – Modeling methodologies.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Methodology, design, architecture, speech, interactive, realtime,
communicative humanoids, single-mind architectures.

1. INTRODUCTION
The creation of realtime dialogue systems containing a large set of
integrated functionalities requires a strong development
methodology. Unfortunately, many of the methodologies that

have been offered for this purpose, e.g. multi-component and
agent-based simulation and modeling (cf. [6,7]), suffer from lack
of actual experience in artificial intelligence projects, especially
where the focus is the construction of single-mind systems, e.g.
robotics or autonomous radio show hosts – that is, systems where
a single external body has to be managed as a limited resource.
Such systems put strong – and unique – requirements on
coordination and temporal adequacy in the architecture.

Modularity is a highly desirable feature of any complex system as
it keeps transparency and openness in the architecture. However,
it means decoupling of components, which means increases in
coordination between them. Thus, the kind of modularity and
methodology one adopts is key. One our goals is to explore how
true flexibility can be obtained in the development of large
evolving systems. General software engineering methods are
appropriate when the target system is clearly and correctly
specified, as is the case is standard IT development. This approach
can turn into a burden, however, when the target system is built
incrementally and experimentally, as continual expansion often
changes the system’s very specification. The majority of
methodologies intended for agent-based systems, e.g. MaSE [6],
which one might expect to do better in this respect, do not address
the need for strong iterative design either. The Constructionist
Design Methodology (CDM, [4]), however, was specifically
created to help build interactive A.I. systems addressing, in
particular, the problems associated with iterative design for large
heterogeneous agent-based systems with complex information
flow. We are in the process of building a fully autonomous radio
show host. One of its tasks will be to interview people over the
phone. The current system is a (growing) collection of over 40
(semi-autonomous) modules that communicate (1-to-n) via
discrete messages; each module having non-trivial operational
logic and interactions. In this paper we propose an extension to
the modularization principles of the CDM and evaluate them in
the context of the development of a subcomponent of the radio
show host system, namely, its turntaking system.

Following the CDM, an initial rough design sketch of the
turntaking system was fleshed out over three iteration steps (the
turntaking system itself will be described in a future paper); the
new modularization principles were applied and evaluated during
development the process. The results show that the new principles
are highly useful in keeping complexity to manageable
proportions and allowing continual expansion of the system,
including dynamic changes in design requirements.

Cite as: Methods for Complex Single-Mind Architecture Designs (Short
Paper), K. R. Thórisson, G. R. Jonsdottir & E. Nivel, Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal, pp. XXX-XXX.
Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. CDM
The Constructionist Design Methodology has been applied in the
construction of several interactive systems (cf. [2,4]). CDM
proposes using publish-subscribe techniques and blackboards as
the backbone for integration, as this has significant benefits (see
e.g. [4]) in systems that need to be experimentally and
incrementally built. CDM proposes 9 principles (semi-
independent steps) to help with such development; the full set is
described in [4]. Here we will zoom in on the principles relating
to iterative modularization, (CDM principles 3a and 3c) in relation
to iteration (CDM principle 5). The modularization principle in
the CDM states:

CDM principle 3.a: Classify modules into one of three roles,
according to whether they serve perception,
decision/planning, or action/animation. Each of these roles
can be further split into more levels. For example, high-level
perception versus low-level perception, short-, mid- and long-
term planning, and high-level animation versus low-level
animation.

We have found the use of abstraction levels to be indispensable,
but how abstraction is used in architectural design is neither
obvious nor well understood. The guidelines in the CDM for
using levels is short; here we put special focus on the construction
of modules and messages in relation to abstraction levels.

CDM’s iterate principle (#5) states that several of the principles,
including 3a above, must be iteratively applied in the process of
building a full, complete system. It plays an especially important
role in the modularization process, as modules define messages
and messages reciprocally define modules. Here we show how
this principle interacts with 3a as we expand the architecture.

3. THE RADIO SHOW HOST SYSTEM
Elsewhere we have presented the view that turntaking and natural
dialogue is a complex system that is best modeled as (a large
number of) interacting modules [10]. Following CDM principle
3a, we started at the low level with several perception modules for
extracting prosodical information from a person's speech. Then
we expanded the system with a set of control/decision modules
that, based on the perceptual processing output of the perception
modules, decided which turntaking state is most likely (“I have
turn”, “other has turn”, etc., see [3] for details). The current
system is an intermediate state between the basic starting point
(based on [3]) and what we intend to build for a fully-fledged
radio show host. At present the system contains the following
functionalities, each of which is represented by one or more
modules: Pitch Tracker (low-level perception): From the raw
audio signal, identifies pitch, pitch derivative, speech on/off,
silences and hums. Pitch Analyzer (mid-level perception):
Analyzes pitch in more detail, as well as overlapping speech and
silences. Speech Recognizer (high-level perception): Translates
audio signal to text (continuous speech recognition). Interpreters
(high level perception): Several perception modules get input
from a single Speech Recognizer; each interpreter has its specified
task, e.g. look for nouns, dates etc. Interpretation Director
(high-level perception): Receives input from Content Planner (see
below) on what to look for and analyses the output of all
Interpreters based on that information. Content Planner (high-
level decision): Composes what to say, based on inner goals and
information from the ID. It includes knowledge bases for creating
semantic responses. Dialogue Planner (high-level decision):

Delivering the next “executable thought unit”, as provided by the
Content Planner, producing fillers or gracefully giving turn when
content is not available from the CP within acceptable time limits;
takes input from perception and internal states, e.g. motivation to
speak; keeps a conversation going (as is possible without
information about the topic). Action Generation (Speech
Synthesizer, mid-level action): Executes content provided by CP
when the Turntaking and DP systems claim that the system has
the turn.

Turntaking System (low-level decision): This is the key system
that we will discuss here. It is composed of roughly 20 modules
that are responsible for the realtime delivery of speech acts by the
radio show host. It assesses the dialogue state based on input from
perceptual modules. In this system various perception and
decision mechanisms related to turntaking are grouped via global
states that describe which perceptions and decisions are relevant
at any point in time, and thus they represent the disposition of the
system at any point in the dialogue, e.g. whether it is appropriate
to expect a certain turntaking cue to be produced, whether it is
relevant to generate a particular behavior (e.g. volume increase in
the voice upon interruption by the other), etc.

4. DESIGN ITERATIONS
One of our goals for the radio show host is to enable it to do
interesting interviews with listeners, which calls for a powerful,
dynamic turntaking (TT) system enabling it to deal with
hesitations, interruptions and various other features of fast-paced
on-air interviewing. The use of FSMs is prevalent in current
engineering practice; more often than not, FSMs limit the ability
to expand a system as needed as additions and extensions require
significant reengineering of what was built before; methodologies
relying on FSMs generally work against dynamic expandability.

Version 1. Following CDM, we started with a basic version of the
turntaking system (based on [3]), using a finite state machine
(FSM) to represent the main states of the dialogue, e.g. “I have
turn”, “Other gives turn”, etc. These were implemented as semi-
global state variables with standard transition rule design;
transitions are controlled by perceptual modules monitoring the
pitch, silences and filler words (“uhm”, “ahh”) of the interviewee
(in this phase the only perception used was pause duration). The
Content Planner (CP) system generated utterances to be spoken
and when the TT system deemed that the agent had the turn the
Dialogue Planner (DP) commanded the speech synthesizer to say
the next sentence(s). This architecture is depicted in Fig. 1.

The result of this phase was thus a “polite” but dumb and reactive
TT system that can interact with a human relatively reliably,
perceiving appropriate turn transition points (based on the analysis
done by perceptual modules), and decide to either give or accept
turn (depending on whether it had something to say). Reliable
performance of this version was reached with pause threshold set
to 1-1.2 seconds, that is, the system waits for a pause of that
duration before assuming that it can take the turn. This is quite a
bit slower than the average turntaking speed of a human speaker
(200-300 msec [1]).

Version 2. Next we wanted to give the radio show host the
additional ability to both want turn (e.g. if it has something
important to say) and perceive that other wants turn when it is
speaking. Among other implications these modifications meant
that new states need to be added to the existing FSM. Generally,
FSMs are difficult to expand because each change may affect a

Figure 1. Partial view of the initial
turntaking system. An FSM
represents valid dialog states; module
X produces next thing to say and
sends it (a) to a speech synthesizer
module Y; Y is only active when the
radio show host has the turn (TT:S4).

significant part of the
system and version 2
modifications called
for new states, new
transitions, as well as
modified older
transitions. Yet we
wanted to keep the
current system. A
better method for
expanding the
(otherwise useful)
FSM was therefore
sorely needed.

We employed a
different way of
handling the state

transitions in the FSM: Instead of monolithic, integrated
state+transition rules, we decoupled the states and the transitions
via the modules+messages paradigm. In this scheme modules
handle the transitions by posting state transition messages to a
global state system (via middleware). With this solution adding a
new transition, whether it had been anticipated by the designers or
not, requires simply adding one (or more) module(s) that trigger
that particular transition (Fig. 2).

Figure 2. States and their transition rules are
decoupled via transition modules that change states via
messages. Here, F and Z (only active during TT:S1)
control the transition from TT:S1 (other-gives-turn) to
TT:S4 (I-have-turn) independently of each other.

The result was a more “tolerant” radio host – it can now also yield
the turn if deemed appropriate and tries to indicate politely
whenever it wants the turn (e.g. by producing fillers). The new
design methodology allowed us to significantly improve the
system’s speed of taking turns, with minimal modifications: (i) the
addition of one new state, (ii) the addition of a single module for
controlling the transition to it and (iii) configuring one of the old
modules to be active in the new state. This allowed a reduction
from 1 second to 400 msec for pause threshold, tripling the
system's ability to take turn quickly. This version, however, is still
missing significant functionality, such as being able to interrupt.
Moreover, the “flat” architecture with a “pool” of modules
suggests no constraints on which modules are allowed to connect
to where; we know from experience that “free-form” additions of

connections will very quickly turn the system into unmanageable
spaghetti. More detailed design principles are needed.

Version 3. Next we wanted the host to be able to interrupt the
user. A motivational factor, urge to speak, would determine
whether the host should take turn and start speaking (no matter
what its perceptual, decision and TT states were saying). This
addition meant that either the TT FSM would be modified with a
state transition from every current state to the I-have-turn state, or
the TT system could be allowed to be interrupted from the outside
by another system, external to its FSM-based mechanism. We
chose the latter option: The Dialogue Planner (DP) was given the
extra role of modifying the execution of the TT FSM. We
assigned the DP to a higher abstraction layer than the turntaking
system (Fig. 3). A new module (A) was added to control TT-
relevant state switching messages in the TT FSM, introducing an
externally-activated “state jump” (c). The DP thus simply added
transition paths to the existing system, other things staying exactly
the same. With the DP system at a more abstract level we
managed to expand the whole system, keeping connections
between the TT and DP to a minimum.

The resulting radio show host turntaking system still has all the
functionality of its previous versions, being able to take turns
relatively quickly, but now with the added capability of being able
to “choose to be impolite” based on a higher-level motivation,
taking turn even when the other person doesn't want to give it.
Meanwhile the TT system retains its original modularity, and it is
open enough to allow external steering.

Figure 3. Functions related to longer time scales and
higher-level concepts (upper plane) are separated from
more reactive parts of the system (lower plane).

A feature of the development of hierarchical layers of modules,
according to the CDM, proposes using decomposition to provide a
certain degree of plasticity in the module arrangement: The degree
of plasticity we obtained in this construction process – and thus in
the resulting overall system – is directly related to the degree of
openness of modularization at each given stage of development.
This is a clear advantage over other approaches. The advantages
became even clearer when we wanted the system to automatically
adapt to its interlocutor over time. Implementing distributed
learning algorithms within each of the existing modules would be
a rather complex task. Following the CDM we created a separate
Learner module; this is the only module that needs to know a
learning method (currently Q-Learning), providing abstract data
(patterns of action/consequence relations) as output. It does not

make any assumption on subsequent usage of this information.
Symmetrically, modules consuming this data do not need to know
how it has come about (why action x is better than action y in state
z), they only have to perform e-greedy search on the provided
state space for the best action to take at any point in time.

Figure 4: Modules are arranged in abstraction layers,
and are given structural roles, processing and/or
steering. These modules modify shared system states
while their interaction span across the layers.

5. MODULARIZATION OF STATES
In our approach system expansion was first achieved by using an
explicit, (semi)global FSM. We then applied modularization
principles to the modules' interaction space itself – i.e. the FSM –
and distributed states in another dimension, orthogonal to the
dimension of module layering. A subset of the system states
represents the “skeleton” of a given behavior, defining a natural
partition in the entire set of related states (Fig. 4). This
partitioning is orthogonal to the abstraction hierarchy, and
depicts the natural indirect coupling of modules via transitions
along the state graph.

To support FSM-based designs in the CDM we introduce the
following principle: Orthogonal partitioning of system states:
Explicitly-represented states are grouped and partitioned in
separate blackboards, each serving the role of an interaction
space for modules in charge of steering a particular behavior of
the system. Note that a “behavior” applies to both overt and covert
actions, allowing complex couplings between internal and
external control and event mechanisms.

In the scheme we are proposing, using a combination of FSMs
and message passing, modules are automatically activated upon
the transition to a state they are registered for, and state switches
are executed immediately upon reception of a state transition
message. This has potential for race conditions: Be the system in
state A, transitioning to B on message TAB and C on TAC; if module
M1 fires TAB and – concurrently – M2 fires TAC, then the first
module given the CPU, say M2, will determine the next state, C,
invalidating the transition message posted by the unlucky module
M1. In our approach, if concurrent steering of local system states

is needed, we use dedicated modules responsible for module
activation; such modules resolve conflicting concurrent state
transitions and send final state transition messages. In this way
modules realizing transitions do not send state transition
commands but transition requests to the conflict resolvers. This
way the modularization of the interaction space proposed above
remains valid and without race condition problems.

6. CONCLUSION
To date the CDM has been useful for guiding our designs. The
results based on the work described here show that the new
modularization methods help extend the present CDM principles,
allowing even larger architectures to be built iteratively; we have
grown the current system to more than 60 highly complex,
heterogeneous modules, exchanging over 100 message types in a
dynamic 1-to-many arrangement. These new methods help ensure
that continual design refinements can continue at a low cost in
complex systems. Displacing the complexity from “fat black-
boxes” to more numerous – but smaller – modules collaborating
to steer the overall system state, according to our principles, gives
the designer the extra level of plasticity needed for build-run-
experiment-augment iteration cycles.

7. REFERENCES
[1] Ford, C. and S. A. Thompson (1996). Interactional units

in conversation: Syntactic, intonational, and pragmatic
resources for the management of turns. In E. Ochs, E.
Schegloff and S. A. Thompson (Eds.), Interaction and
Grammar, 134-184, Cambridge University Press.

[2] Ng-Thow-Hing, V., T. List, K.R. Thórisson, J. Lim, J.
Wormer (2007). Design and Evaluation of Communication
Middleware in a Distributed Humanoid Robot Architecture.
IROS '07 Workshop Measures and Procedures for the
Evaluation of Robot Architectures and Middleware, 29 Oct. -
2 Nov. San Diego, Califronia, U.S.A.

[3] Thórisson, K. R. (2002). Natural Turn-Taking Needs No
Manual: A Computational Model, From Perception to
Action. In B. Granström, D. House, I. Karlsson (eds.),
Multimodality in Language and Speech Systems, 173-207.
Dodrecht, The Netherlands: Kluwer Academic Publishers.

[4] Thórisson, K. R., H. Benko, A. Arnold, D. Abramov, S.
Maskey, A. Vaseekaran (2004). Constructionist Design
Methodology for Interactive Intelligences. A.I. Magazine,
25(4): 77-90. Menlo Park, CA: American Association for
Artificial Intelligence.

[5] Thórisson, K. R. (2008). Modeling Multimodal
Communication as a Complex System. In I. Wachsmuth &
G. Knoblich (eds.), Modeling Communication with Robots
and Virtual Humans, LNAI 4930, 143-168. New York:
Springer.

[6] Wood, M. F. and S. A. DeLoach (2001). An Overview of the
Multiagent Systems Engineering Methodology. In Agent-
Oriented Software Engineering, LNCS, vol. 1957. Berlin:
Springer, January, 207-221.

[7] Wooldridge, M., Jennings, N. and Kinny, D. (2000). The
Gaia Methodology for Agent-Oriented Analysis and Design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285-3.

