
Methods for Complex Single-Mind Architecture Designs 
(Short Paper) 

Kristinn R. Thórisson 
CADIA / Dept. Comp. Science 

Kringlunni 1 
103 Reykjavik, Iceland 

+354 898 0398 

thorisson@ru.is 

Gudny Ragna Jonsdottir 
CADIA / Dept. Comp. Science 

Kringlunni 1 
103 Reykjavik 

Iceland 

gudny04@ru.is 

Eric Nivel 
Center For Analysis & Design of 

Intelligent Agents 
Kringlunni 1 

103 Reykjavik, Iceland 

eric@ru.is 
 
 

ABSTRACT 
The implementation of software systems with large numbers of 
heterogeneous components calls for a powerful design 
methodology. Although several such methodologies have been 
proposed, many lack application to construction of single-mind 
systems. We have employed the Constructionist Design 
Methodology (CDM) in building several such systems, including 
an autonomous radio show host. Proposing modules 
communicating through messages via blackboards as key building 
blocks for interactive intelligences, the methodology has been of 
considerable help in the early stages of designing several large 
architectures. This paper describes efforts to extend the CDM with 
more detailed support for the modularization process. We detail 
our use of a combination of abstraction and finite state machines 
in modularizing the realtime turntaking system of the radio show 
host. Our experience shows considerable benefits and added 
flexibility in the creation of large architectures when using the 
new modularization principles.  

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Modules and interfaces. I.2.11 [Artificial Intelligence]: 
Distributed Artificial Intelligence – Coherence and coordination, 
Intelligent agents. I.6.5 [Simulation and Modeling]: Model 
Development – Modeling methodologies. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Methodology, design, architecture, speech, interactive, realtime, 
communicative humanoids, single-mind architectures. 

1. INTRODUCTION 
The creation of realtime dialogue systems containing a large set of 
integrated functionalities requires a strong development 
methodology. Unfortunately, many of the methodologies that 

have been offered for this purpose, e.g. multi-component and 
agent-based simulation and modeling (cf. [6,7]), suffer from lack 
of actual experience in artificial intelligence projects, especially 
where the focus is the construction of single-mind systems, e.g. 
robotics or autonomous radio show hosts – that is, systems where 
a single external body has to be managed as a limited resource. 
Such systems put strong – and unique – requirements on 
coordination and temporal adequacy in the architecture.  

Modularity is a highly desirable feature of any complex system as 
it keeps transparency and openness in the architecture. However, 
it means decoupling of components, which means increases in 
coordination between them. Thus, the kind of modularity and 
methodology one adopts is key. One our goals is to explore how 
true flexibility can be obtained in the development of large 
evolving systems. General software engineering methods are 
appropriate when the target system is clearly and correctly 
specified, as is the case is standard IT development. This approach 
can turn into a burden, however, when the target system is built 
incrementally and experimentally, as continual expansion often 
changes the system’s very specification. The majority of 
methodologies intended for agent-based systems, e.g. MaSE [6], 
which one might expect to do better in this respect, do not address 
the need for strong iterative design either. The Constructionist 
Design Methodology (CDM, [4]), however, was specifically 
created to help build interactive A.I. systems addressing, in 
particular, the problems associated with iterative design for large 
heterogeneous agent-based systems with complex information 
flow. We are in the process of building a fully autonomous radio 
show host. One of its tasks will be to interview people over the 
phone. The current system is a (growing) collection of over 40 
(semi-autonomous) modules that communicate (1-to-n) via 
discrete messages; each module having non-trivial operational 
logic and interactions. In this paper we propose an extension to 
the modularization principles of the CDM and evaluate them in 
the context of the development of a subcomponent of the radio 
show host system, namely, its turntaking system.  

Following the CDM, an initial rough design sketch of the 
turntaking system was fleshed out over three iteration steps (the 
turntaking system itself will be described in a future paper); the 
new modularization principles were applied and evaluated during 
development the process. The results show that the new principles 
are highly useful in keeping complexity to manageable 
proportions and allowing continual expansion of the system, 
including dynamic changes in design requirements. 
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2. CDM 
The Constructionist Design Methodology has been applied in the 
construction of several interactive systems (cf. [2,4]). CDM 
proposes using publish-subscribe techniques and blackboards as 
the backbone for integration, as this has significant benefits (see 
e.g. [4]) in systems that need to be experimentally and 
incrementally built. CDM proposes 9 principles (semi-
independent steps) to help with such development; the full set is 
described in [4]. Here we will zoom in on the principles relating 
to iterative modularization, (CDM principles 3a and 3c) in relation 
to iteration (CDM principle 5). The modularization principle in 
the CDM states: 

CDM principle 3.a: Classify modules into one of three roles, 
according to whether they serve perception, 
decision/planning, or action/animation. Each of these roles 
can be further split into more levels. For example, high-level 
perception versus low-level perception, short-, mid- and long-
term planning, and high-level animation versus low-level 
animation. 

We have found the use of abstraction levels to be indispensable, 
but how abstraction is used in architectural design is neither 
obvious nor well understood. The guidelines in the CDM for 
using levels is short; here we put special focus on the construction 
of modules and messages in relation to abstraction levels. 

CDM’s iterate principle (#5) states that several of the principles, 
including 3a above, must be iteratively applied in the process of 
building a full, complete system. It plays an especially important 
role in the modularization process, as modules define messages 
and messages reciprocally define modules. Here we show how 
this principle interacts with 3a as we expand the architecture.   

3. THE RADIO SHOW HOST SYSTEM 
Elsewhere we have presented the view that turntaking and natural 
dialogue is a complex system that is best modeled as (a large 
number of) interacting modules [10]. Following CDM principle 
3a, we started at the low level with several perception modules for 
extracting prosodical information from a person's speech. Then 
we expanded the system with a set of control/decision modules 
that, based on the perceptual processing output of the perception 
modules, decided which turntaking state is most likely (“I have 
turn”, “other has turn”, etc., see [3] for details). The current 
system is an intermediate state between the basic starting point 
(based on [3]) and what we intend to build for a fully-fledged 
radio show host. At present the system contains the following 
functionalities, each of which is represented by one or more 
modules: Pitch Tracker (low-level perception): From the raw 
audio signal, identifies pitch, pitch derivative, speech on/off, 
silences and hums. Pitch Analyzer (mid-level perception): 
Analyzes pitch in more detail, as well as overlapping speech and 
silences. Speech Recognizer (high-level perception): Translates 
audio signal to text (continuous speech recognition). Interpreters 
(high level perception): Several perception modules get input 
from a single Speech Recognizer; each interpreter has its specified 
task, e.g. look for nouns, dates etc. Interpretation Director 
(high-level perception): Receives input from Content Planner (see 
below) on what to look for and analyses the output of all 
Interpreters based on that information. Content Planner (high-
level decision): Composes what to say, based on inner goals and 
information from the ID. It includes knowledge bases for creating 
semantic responses. Dialogue Planner (high-level decision): 

Delivering the next “executable thought unit”, as provided by the 
Content Planner, producing fillers or gracefully giving turn when 
content is not available from the CP within acceptable time limits; 
takes input from perception and internal states, e.g. motivation to 
speak; keeps a conversation going (as is possible without 
information about the topic). Action Generation (Speech 
Synthesizer, mid-level action): Executes content provided by CP 
when the Turntaking and DP systems claim that the system has 
the turn.  

Turntaking System (low-level decision): This is the key system 
that we will discuss here. It is composed of roughly 20 modules 
that are responsible for the realtime delivery of speech acts by the 
radio show host. It assesses the dialogue state based on input from 
perceptual modules. In this system various perception and 
decision mechanisms related to turntaking are grouped via global 
states that describe which perceptions and decisions are relevant 
at any point in time, and thus they represent the disposition of the 
system at any point in the dialogue, e.g. whether it is appropriate 
to expect a certain turntaking cue to be produced, whether it is 
relevant to generate a particular behavior (e.g. volume increase in 
the voice upon interruption by the other), etc.   

4. DESIGN ITERATIONS 
One of our goals for the radio show host is to enable it to do 
interesting interviews with listeners, which calls for a powerful, 
dynamic turntaking (TT) system enabling it to deal with 
hesitations, interruptions and various other features of fast-paced 
on-air interviewing. The use of FSMs is prevalent in current 
engineering practice; more often than not, FSMs limit the ability 
to expand a system as needed as additions and extensions require 
significant reengineering of what was built before; methodologies 
relying on FSMs generally work against dynamic expandability. 

Version 1. Following CDM, we started with a basic version of the 
turntaking system (based on [3]), using a finite state machine 
(FSM) to represent the main states of the dialogue, e.g. “I have 
turn”, “Other gives turn”, etc. These were implemented as semi-
global state variables with standard transition rule design; 
transitions are controlled by perceptual modules monitoring the 
pitch, silences and filler words (“uhm”, “ahh”) of the interviewee 
(in this phase the only perception used was pause duration). The 
Content Planner (CP) system generated utterances to be spoken 
and when the TT system deemed that the agent had the turn the 
Dialogue Planner (DP) commanded the speech synthesizer to say 
the next sentence(s). This architecture is depicted in Fig. 1.  

The result of this phase was thus a “polite” but dumb and reactive 
TT system that can interact with a human relatively reliably, 
perceiving appropriate turn transition points (based on the analysis 
done by perceptual modules), and decide to either give or accept 
turn (depending on whether it had something to say). Reliable 
performance of this version was reached with pause threshold set 
to 1-1.2 seconds, that is, the system waits for a pause of that 
duration before assuming that it can take the turn. This is quite a 
bit slower than the average turntaking speed of a human speaker 
(200-300 msec [1]). 

Version 2. Next we wanted to give the radio show host the 
additional ability to both want turn (e.g. if it has something 
important to say) and perceive that other wants turn when it is 
speaking. Among other implications these modifications meant 
that new states need to be added to the existing FSM. Generally, 
FSMs are difficult to expand because each change may affect a 



Figure 1. Partial view of the initial 
turntaking system. An FSM 
represents valid dialog states; module 
X produces next thing to say and 
sends it (a) to a speech synthesizer 
module Y; Y is only active when the 
radio show host has the turn (TT:S4).  

significant part of the 
system and version 2 
modifications called 
for new states, new 
transitions, as well as 
modified older 
transitions. Yet we 
wanted to keep the 
current system. A 
better method for 
expanding the 
(otherwise useful) 
FSM was therefore 
sorely needed. 

We employed a 
different way of 
handling the state 

transitions in the FSM: Instead of monolithic, integrated 
state+transition rules, we decoupled the states and the transitions 
via the modules+messages paradigm. In this scheme modules 
handle the transitions by posting state transition messages to a 
global state system (via middleware). With this solution adding a 
new transition, whether it had been anticipated by the designers or 
not, requires simply adding one (or more) module(s) that trigger 
that particular transition (Fig. 2).  

Figure 2. States and their transition rules are 
decoupled via transition modules that change states via 
messages. Here, F and Z (only active during TT:S1) 
control the transition from TT:S1 (other-gives-turn) to 
TT:S4 (I-have-turn) independently of each other. 

The result was a more “tolerant” radio host – it can now also yield 
the turn if deemed appropriate and tries to indicate politely 
whenever it wants the turn (e.g. by producing fillers). The new 
design methodology allowed us to significantly improve the 
system’s speed of taking turns, with minimal modifications: (i) the 
addition of one new state, (ii) the addition of a single module for 
controlling the transition to it and (iii) configuring one of the old 
modules to be active in the new state. This allowed a reduction 
from 1 second to 400 msec for pause threshold, tripling the 
system's ability to take turn quickly. This version, however, is still 
missing significant functionality, such as being able to interrupt. 
Moreover, the “flat” architecture with a “pool” of modules 
suggests no constraints on which modules are allowed to connect 
to where; we know from experience that “free-form” additions of 

connections will very quickly turn the system into unmanageable 
spaghetti. More detailed design principles are needed. 

Version 3. Next we wanted the host to be able to interrupt the 
user. A motivational factor, urge to speak, would determine 
whether the host should take turn and start speaking (no matter 
what its perceptual, decision and TT states were saying). This 
addition meant that either the TT FSM would be modified with a 
state transition from every current state to the I-have-turn state, or 
the TT system could be allowed to be interrupted from the outside 
by another system, external to its FSM-based mechanism. We 
chose the latter option: The Dialogue Planner (DP) was given the 
extra role of modifying the execution of the TT FSM. We 
assigned the DP to a higher abstraction layer than the turntaking 
system (Fig. 3).  A new module (A) was added to control TT-
relevant state switching messages in the TT FSM, introducing an 
externally-activated “state jump” (c). The DP thus simply added 
transition paths to the existing system, other things staying exactly 
the same. With the DP system at a more abstract level we 
managed to expand the whole system, keeping connections 
between the TT and DP to a minimum.  

The resulting radio show host turntaking system still has all the 
functionality of its previous versions, being able to take turns 
relatively quickly, but now with the added capability of being able 
to “choose to be impolite” based on a higher-level motivation, 
taking turn even when the other person doesn't want to give it. 
Meanwhile the TT system retains its original modularity, and it is 
open enough to allow external steering.  

Figure 3. Functions related to longer time scales and 
higher-level concepts (upper plane) are separated from 
more reactive parts of the system (lower plane).  

A feature of the development of hierarchical layers of modules, 
according to the CDM, proposes using decomposition to provide a 
certain degree of plasticity in the module arrangement: The degree 
of plasticity we obtained in this construction process – and thus in 
the resulting overall system – is directly related to the degree of 
openness of modularization at each given stage of development. 
This is  a clear advantage over other approaches. The advantages 
became even clearer when we wanted the system to automatically 
adapt to its interlocutor over time. Implementing distributed 
learning algorithms within each of the existing modules would be 
a rather complex task. Following the CDM we created a separate 
Learner module; this is the only module that needs to know a 
learning method (currently Q-Learning), providing abstract data 
(patterns of action/consequence relations) as output. It does not 



make any assumption on subsequent usage of this information. 
Symmetrically, modules consuming this data do not need to know 
how it has come about (why action x is better than action y in state 
z), they only have to perform e-greedy search on the provided 
state space for the best action to take at any point in time.  

Figure 4: Modules are arranged in abstraction layers, 
and are given structural roles, processing and/or 
steering. These modules modify shared system states 
while their interaction span across the layers. 

5. MODULARIZATION OF STATES 
In our approach system expansion was first achieved by using an 
explicit, (semi)global FSM. We then applied modularization 
principles to the modules' interaction space itself – i.e. the FSM – 
and distributed states in another dimension, orthogonal to the 
dimension of module layering. A subset of the system states 
represents the “skeleton” of a given behavior, defining a natural 
partition in the entire set of related states (Fig. 4). This 
partitioning is orthogonal to the abstraction hierarchy, and 
depicts the natural indirect coupling of modules via transitions 
along the state graph.  

To support FSM-based designs in the CDM we introduce the 
following principle: Orthogonal partitioning of system states: 
Explicitly-represented states are grouped and partitioned in 
separate blackboards, each serving the role of an interaction 
space for modules in charge of steering a particular behavior of 
the system. Note that a “behavior” applies to both overt and covert 
actions, allowing complex couplings between internal and 
external control and event mechanisms.  

In the scheme we are proposing, using a combination of FSMs 
and message passing, modules are automatically activated upon 
the transition to a state they are registered for, and state switches 
are executed immediately upon reception of a state transition 
message. This has potential for race conditions: Be the system in 
state A, transitioning to B on message TAB and C on TAC; if module 
M1 fires TAB and – concurrently – M2 fires TAC, then the first 
module given the CPU, say M2, will determine the next state, C, 
invalidating the transition message posted by the unlucky module 
M1. In our approach, if concurrent steering of local system states 

is needed, we use dedicated modules responsible for module 
activation; such modules resolve conflicting concurrent state 
transitions and send final state transition messages. In this way 
modules realizing transitions do not send state transition 
commands but transition requests to the conflict resolvers. This 
way the modularization of the interaction space proposed above 
remains valid and without race condition problems.  

6.   CONCLUSION 
To date the CDM has been useful for guiding our designs. The 
results based on the work described here show that the new 
modularization methods help extend the present CDM principles, 
allowing even larger architectures to be built iteratively; we have 
grown the current system to more than 60 highly complex, 
heterogeneous modules, exchanging over 100 message types in a 
dynamic 1-to-many arrangement. These new methods help ensure 
that continual design refinements can continue at a low cost in 
complex systems. Displacing the complexity from “fat black-
boxes” to more numerous – but smaller – modules collaborating 
to steer the overall system state, according to our principles, gives 
the designer the extra level of plasticity needed for build-run-
experiment-augment iteration cycles. 
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