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Abstract. Creative play requires a fertile but well-defined design space. This pa-
per describes a design process for creating three-dimensional virtual reality play
spaces that allow the development and exploration of social interactions and re-
lationships. The process was developed as part of a commercial research effort to
create an interactive virtual reality entertainment system that allows children to
engage in creative and constructive play within an established action/adventure
framework. The effort centres on designingAI characters for aconstructive nar-
rative. We claim that a behaviour-based architecture is an ideal starting point for
developing agents for such a process, but that its full realization requires addi-
tional architectural structures and methodological support for the design process.
Here we describe an architecture of these characters, relate architectural modu-
larity to the realization of construction and play, and propose a three-layer design
process for producing fertile and æsthetic constructive narratives. We also discuss
our experience in implementing these ideals in an industrial setting.

Keywords: Design Team Methodology; Constructive Narrative; Personality and Ac-
tion Selection; Character Architectures; Behaviour-BasedAI .

1 Introduction

“Like good improvisational theatre, cyberspace presents the opportunity for the audi-
ence to create its own characters and worlds, to write its own plots and stories, and
to essentially become the directors, producers, and actors within their own imaginary
worlds.” (Pearce, 1997, pp. 345) For this potential to be realized, there must be tools for
the creative design of personalities. A modern view of creativity is that of a Darwinian
process, involving novel recombination of existing design elements (Simonton, 1997;
Boden, 1987). Part of what makes creativity challenging in artificial intelligence is that
a single element of a creative play often takes on multiple roles in such recombination.



For example, a banana may be used as a telephone, bridging two or more represen-
tational threads simultaneously. This is a problem not only for those planningAI rep-
resentations, but also for those employed in designing props for encouraging creative
play. The challenge of designing for creative play lies in providing a rich and interesting
design space without limiting the creative potential of participants’ experience in that
space.

One solution is to allow the players to become constructors of their own experience.
This idea has been explored to a much greater extent spatially than socially. Examples
of primarily spatial games include InternetMUDs, games such as SimCity (Joffe and
Wright, 1989), and constructive toys, such as blocks or LEGO. Socially constructive
toys also exist, though in fewer variants. For example, role-playing games such as Pur-
ple Moon’s ‘girl games’ (Cassell and Jenkins, 1998), gave the player the objective to
find a place for the main character in an established society. The game Creatures (Grand
et al., 1997) allows a player to evolve a society. TheNICE project (Roussos et al., 1997)
allows children to construct virtual gardens in a multi-user virtual world where social
interaction with other “gardeners” is part of the world. However, none of these allow
the player to freely create characters and narratives of complex personal interactions.
This is partly because the right technology has not found its way into virtual worlds,
and partly because personality creation has not been explored in a sufficiently thorough
manner to allow developers to take the necessary building blocks off-the-shelf.

In this paper we describe a character-based approach to constructive narratives, and
a design process for constructing a play environment to support creative play. Designing
such a system can in itself be a highly creative act, but it is particularly challenging to
do so in a way that allows users ample opportunity to express their own creativity. The
design process is separated into three levels:

1. a high level, highly artistic design level for creating story and characters,
2. a middle, behaviour-based design level for creating personality in the agents, and
3. a low level for design of basic behaviours.

In this paper, we primarily focus on the middle layer, which is the domain of theAI

technologist. This is the layer to which we, asAI developers, can make the most contri-
bution. In our experience, theAI engineer must not only master his or her own technical
problems, but also serve as an important facilitator for the overall project. TheAI com-
ponent connects the visions of the character design team to the reality of the virtual or
mechanical world. TheAI engineers are consequently in the difficult position of need-
ing to understand and communicate the constraints of each end of the design to the
other, as well as understanding and communicating their own technical requirements
and capabilities.

We begin by describing SoL, the architecture for virtual reality characters we de-
veloped over the course of aVR entertainment project at LEGO Digital. SoL combines
two already establishedAI architectures, Ymir (Th́orisson, 1996, 1999) and Edmund
(Bryson and McGonigle, 1998; Bryson, 1999). We then describe the design process
outlined above in more detail. Finally, we illustrate the methodology with an example
drawn from the LEGO project, including lessons learned.



2 SoL: A Character Architecture for Constructive Narrative

Much research into agents for entertainment concentrates on the problem of combining
the concept of a script with the notion of autonomous, reactive characters (Hayes-Roth
and van Gent, 1997; Lester and Stone, 1997; André et al., 1998). Our constructive nar-
rative approach eliminates this problem by changing the top level creative design from a
script to acast of characters. This simplifies the task of the player by removing the need
for character addition, substitution, alteration, or removal. It has the penalty of remov-
ing a substantial element of narrative structure: a sequential order of events. However,
this problem has already been addressed by the creators of role-playing and adventure
games. Their solution is that plot, if desired, can be advanced by knowledgeable char-
acters, found objects, and revealed locations. Structure is produced through the use of
geographic space as well as character personalities. Personality traits such as loyalty,
contentment or agoraphobia can be used to maintain order despite a large cast of au-
tonomous character, by tying particular characters to particular locations. Developing
such characters requires an agent architecture powerful enough to support this com-
plexity. It also requires sufficient modularity to allow reasonably quick construction of
behaviour patterns. We claim that SoL has these qualities.

Most virtual reality agent architectures are fundamentally behaviour-based, and at
least partially reactive (see Sengers, 1998, for a recent review and critique). This is be-
cause the reactive, behaviour-basedAI revolution of the late 1980s (Kortenkamp et al.,
1998) was primarily the triumph of a design approach. Behaviour-basedAI is sim-
pler to design than a monolithic intelligence system because it allows the decomposi-
tion of intelligent behaviour into easy-to-program modules, with more localised control
structures. Specifying that the intelligence should also be reactive removes the complex
problems of learning and constructive planning from the agent. In spite of limiting the
potential complexity of the agent’s capabilities, the behaviour-based approach has been
more successful in achieving interesting, believable characters than any fully human-
specified or fully machine-learned approach simply because it empowers the human
designer.

The limitations of completely reactive systems have been widely recognised, and
are addressed in numerous architectures (see for example Hexmoor et al., 1997). Some
authors have proposed that the community has moved beyond both constructive and
reactive planning to a new dominant paradigm, situated planning (Levison, 1996; Ko-
rtenkamp et al., 1998). Situated planning architectures generally include reactive be-
haviours, pre-stored plans, elements of learning, and possibly constrained forms of on-
line planning. Two of the most popular architectures of this paradigm arePRS(Georgeff
and Lansky, 1987) and3T (Bonasso et al., 1997). Both of these have at their centre
a scripting language for allowing the specification of sequential and hierarchical be-
haviour structures. These structures provide additional information (in the form of in-
ternal state) for action selection in situations that might be perceptually identical. This
allows the situated planner greater behavioral flexibility than the fully reactive planner,
which is dependent on current sensing to select its next action. The script structures
also allow for the combination of simple behaviour elements into larger modular forms,
again simplifying the design task.



The work described below uses a new architecture called Spark of Life (SoL),
which merges features from two prior architectures developed by the authors, Ymir
(Thórisson, 1996, 1999) and Edmund (Bryson and McGonigle, 1998; Bryson, 2000).

Ymir is a highly modular, hybrid architecture which combines features from classi-
cal and behaviour-basedAI , and provides a system that can simulate in great detail the
psychosocial dialogue skills of humans. Real-time, face-to-face dialogue encompasses
a broad range of perceptual, cognitive and action requirements. Ymir addresses these
phenomena, including natural language and multimodal input and output (facial ex-
pression, gesture, speech, body language), load-balanced handling of time (from short
reactive behaviours like fixation control to the execution of several seconds of multi-
modal actions), and employs a modular approach that enables the creation of complex,
human-like behaviour.

Edmund is also a hybrid architecture, which emphasises the integration of semi-
autonomous behaviours which govern sensing, acting and learning. This integration
is done by a specialised module for situated or reactive planning. Edmund’s primary
contribution to SoL is planning: it provides Parallel-rooted, Ordered, Slip-stack Hier-
archical (POSH) action selection.POSHaction selection allows for persistent, rational-
appearing behaviour generated through the appropriate attention to a task, while at the
same time allowing for the specification of triggers, drives and higher-level goals which
can distract or interrupt an agent, allowing it to remain broadly reactive.

By combining the strengths of both architectures within the modular architectural
approach of behaviour-basedAI , SoL encompasses the following capabilities: multi-
modal perception and action, real-time speech input and output, memory, and planning.
SoL’s modularity combined with robust, simple control makes it ideal for constructive
play by allowing for easy additions and modifications.

The rest of this section details some of the contributions of Edmund and Ymir to
SoL, with particular emphasis on aspects that relate to our design methodology de-
scribed in the remainder of the paper. We also describe an iterative methodology for
designing the modules and plans that make up a particular character.

2.1 Edmund’s Contributions to SoL

Behaviour-basedAI simplifies design and increases responsiveness in complex intelli-
gent agents by decomposing intelligence into specialised modules orbehaviours. Be-
haviours autonomously control a particular sort of action, such as walking or laughing,
providing not only motor competence, but whatever sensing and perception is necessary
for their appropriate expression. Although this decomposition simplifies the design of
individual actions, it increases the complexity of coordinating behaviour in a coherent
manner. This problem is known as behaviour arbitration, a special case of the problem
of action selection.

Action selection under Edmund is handled by reactive plans specified in a scripting
language. The most primitive elements of these scripts are action and sensing inter-
faces to the agent’s behaviours. Edmund’s scripting language allows for three levels of
control structure above these primitives. First is theaction pattern, a simple sequence
which run uninterrupted except in the case of radical failure or severe high-level atten-
tion disruption (described below). The second is acompetence. A competence consists



of a prioritised set of elements, whose behaviour tends to converge towards the highest
priority element, the goal. When a competence is active, it selects the highest priority
element which is currently capable of being executed. If that element is the goal the
competence finishes successfully, if no elements fire the competence fails. Their ele-
ments may consist of either behaviour primitives, action patterns or other competences.

The highest possible level of an Edmund script is a special form of competence
called adrive collection. The elements of a drive collection provide the activation or
motivation for a coherent section of the script. A drive collection’s elements, while pri-
oritised like a competence, may also be scheduled. Thus if a high priority element has
fired recently, it may be inhibited in order to allow lower priority elements to execute.
Drives also maintain overall behaviour coherence by being persistent. As described
above, competences and action patterns both terminate routinely. Further, if a compe-
tence selects an element which is itself a competence, the parent competence is replaced
by its child in the action scheduling. This feature is called aslip-stack hierarchy, and
allows for indefinite behaviour chaining or looping. If a long chain does terminate, the
drive remembers the root of the behaviour, and returns to this starting point.

For an example of a competence, think of a character that needs to drink out of a
particular chalice. A high-level competence for this problem might look roughly like
this:

1 (holding chalice) (touching held-object mouth)goal
2 (holding chalice) drink-from-cup
3 (see chalice) grasp-attended-object
4 (desire chalice) find-attended-object

Conditions are on the left, goals on the right. The highest priority element for which
its preconditions indicate it can fire, will fire. The highest priority element is to recog-
nise when the goal condition has been met: in this case when the chalice is at the lips
of the character. If the goal has not been met but the character is holding a chalice, this
competence will simply direct the character to perform a primitive drinking motion.
If the character is not yet holding the chalice, but is within line-of-sight of it, it will
attempt to grasp the object. In this case, grasp-attended-object would almost certainly
be another competence, since the agent may have to move itself to within reach of the
object, which may in itself be a complicated maneuver.

Notice that because the competence is set up to be a reactive plan, it can be oppor-
tunistic — if the agent is handed a chalice while it had been seeking it, it will immedi-
ately drink from it, it can skip the grasping step. Similarly, if the grasp fails for some
reason, then that step can be repeated. Notice that this competence will fail if none of
the actions can trigger. This allows for a measure of self-control — the desire for the
chalice not only marks an internal deictic reference so that the general primitivefind-
attended-objectcan operate, it might also monitor the character’s frustration level. If
the character cannot find or grasp the chalice over time, the desire predicate may fail,
allowing an alternate competence to operate.

For an example of a slip-stack hierarchy, consider that a bat may have two typical
behaviours which can never be expressed at the same time:orbiting which is flying
around the outside of a tower, andattackingwhich means swooping towards a person



inside a room. Because of the slip-stack mechanism, it is possible for theorbiting com-
petence to contain an element that specifies thatif the bat is called by another character
thenit switches to theattackmode, while at the same time theattackcompetence may
have a precondition that results in the bat returning toorbit.

Because no stack is maintained, this chain may be looped indefinitely or abandoned
when a competence fails, but there will be no break or delay in the bat’s behaviour.
The return to the root facilitates coherent as well as reactive behaviour. Each element
of a drive collection is persistent. If a competence terminates, the drive element that
was attending to it switches attention to its original, ancestral root. If the environmental
context has not changed much, then attention will again pass to the parent of that com-
petence. The parent is then free to examine the environment and determine whether
to execute the competence again, or whether one of its own higher priority elements
can now fire, and its own plan progress. In the chalice example, this would be the case
if the competence for grasping-attended-object completed. The drinking competence,
once attention had returned to it, would then be able to sense whether it was holding the
chalice, in which case it would proceed to drink, or whether it was not, in which case it
would attempt the grasp again.

Experiments comparing Edmund’sposhapproach to action selection with other re-
active and behaviour-based architectures show Edmund’s advantages over purely reac-
tive approaches (Bryson, 1999). Edmund has also been compared and integrated with
related approaches such asPRS(Georgeff and Lansky, 1987), though not in a rigorous
experimental setting (Bryson and Stein, tion). However, Edmund had not previously
been applied to a problem of the complexity of a virtual reality character capable of
full-scale, multi-modal natural language dialog. Such complexity and specialisation re-
quires additional architectural support beyond Edmund’s design.

2.2 Ymir’s Contribution to SoL

Edmund’s planning structure works well for high-level design, but is too cumbersome
for micro-managing details of behavioral implementation. It also does not by default
contain customised knowledge-based behaviours for dialogue skills, world knowledge,
nor mechanisms for orchestrating the sensory systems and motor control of multiple
modes. Real-time human to virtual-reality character interaction and dialogue requires
coordination of complex sensory processing and multimodal action control on a broad
range of time scales, from gaze control to telling stories. Fortunately, Edmund, as a
behaviour-based architecture, is designed to exploit expertise from other, autonomous
or semi-autonomous sources.

In stand-alone implementations of Edmund, fine behavioral details are handled by
the platform, either by a robotic platform (Bryson and McGonigle, 1998), where physics
combined with well-designed behaviours provide continuity, or by an abstract artificial
life platform with discrete time-steps (e.g. Bryson, 1999), where there are no fluencies
below a certain level of detail. The complexity of dialogue inVR characters is the do-
main. Providing fluid behaviour inVR, where physics cannot be relied on, and managing
the special complexity of natural language and multi-modal dialogue are the specialities
of Ymir. Consequently, in SoL, Ymir provides the behaviour architecture framework as
well as many specialised routines for dialogue processing.



Ymir has been thoroughly tested in an interactive, conversational system (Thórisson,
1996). Results show the behaviour patterns generated by Ymir in real-time interaction
with actual people to be comparable to interaction between two human beings engaged
in task-oriented, and its performance by users is considered very life-like and believable
(Thórisson, 1998, 1996).

The six main types of elements in Ymir are:

1. Perception: A set of Unimodal Perceptors, and Multimodal Integrators.
2. Decision: A set of Deciders, overt and covert.
3. Action: A set of Behaviours and Behaviour Morphologies (low-level motor pro-

grams).
4. Interprocess communication: A set of Blackboards.
5. Knowledge: A Dialogue Knowledge Base, and a set of Topic Knowledge Bases.
6. Organisation: Four semi-independent process collections: three perception-decision

layers, and an Action Scheduler.

The three perception-decision layers group perception and decision objects together
into time-dependent groups, which are used to load-balance process execution and pri-
oritise decisions into high, medium and low priority for execution. Multimodal sensory
data can flow in to all layers (but not all data is relevant everywhere). Ymir can ac-
commodate any number of modules — behaviour, perception, decision planning, and
knowledge, and these can be added incrementally, since all control and information flow
happens via message passing through Blackboards. Blackboards thus allow communi-
cation between the modules, both within process collections and between. Typically,
events in the model are non-deterministic. That is, the results of events are not guar-
anteed since they take into account unpredictable delays and system load at all levels
of processing in a distributed fashion. The Action Scheduler uses a Motor Behaviour
Lexicon, consisting of hierarchically defined action elements, to carry out motor-level
actions in small increments based on decisions from either Decider modules or from the
Edmund competences. In the current implementation a graphics system receives output
from the Action Scheduler and controls addressable relative-positions for a number of
control points that link to the character’s anatomy, in our case creatures with up to 10
degree-of-freedom movement.

Behaviour Requests are produced by the Decider modules and are “intentions” to
perform specific acts; the acts can be executed in many ways by selecting from a set of
Motor Behaviour Morphologies available for each act. Motor Behaviour Morphologies
are chosen from a library of alternatives, constructed as anAND-OR tree. The tree uses
the idea of stored postures, as well as the idea of hierarchical storage of increasingly
smaller units. This method for representing motor control leads to a database where
functional and morphological definitions of motion co-exist in the same space, with
no need for distinct division lines between the two classes. This is powerful because
it allows a designer of decisions to access any behaviour node with a simple reference
(e.g. “blink-once”, or “smile”), and allows for very rapid construction once the Motor
Behaviour Lexicon has been created. (Alternatively the Motor Behaviour Lexicon can
be created after the fact to mirror the decisions that the creature has to turn into motor
plans.) Competences trigger any Motor Behaviour Morphology and have the Action
Scheduler take care of executing the resulting motion.



The Deciders are explicitly modelled, separating perception processes in the Per-
ceptors and action morphology and motor control in the Action Scheduler. This has
several advantages, the primary one being simplicity of construction. Another feature
particularly relevant to playful worlds is a mind’s control from the outside: Events in
the world (represented both symbolically or metrically) can have direct influence on the
creatures’ minds — giving a creature virtualESP simply involves connecting outside
events directly to its decision processes. Outside events can also be connected directly
to the knowledge structure, leaving the decision mechanism untouched. A creature with
such virtualESPcould tell children about things that are happening in a remote part of
the world as they speak. The same feature allows easy remote control of creatures, either
at the lowest motor level or at a more abstract level, using buttons labelled with “smile”,
“show anger”, “bid-farewell”, etc. A separate representation of motor behaviour patters
allows the addition of knowledge and decision mechanisms that access motor patterns
already created, at a high level, allowing “plugging” and “unplugging” of knowledge,
such that a player can give a creature the ability to tell stories by simply plugging in the
story telling module.

The Edmund planning mechanism was fitted into Ymir’s architecture using the basic
modules of Ymir, greatly extending the power of the original implementation without
introducing new modules or changing the way they communicate. We believe that this
combination is ideal because it addresses psychosocial dialogue skills, 3D navigation,
planning, natural language, vision, and more — a broad range of behavioral phenomena.
It is extremely well-suited to construction because of its modular nature.

2.3 SoL and Behaviour Oriented Design (BOD)

As mentioned earlier, the SoL architecture provides the framework for the middle layer
of our proposed three-layer design approach.AI facilitates the creation of a socially
engaging world; however such a world also requires careful overall creative design,
and a rich visual and behavioral structure. Because SoL is both behaviour based and
hasPOSHaction selection, it is an excellent platform for practising Behaviour Oriented
Design.BOD breaks theAI design process into two phases: an initial specification phase
and a cyclic development phase of implementation and testing.

The initial decomposition is a set of steps. Executing them correctly is not critical,
since the main iterative development strategy includes correcting assumptions from this
stage of the process. Nevertheless, good work at this stage greatly facilitates the rest of
the process. The steps of initial decomposition are the following:

1. Specify at a high level what the agent is intended to do.
2. Describe likely activities in terms of sequences of actions. These sequences are the

basis of the initial reactive plans.
3. Identify and prioritise goals or drives that the agent may need to attend to. This

describes the initial roots for thePOSHaction selection hierarchy.
4. Identify an initial list of sensory and action primitives from the previous list of

actions.
5. Identify the state necessary to enable the described primitives and drives. Cluster

related state elements and their primitives into specifications for behaviours. This
is the basis of the behaviour library.



6. Select a first behaviour to implement.

The remainder of the development process is not linear. It consists of the following
elements, applied repeatedly as appropriate:

– coding behaviours,
– coding reactive plans,
– testing and debugging code, and
– revising the specifications made in the initial phase.

Heuristics for revising specifications, particularly for deciding whether intelligence
should be coded as part of a behaviour or as part of a reactive plan, have been described
elsewhere (Bryson, 2000). One of the main attributes ofBOD is that it allows for modu-
lar development, so that a particular plan element might initially be stubbed as a simple
primitive, but then later in the development process be replaces by a more complex el-
ement, with no change to old reactive plan scripts. In fact, old scripts can be reused for
testing as changes to established behaviours are made. Similarly, replacing a plan with
a behaviour, if necessary, can be achieved with a minimum of disruption.

3 Designing Agents for Creative Play: the Three-Layer Approach

As mentioned in the introduction, creative play can be viewed as consisting princi-
pally of novel recombination of established elements. In fact, the evolutionary utility
of play is considered to lie in enabling an individual to acquire and rehearse complex
behaviours, as well as to learn appropriate situations in which to express them (Bekoff
and Byers, 1998; Byrne and Russon, 1998).

In our view, it would be a mistake to attempt to design agents which were ex-
pected to develop playful skills over time, in a self-sufficient a way. Children them-
selves take years to acquire such behaviours to any degree of entertaining proficiency.
Consequently, even if such a task were within the ability of science and technology, in
the relatively pragmatic and demanding field of entertainment, an artificial system is
probably best instilled from the beginning with as much knowledge as its designers can
impart. This has been referred to as the engineering approach to artificial intelligence
development (Ziemke, 1998), and follows from our work on Edmund and the Ymir
architectures.

Similarly, AI developers should not necessarily be expected to be sufficiently skilled
artists that they can create the plots and characters needed for a fully engaging interac-
tive play experience.AI seems to attract (or perhaps require) developers with a hubris-
tic belief in their own ability to replicate the thinking skills of others. However, good
artists devote years of attention, and often their formal education, to perceiving and
constructing the things that make a situation interesting, æsthetic and fun. Our design
process places theAI developer as an intermediary between the artistic and the engi-
neering aspects of the project, occupying level 2 of our design process model, specified
in Section 1. TheAI developer is in the best situation to understand both requirements
and restrictions of the overall project, and therefore has considerable responsibility for
communication as well as developing solutions.



TheAI expert is responsible for taking a set of motivations, goals, knowledge, per-
sonality quirks and skills, and creating an agent that will behave coherently according
to these. In a rich virtual environment designed for free, creative play an autonomous
character should be able to prioritise its goals and display its intentions. It should exhibit
both persistence and resolution while at the same time being aware and opportunistic. In
short, it should have a recognisable personality. Developing the initial set of character
attributes, however, is not necessarily solely the task of the agent expert. Itis neces-
sarily the task of one or more creative artists. The artist’s responsibility is to provide
well formed and interesting characters, skills and situations, to design potential plots
and plot twists, occupying level 1 of our design process model. In this, as in most in-
dustrial design, it will be best if the artists work in a team with the agent developers,
who can help the artists understand the limits of the agent’s behavioral and expressive
capabilities.

The agent developers are themselves constrained by the particular platform on which
the artificial agent is to be implemented. In robotics these constraints come from the
robot’s hardware; in virtual worlds they come from the graphics environment in which
the agent will be embodied. Creating this platform is level 3 of our design process. It is
the responsibility of theAI developer to provide requirements for, and understand the
constraints of, the underlying platform. Again, the character personality developer may
or may not be the correct person to develop the agent’s behavioral platform, depending
on whether the platform in this context also provides the basic behaviours, or behaviour
primitives, for the agents. It is our view that the motor control of an autonomous char-
acter belongs to the realm ofAI , but where precisely the “brain” meets the “body” can
get blurry, especially in a virtual world. Sometimes it makes sense to place smoothing
and blending functions into the “world” (i.e. the graphics environment itself), either
because of more efficient performance of the system or a cleaner implementation and
easier debugging. In nature, vertebrates have dedicated special systems for providing
such smoothing in their hindbrain, particularly the cerebellum (Carlson, 1994), as well
as being able to rely on physics for smoothness and consistency. Similarly, in a simu-
lated world the division between an agent’s own perception and the world itself may
not be well defined. This can become a point of contention because on either side of
the fence, graphics andAI , very different skill sets have been developed, and people
working on each side may prefer very different solutions to the problems at hand.

Grossly, these levels correspond to different sides of the BOD: the interface between
levels 1 and 2 leads to specifications of personalities and drives, and the interface be-
tween levels 2 and 3 lead to the implementation of the behaviours. But as is emphasised
under BOD, the design process has to happen iteratively. Many forms of technical con-
straint might only be recognised after development has begun. Further, as the system
develops, it can provide considerable creative inspiration to the designers. Even more
importantly, early users, particularly those coming from outside the project, will dis-
cover both shortcomings and unforeseen creative potential in the system. All of these
sources of information should lead to periods of redesign and renegotiation between
the various levels of the project. Further, personality may be demonstrated in subtle
motions best provided in the behavioral level, or complex behaviour may require or
suggest changes to the plans and drives. Thus all three levels of the design process must



be available for cyclic development and reanalysis. TheAI programmers working pri-
marily at level 2 cannot be abandoned to try to satisfy potentially impossible constraints
coming from isolated processes on either side of the project.

4 Case Study: Creating Characters for an Adventure Narrative

The design process described above was developed as part of a research effort at LEGO
to create an interactive virtual reality entertainment package that allows children to
engage in creative and constructive play within an established action/adventure frame-
work. The project illustrates the design principles above, and gives indication of the
efforts and difficulties involved. We will refer to theAI portion of this large-scale, multi-
faceted research effort as the “castle character project”. This effort included a detailed,
relatively large virtual world with a castle situated on rolling hills, surrounded by a
mountain range. A full moon hangs in the sky; the sun just under the horizon. Users
can enter the world either through a desktop, or as fully embodied virtual (humanoid)
LEGO characters with full body tracking and immersive glasses with displays.

Fig. 1. Still from “the castle project,” a real-time interactive virtual reality environment. Image
(c)1998 The LEGO Group



4.1 High Level Design

In the case of the castle character project, much of the character content was predeter-
mined, as it was a virtual version of an active product. The general appearance of the
characters, an outline of their personalities, as well as their world, had been developed
as a part of the marketing, but no stories had been created. The domain was a magic
castle, inhabited by an evil knight and various magical entities. Much of the largerVR

research effort was dedicated to ensuring that simply exploring the space would be in-
trinsically rewarding, but it was the introduction of moving characters that made the
virtual experience become alive and magical. For example, there is a SoL character
named Puff. Puff is a talking, flying green LEGO dragon. Puff can discuss the castle, or
be encouraged to demonstrate his flying ability.

The first step toward creating an interesting narrative for a set of characters is to un-
derstand the constraints of the task and the system. One set of constraints comes from
the character’s environment, e.g. the size and features of open spaces: The castle world,
though complex and interesting, is not very large relative to the size of the characters,
so this constrains the characters motions inside the castle. This can be compensated by
setting the most gross motion (such as large-character flying and sword fights) to the
space surrounding the castle. Another set of constraints are those dependent on the ex-
pected users of the system. Because expected users were young, naïve to virtual worlds
and, perhaps more importantly, only exposed to the system for a few minutes total, we
considered it essential to make the characters interesting whether or not the user delib-
erately attempted to interact with them. The solution was to make the characters interact
with each other as well. They were also designed to react to the visitor in their domain
in a way that encouraged exploration, but not to be too forceful or too intrusive on the
user’s experience. To maintain interest, the characters should act and interact in such
a way that they generate continuous change. There should be no steady state that the
system of characters can reach if the user is being passive.

The constraints of the virtual environment and the pre-existing product meant that
most of this change had to take the form of arrivals and departures, as well as a few gross
gestures. This effect was achieved by designing characters with various incompatible
goals. For example, a witch could frequently fly around the castle in a quest for intrud-
ers. When she found the intruder she would do little other than land nearby, slightly
approach the stranger and cackle. However, her presence might attract other characters,
some of whom might in turn repulse her (she was designed to fear flying bats). Having
characters that are attracted by some situations, yet repulsed by either crowds or other
characters, can help maintain the amount of free space needed for character motion. In
addition, it limits the number of simultaneous interactions, and therefore the amount
of confusion. This allows the designers to quickly focus the interest for the short-term
visitor.

Notice that reactive social behaviours such as flocking (e.g Reynolds, 1987; Matarić,
1992) will not be sufficient — the characters here are doing more than being repulsed,
attracted and avoiding obstacles. They are displaying personalities. A visitor can learn
individual character’s traits, and then manipulate these deliberately. Exploring the per-
sonality space of the characters in the world becomes part of the puzzle, and part of the
fun.



A constructive narrative is creative on several levels. In designing a creative expe-
rience, the goal is to provide both interesting media, e.g virtual bricks, for expressing
the content to be recombined, and tools that facilitate the recombination. If the media
also includes active creators, in our case agents that autonomously create situations,
artifacts, and social dynamics, then the user has the opportunity to create highly com-
plex events. This kind of creative experience currently only afforded by composers and
writers of drama, corporate managers, and public policy makers. However, creating an
environment for such play takes considerable artistic and technical skill and planning.

4.2 Encoding Personality

As described in BOD above, after creating a rough description of the desired world, the
next task is to develop a first-cut description of the reactive plans which will encode
each character’s personality. Starting from the descriptions of the characters set by the
marketing department of the product, and keeping in mind the constraints determined
in evaluating the task, each character was described in terms of three to five goals or
drives. Further, the behaviour associated with achievement of these goals was visu-
ally described. This work was done by a team of in-house artists and external creative
consultants, with theAI team participating both creatively and as technically informed
resources.

Once the personality of the characters has been sketched, the next steps were as
follows:

– Prioritising goals or gross behaviours and determining their necessary precondi-
tions. For example, the witch described above has a goal of patrolling the castle
from the air. This has a fairly high priority, but the motivation should be reduced by
the performance of the act, so that in general she circles the castle only three times.
She has a priority of landing in a room in which she has seen an intruder, once she
no longer desires to fly. She also avoids bats.

– Determining necessary behaviour primitives and behaviour states. For example, the
witch has to remember if she saw an intruder on her patrol. A bat might approach an
intruder closer and closer over successive swoops. A state within the bat’s swooping
behaviour enables it to keep track of its current level of “boldness,” which in turn
determines its trajectory. Some characters can be made into friends by playing with
them. These would have to remember how friendly they feel towards a particular
person. Seeing the user, avoiding the walls of the castle, flying and landing are
behaviour primitives required by all of these agents.

– Developing and testing the behaviour libraries and the scripts.

The architectural and methodological support we developed for this level has al-
ready been discussed, in Section 3.

4.3 Developing Perception and Action Primitives

In developing behaviour libraries, the task of the personality designer connects to the
task of environment’s architects. For the castle character project, some of the poten-
tial difficulties of this relationship were overlooked, and caused some of the greatest
difficulties of theAI effort.



There are several possible approaches for building the basic movement primitives.
One straightforward approach would be for the character developers to program the
behaviours from scratch using models prepared by the graphic artists. There is a general
problem for this approach: As mentioned earlier,AI programmers are not necessarily
artists or students of natural motion. Animals have evolved complex motion behaviours,
constrained by physical forces and structures not normally modelled on an artifact,
particularly one designed to run in real time, so difficult to take into account. Animals
are also constrained by habits of behaviour, whether general to a species or specific to
an individual. Even if æsthetic motion primitives are achieved by anAI programmer,
the process of programming them is likely to have been very time-consuming.

Another potential source of behaviour primitives explored on the castle character
project were the efforts of a team of animators already working on the project. The idea
was to segment animations into sets of behaviours suitable as exemplars of various be-
haviour primitives. A continuous variety of behaviour could be derived from combining
and connecting fixed sets of canned behaviours. Unfortunately, animations also proved
slow and difficult to develop. More importantly, the format the animations were pro-
duced in was determined to be incompatible with the primary real-time virtual reality
environment. Real-time was an important part of theAI effort, and a critical feature of
playful, creative spaces. The graphics rendering loop tends to be the critical element
in the eye of the perceiver, since glitches (e.g. delays) in a character’s thought process
can be interpreted in many acceptable ways (hesitation, sluggishness, character flaws),
whereas glitches in frame advancement are perceived as system failure. In the case of
Puff, the LEGO dragon, the real-time limitations for the behaviours were most obvious
when trying to synchronise speech synthesis, which was run on a separate computer,
to the graphical movements of the dragon’s mouth. The animated approach was never-
the-less used to account for the preoccupation of the evil knight who had possession
of the castle: he is seen being engaged outside the castle in a sword fight with a good
king. This arrangement was ultimately still unsatisfying, because withoutAI , the action
was repetitive, and worse could not move to actively avoid wandering embedded user
characters.

We also explored an intermediate solution: a purpose built animation tool for ”quick
and dirty” animation segments stored in an appropriate format for the mainVR engine.
This technique was used for creating some of the most life-like motion on the castle,
a guard that responded to an approaching camera / observer by turning and facing it.
The intelligence behind this character was purely reactive, and did not use SoL, but
it did show the promise of this technique. Motion capture of humans participating as
puppeteers was the final source of “intelligence” explored in the project. This could
also have potentially served as a source of primitives forAI , but this alternative was not
explored due to lack of time.

The approach used on Puff was to heavily exploit the Action Scheduler mecha-
nisms derived from Ymir. Using this method combined with routines established in the
project’sVR library for controlling the dragon model’s degrees of freedom, building a
complete movement library took only two days for a singleAI programmer. These mo-
tions are not as elegant as the hand-crafted animations, but they do provide complete,
integrated control of the creature’s body at all levels, from tiny finger and eye move-



ments to body language and action. The Puff character integrated an array of technolo-
gies, including speech recognition and generation. Interactions with the dragon were
constrained to eliciting explanations and short stories (e.g. “Tell me about the castle”)
so that the character need only recognise a limited set of queries and requests, facili-
tating the use of situated planning to give multi-modal responses such as gestures and
actions as well as speech.

In developing behaviour libraries, the task of the personality designer connects to
the task of environment’s architects. Some of the issues of interfacing between a char-
acter’s behaviours and the muscles of its body, as well as the character’s senses and
perceptual mechanisms can present large difficulties, unless theVR world and inter-
face is built with the problem of supporting characters in mind. Nevertheless, this first
practical effort of using the three-layer approach for constructive narrative enabled us to
unify designers with very different skill sets, and to test the employment of an advanced
AI architecture in a large virtual world.

5 Conclusions

In this paper, we have presented and described our experiences with a three-layer de-
sign process for developing an environment for constructive social play. We have also
presented SoL, an architecture for complex characters capable of multi-modal real-time
dialogue with humans, and some of our experiences from using these techniques on a
large-scale industrialVR project at LEGO.

A creative environment with constantly changing stories and adventures can be de-
veloped by using artificial intelligence and design techniques that exploit and express
the creativity of the designers. The intelligent agents in these environments are liter-
ally agents of creativity rather than being significant creators themselves: they embody
the rules and knowledge both invented and learned by their designers. The design ap-
proach presented here can be used for designing creative environments calledconstruc-
tive narratives. The design process focuses on the roles of the various team members in
communicating and constructing an interesting reality, based aroundAI characters. The
characters are implemented using behaviour-based techniques, for simplicity of design,
combined with situated planning devices, to allow for complexity of characterisation
and behaviour, and more traditional knowledge-based systems for natural language and
dialogue abilities. We hope to eventually develop more fully interactive characters, and
more open narrative architectures that allow the users to design the characters them-
selves.
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