
Artificial General Intelligence Proceedings, 2018, 21-32

Task Analysis for Teaching Cumulative Learners?

Jordi E. Bieger1,2 and Kristinn R. Thórisson1,3

1 Center for Analysis and Design of Intelligent Agents, Reykjavik University, Iceland
2 ICT group, Delft University of Technology, The Netherlands

3 Icelandic Institute for Intelligent Machines, Iceland
{jordi13,thorisson}@ru.is

Abstract. A generally intelligent machine (AGI) should be able to learn
a wide range of tasks. Knowledge acquisition in complex and dynamic
task-environments cannot happen all-at-once, and AGI-aspiring systems
must thus be capable of cumulative learning: efficiently making use of
existing knowledge during learning, supporting increases in the scope of
ability and knowledge, incrementally and predictably — without catas-
trophic forgetting or mangling of existing knowledge. Where relevant ex-
pertise is at hand the learning process can be aided by curriculum-based
teaching, where a teacher divides a high-level task up into smaller and
simpler pieces and presents them in an order that facilitates learning.
Creating such a curriculum can benefit from expert knowledge of (a) the
task domain, (b) the learning system itself, and (c) general teaching prin-
ciples. Curriculum design for AI systems has so far been rather ad-hoc
and limited to systems incapable of cumulative learning. We present a
task analysis methodology that utilizes expert knowledge and is intended
to inform the construction of teaching curricula for cumulative learners.
Inspired in part by methods from knowledge engineering and functional
requirements analysis, our strategy decomposes high-level tasks in three
ways based on involved actions, features and functionality. We show how
this methodology can be used for a (simplified) arrival control task from
the air traffic control domain, where extensive expert knowledge is avail-
able and teaching cumulative learners is required to facilitate the safe
and trustworthy automation of complex workflows.

Keywords: Artificial Intelligence · Artificial Pedagogy · Curriculum
Learning · Task Theory · Trustworthy Automation

1 Introduction

In learning complex tasks humans tend to take an incremental approach (e.g. learn-
ing the meaning of traffic signs before driving in traffic, or learning to fly a single-
propeller plane before flying a jumbo jet), where newly acquired knowledge and
skills build on those priorly acquired. If a skill is in some way related to one

? The authors gratefully acknowledge partial funding for this project from Isavia, IIIM,
Reykjavik University, Delft Univeresity of Technology, and the Netherlands Organi-
zation for Scientific Research (NWO grant 313-99-3160 / Values4Water project).



2 J. E. Bieger & K. R. Thórisson

we have learned before—e.g. learning to play squash after racquetball—the first
task will often help us learn the second one [8].4.Humans can typically learn and
alternate between many different tasks without completely forgetting them in
the process, and often apply lessons learned across multiple domains. We con-
sider such cumulative learning abilities to be a necessary feature of (artificial)
general intelligence (AGI), but no artificial intelligence (AI) or machine learning
(ML) system to date can rival humans in these regards.

The ideal (artificial) cumulative learner (CL), in our conceptualization, can
acquire knowledge and skills through both experience [22] and teaching [5,6].
Their learning is ‘always on’ throughout their lifetime5 (lifelong learning [19]),
and happens continuously as new experiences accumulate (online learning [28]).
Their knowledge is defeasible [17] (“better knowledge replaces worse knowl-
edge”), and new knowledge is reconciled with old knowledge (old-new inte-
gration [16]: new knowledge can be used in conjunction with, and integrated
with, older tasks — irrespective of overlap). Knowledge from one task or do-
main can be applied to speed up learning another (e.g. through analogy; transfer
learning [14]), without catastrophic interference/forgetting [9,11], possibly to the
point that few-shot learning is enabled [12]. A cumulative learner that fulfills all
of these features will tend to grow its capabilities over time to cover a wide range
of tasks (multitask learning [24]) as experience accumulates.

The order in which information, tasks, and subtasks are encountered can
have a large influence on the efficiency and efficacy of the cumulative learning
process. Pedagogical methodologies like shaping [20], scaffolding [27] and part-
task training [23] take advantage of this for teaching humans and animals. In
these approaches teachers use extensive domain knowledge to decompose com-
plex high-level tasks into smaller and simpler subtasks that are manageable by
the learner, and gradually introduce other subtasks or complexity. Similarly hi-
erarchical methods have been applied to various existing AI approaches [10,13,2].
However, these methods are not developed for systems with advanced cumulative
learning abilities.6 Furthermore, in most of these cases no domain knowledge is
utilized for defining the curriculum: the subdivision and presentation order is
determined by the learner—which is complicated by the learner’s limited (do-
main) knowledge and control over the environment (especially at the start)—or

4 Negative transfer of training may also occur, where pre-existing knowledge interferes
with learning something new — e.g. a racquetball player may take longer to get used
to the way a squash ball bounces than somebody who never played racquetball. An
optimal curriculum would mitigate negative transfer as much as possible.

5 However this is measured, we expect at a minimum the ‘learning cycle’ (alternating
learning and non-learning periods) to be free from designer intervention at runtime.
Given that, the smaller those periods become (relative to the shortest perception-
action cycle, for instance), to the point of being considered virtually or completely
continuous, the better the “learning always on” requirement is being met.

6 For instance, they typically require up-front full data disclosure (final data set up-
front), all-at-once training (to train on the final data set from the very beginning)
and learning-free deployment (the need to turn off learning before deployment to
avoid unpredictable drift; cf. [15]).



Task Analysis for Teaching Cumulative Learners 3

by an algorithm that uses (slowly) discovered structural features of the task-
environment. While this can be a strength in cases where domain knowledge is
unavailable, in this paper the focus is on the case where domain expertise does
exist, and on converting such knowledge into a subtask hierarchy or curriculum.

We present a task analysis methodology intended to aid in the instructional
design of curricula to teach artificial cumulative learners, as part of broader
work on artificial pedagogy [4] and task theory [25]. Here we focus on the design
phase of the ADDIE model [7] from the instructional design field, with some
assumptions about the analysis phase based on features of cumulative learners.7

Guidelines are given for extracting knowledge from domain experts (Sec. 2) to
decompose high-level tasks along three dimensions (Sec. 3), producing a hier-
archy of (smaller and simpler) subtasks for which functional requirements are
known, which can inform curriculum design (Sec. 4).

We illustrate our methodology by showing how a curriculum might be con-
structed for the use case of automating the task of arrival control (AC)8 for the
Icelandic air traffic control (ATC) agency Isavia9 (Sec. 5), where a combined
AI–human control structure could increase efficiency and safety. AC’s goal is to
create an optimal flow of landings by telling incoming aircraft to speed up or slow
down, avoiding (near) collisions and costly holding patterns. Like other tasks in
safety-critical domains, domain expertise is plentiful10 and cumulative learning
is desirable because it facilitates piecemeal introduction of functionality which
minimizes disruptions to the complex and sensitive workflows of ATC operators.

2 Expert Knowledge Extraction & Representation

Creating a teaching curriculum can benefit from expert knowledge of (a) the task
domain, (b) the learning system itself, and (c) general teaching principles. We as-
sume that a prospective AI teacher knows what their AI system is (in)capable of
(aside from cumulative learning) and what resources and methods are available
for training/teaching. Learning (and teaching) from scratch and without guid-
ance may be feasible (and preferable) for simple tasks, but the more complex the
task, the more benefit can be derived from knowledge that can be transferred to

7 The ADDIE model for instructional design consists of (1) analysis of the learner,
learning goals, and teaching constraints, (2) design of the lesson plan or curriculum,
which involves subject matter / task analysis, (3) development or assembly of the
actual training materials, (4) implementation of the instruction with the learner
(i.e. the actual teaching/training/learning), and (5) evaluation of learning outcomes.

8 Due to space limitations we only describe a highly simplified version of arrival control
here. A more elaborate version can be found in our tech report:
http://www.ru.is/faculty/thorisson/RUTR18001 ArrivalControl.pdf

9 Isavia is Iceland’s aviation authority, managing air traffic in an area measuring 5.4
million square kilometers.

10 A lot has even been written on task analysis for ATC (cf. https://www.eurocontrol.
int/articles/atco-task-analysis), but we still need a new method for designing cur-
ricula for non-human cumulative learners.

http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf
https://www.eurocontrol.int/articles/atco-task-analysis
https://www.eurocontrol.int/articles/atco-task-analysis


4 J. E. Bieger & K. R. Thórisson

the learner or otherwise used to inform the teaching process. Luckily, many of the
tasks we want our AI/AGI systems to automate are currently being performed
by humans with a great deal of domain expertise. Here we describe a method
for knowledge extraction from a domain expert that results in a description of
a high-level task that can inform the construction of teaching curricula.

The process begins with a common practice from requirements engineer-
ing for software development, where the goal is to produce a “scenario” (“user
story”, “use case”) that describes, at a fairly high level, how a certain chunk
of functionality (part of the task) is to be carried out. The interviewer (i.e. the
AI teacher) starts by asking the expert to describe what they do when carrying
out the job, while taking care to note each “action” that is taken. The con-
cept of “action” is taken very broadly and incorporates for instance: acting in
the environment, predicting outcomes, obtaining particular information, making
(internal) decisions, updating current knowledge, etc.

As the scenario unfolds, the teacher should make note of each action, mark it
with a unique identifier and put it in a dependency graph. It is often the case that
higher-level actions (e.g. “instruct pilot to slow down”) consist of multiple lower-
level actions (e.g. “determine optimal aircraft speed”, “connect to aircraft” and
“send the message”) or that one action relies on inputs from previous actions
(e.g. you can’t send a message without knowing what should be in it). Such
dependencies should be noted (see Fig. 2).

It is likely that the domain expert does not succeed immediately in describ-
ing a scenario where all of their actions and their dependencies are explicitly
mentioned. The AI teacher should check that none of the actions in the scenario
can be usefully broken down further and that there are no holes in the story
(missing implicit or unmentioned actions or decisions).

If an action with no dependencies can be usefully decomposed further an (inverse)
laddering technique can be used where the expert is asked “how is this done?”
and “what steps are involved?”. The usefulness of further decompositions
should be judged by the AI teacher based on their assumed knowledge of
what can be (easily) learned by their AI.

If the expert doesn’t know explicitly how a certain action is done it can help to
have them perform the task while the teacher asks “what are you doing
now?”, “what are you paying attention to?” and “why?”. If this is not
possible—e.g. because the job is high-pressure and safety-critical and the
expert should not be distracted—it may instead be possible to observe a
colleague and discuss what they are doing.

If a composite action is not fully determined by sub-actions the teacher should
point this out to the expert, and for each input/output ask where the data
comes from / what it’s used for, until the missing action(s) are found.

If a dependency A does not directly contribute to an action C a laddering tech-
nique should be used to ask “why do you do A here?” to elicit an intermediate
dependency B. For instance, action A to “divide distance by velocity” does
not seem to contribute directly to action C to “prevent equal arrival times”,
but rather to intermediate action B “estimate arrival times”.



Task Analysis for Teaching Cumulative Learners 5

After the scenarios have been formed, we need to fill in the details of the
actions. This process strongly resembles the Task analysis in CommonKADS [18]
and functional requirements analysis in software engineering. The goal here is to
describe, in as much detail as possible, all actions that are involved in carrying
out the main task. For each action, this involves answering:

1. What is the input? What groups of variables / information can or must be
taken into account, and what are their possible and simplest values?

2. What is the output or result? This can be anything, ranging from e.g. “a
message to pilot X to move up/down by Y amount at time Z” to “prepara-
tion/prediction of the information for another action”.

3. By what method do we transform input to output? Can be a straightforward
series of steps/calculations, or vague descriptions of intuitive processes.

4. How can the action be evaluated? What variables are being optimized?
What is their relative importance?

Ideally, no actions should be left implicit. There can be some redundancy due
to describing actions at both high and low levels (e.g. one action may be “tell
pilot what to do, based on all data”, which may involve other actions like “de-
cide which pilot to talk to, based on closeness to airport”, “predict closeness to
airport, based on weather”, etc.).

3 Task Decomposition

The extracted high-level task needs to be decomposed so that components can
be cumulatively learned and introduced piecemeal into the workflow. We use
three complementary dimensions of decomposition:

Task-based decomposition (or action-based decomposition) identifies all
subtasks/actions (including commands, decisions, classifications, predictions, judg-
ments, etc.) that are part of the task, at a sufficiently low level. Lower-level
actions are grouped together into higher-level ones to form a hierarchy, where a
low-level action control may be (re)used by multiple higher-level actions.

Feature-based decomposition (or situation-based decomposition) in a
directly-learned task (or action) attempts to identify (ideally independent) sub-
groups of features/variables that could be learned separately. For instance, in
the “predict arrival time” action for an aircraft, we may have features for wind
and precipitation, and we plan to train the system first on “no wind, no pre-
cipitation”, then on “various wind conditions, no precipitation” and “no wind,
various precipitation conditions”, and finally on “everything combined”. This is
expected to lead to faster (curriculum) learning of “everything combined” than
if we had started with that from the beginning. Furthermore, by allowing us to
“skip” tricky situations, they no longer hold back the introduction of (partial)
automation into the workflow; the system could still automate the majority of
simpler cases, while warning or deferring to a human operator in trickier ones
that have not been adequately learned yet.



6 J. E. Bieger & K. R. Thórisson

Functionality-based decomposition is a decomposition based on the
functionality that is to be introduced into the workflow, which tends to be based
mostly on action-based decompositions and somewhat on feature-based ones.
To create and introduce functionality, it is not sufficient that the AI system
has (partially) learned the relevant tasks, it is also necessary to integrate such
functionality into the larger workflow (e.g. adding certain GUI elements to the
workers software). In addition to being guided by other decompositions, which
determine what functionality might be available, this is also guided by the actual
workflow and identifying opportunities / situations where automation is most
desired (analysis of these requirements is beyond the scope of this paper).

Based on the elicited actions in Sec. 2 we make a graphical representation of
the task / action hierarchy (see Fig. 2 for an example from the arrival control
task in Sec. 5). A feature-based decomposition of each action can be made based
on their inputs and outputs. The graph should indicate which actions use the
same features through connections or color coding. Functionality-based decom-
positions can be made based on the requirements of the client/user for whom
the AI system is built, but will often correspond to elicited scenarios, or consist
of an action with all of its sub-actions. However, in some cases the client may
indicate that support for certain features/situations is not immediately crucial
and feature-based segments can be maintained.

4 Curriculum Construction

A decomposition in these terms can serve as the basis for the construction of a
teaching curriculum for cumulative learners.

The main philosophy behind curriculum learning is to have learning occur in
what Vygotsky called the “zone of proximal development” (ZPD) [26]: the sweet
spot between challenges that are too complex or novel to handle and ones that
are too easy or familiar. This concept forms the basis of teaching approaches like
shaping [20,3], scaffolding [27], and part-task training [23], as well as for many
concepts of intrinsic motivation or “curiosity” [21]. In all cases the ZPD informs
the novel stimuli that the AI sees. From the perspective of a teacher, this is
achieved by making a task smaller or simpler until it enters the ZPD, and then
making it larger and more complex as the learner becomes more competent. A
curriculum then consists of a “lesson plan” that prescribes an order in which to
teach the simplified tasks and how to complexify them.

The exact way in which (low-level) actions are taught is going to depend
on (a) the learning system, (b) available training resources and (c) the nature
of the task, e.g. whether it is a reinforcement learning or supervised learning
task, whether it contains a lot of sequential events, and whether it is a kind
of “one-shot” task. Our decomposition can greatly inform the order in which
things should be taught: Within a cut-out chunk of desired functionality, we
should teach actions in a roughly bottom-up manner so that the AI system can
(re)use low-level functionality it already learned when learning higher-level tasks.
Furthermore, the feature-based decomposition allows us to make individual tasks



Task Analysis for Teaching Cumulative Learners 7

Scenario S1: Separation maintenance
The Cumulative Learner (CL) is presented with IDs, velocities, and distances of a fixed number
of aircraft and needs to maintain a minimal separation time between landings (A1). First, the
CL must predict the time at which each aircraft is expected to arrive at each runway (A2).
Based on this information, the CL needs to detect if the arrival times of any two aircraft
conflict (A3). Detected conflicts must then be resolved by telling an aircraft to speed up or
slow down (by ±10% in our simplification) (A4).

Action A1: Separation mainte-
nance
See Scenario S1.

Input: IDs α {0, 1, ...}, velocities v in m/s [1–
400] and distances s in m [0–4,000,000] of a
fixed number of aircraft

Output: ID + speed up/slow down 10% com-
mand, or nothing

Method: predict landing times (A2), detect
conflicts (A3), resolve conflicts (A4)

Evaluation: +10 per landed aircraft, -1000
per conflict

Action A2: Arrival time prediction
Predict the time at which aircraft A will ar-
rive at the runway.

Input: aircraft info for A (ID, velocity and
distance)

Output: time t in s [0–10,000]

Method: distance
velocity

Evaluation:
∥∥∥tpredicted − tactual

∥∥∥
2

Action A3: Conflict detection
Predict whether two aircraft A and B will
have conflicting landing times.

Input: estimated landing times t
Output: conflict c yes/no
Method: ‖tA − tB‖1 < threshold
Evaluation: ‖tA − tB‖1 < threshold

Action A4: Conflict resolution
Resolve conflict between aircraft B and C.

Input: ID, velocity, distance and arrival time
of aircraft A, B, C, D, where A is directly
before B, and D directly after C

Output: ID of B or C + speed up/slow down
∆ 10% command, or nothing

Method: See if the conflict can be mitigated
by speeding up B, without introducing con-
flict with A. If not, slow down C and invoke
A4 for C and D if this creates a conflict.

Evaluation: cafter − cbefore (where global
conflict cost c is the sum of all local conflict
costs for aircraft pairs)

Fig. 1. Extracted task description of (simplified) arrival control.

simpler by limiting the range of values that its inputs and/or outputs can take on,
or even omitting some altogether (by setting them to a default value). Because
we can expect cumulative learners to positively transfer knowledge of shared
features between tasks, we recommend prioritizing teaching (simplified) tasks
with features that are shared by many other actions.

5 Case Study: Arrival Control

Safety-critical domains with high time- and energy sensitivity and low er-
ror tolerance, like air traffic control and human transportation, rely on complex
workflows designed to result in safe processes. The arrival control (AC) task,
like most others in aviation, is based on thoroughly documented procedures for
achieving high levels of quality, safety and reliability. Automation is shunned in
domains like these unless it can be fully trusted and understood, and new func-
tionality can be introduced gradually to avoid disrupting the proven workflow.
Cumulative learners have an advantage here, because they (a) can gradually add
more functionality to their skills without deteriorating already-known tasks, (b)
be understood modularly in terms of the tasks they were taught, and (c) deal



8 J. E. Bieger & K. R. Thórisson

more robustly with distributional drift in the task or novel situations [1,22],
by appropriate adaptation when sufficient prior knowledge is available to them,
and yielding control when it’s not. Since the cumulative learning capabilities of
modern AI are limited at best, humans are relied on in practically all cases. The
need for automatic cumulative learning, and the rich access to domain expertise,
make this domain highly suitable for testing our methodology.

The primary goal of arrival control is to ensure an optimal flow of aircraft
arrivals at the airport, avoiding collisions and costly holding patterns. This is a
highly complex and safety-critical task that requires understanding of weather
patterns, aircraft specifications, communication issues and the delicate coordi-
nation between many pilots and ATC operators with different roles. To illustrate
our task analysis methodology we present the extracted task description (Fig. 1),
decomposition and curriculum for a version of arrival control that is significantly
simplified due to space limitations.11

Fig. 2. Extracted action hierarchy for simplified arrival
control. The relations (solid lines) between actions rep-
resent an task-based decomposition.

Decomposition As de-
scribed above, action A1
makes use of A2, A3 and
A4, while action A4 also
makes use of the function-
ality of A2 and A3 (see
Fig. 2). We can also see
that A3 depends on data
from A2. Since A2 does
not have any dependen-
cies, we can extract it as
a single chunk of func-
tionality, that can eventu-
ally be expanded into a
chunk that provides the
functionality of A4 (and
its dependencies).

Curriculum The order
in which arrival control

should be taught, according to our methodology, would no doubt be A2 → A3 →
A4 → A1. The reasoning is as follows: A2 doesn’t depend on any other actions,
and can be learned alone. A3 requires A2’s output as its input, and could there-
fore benefit from knowledge of A2, although we could also train A3 with fake
data to remove this dependency. A4 requires both A2 and A3 and cannot really
be trained without them, and A1 requires all the others. The individual tasks
can be further simplified (and gradually made harder again) by e.g. changing
the allowable values for the input and output features. These should be modified
in the same way across actions.

11 A more elaborate version can be found in our tech report:
http://www.ru.is/faculty/thorisson/RUTR18001 ArrivalControl.pdf

http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf


Task Analysis for Teaching Cumulative Learners 9

6 Conclusion

We have presented a task analysis methodology to inform the design of teaching
curricula, when both domain expertise and cumulative learners are available.
We envision this to often be the case for AGI systems, who are by definition
capable of cumulative learning, and will often be used to automate complex
workflows that are currently being done by human experts. Especially in safety-
critical domains with complex overlapping tasks, such as air traffic control, we
find that extensive knowledge and documentation of processes is typically avail-
able. Furthermore, in proven workflows that are highly sensitive to time-pressure
and errors, disruptions by the abrupt wholesale introduction of monolithic au-
tomation are unacceptable, and having cumulative learners that are taught to
gradually expand their functionality is highly desirable. Our presented method-
ology takes a step in the direction of making curriculum design more systematic,
using any available domain knowledge.

Future work will be needed to compare the proposed knowledge elicitation
and task analysis methods with reasonable alternatives, in terms of ease-of-use
and required (time) investment for both the teacher and domain expert, as well
as quality of the produced analysis. Knowledge extraction can furthermore be
augmented by utilizing data from other (written) sources, and we are interested
to know how different (expert or written) sources can lead to different task de-
compositions and how this affects subsequent curricula. A better theory is needed
for constructing teaching curricula based on the presented task analysis, but also
on characteristics of the learning system and available training resources. The
benefits of the produced curricula should be evaluated and compared to alter-
nate approaches like “no curriculum” (i.e. training on the full monolithic task),
“alternate / random order curricula” and curricula arrived at through different
curriculum construction methods and task analyses (e.g. where decomposition
is done using a variety of existing automated methods).

References

1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.:
Concrete problems in AI safety. CoRR abs/1606.06565 (2016)

2. Barry, A.: A hierarchical XCS for long path environments. In: Proceedings of
GECCO-2001 (2001)

3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of ICML-26 (2009)

4. Bieger, J.: Artificial Pedagogy: A Proposal. In: HLAI 2016 Doctoral Consortium.
New York, NY (2016)

5. Bieger, J., Thórisson, K.R., Garrett, D.: Raising AI: Tutoring Matters. In: Pro-
ceedings of AGI-14. Quebec City, Canada (2014)

6. Bieger, J., Thórisson, K.R., Steunebrink, B.R.: The Pedagogical Pentagon: A Con-
ceptual Framework for Artificial Pedagogy. In: Proceedings of AGI-17 (2017)

7. Branson, R.K., Rayner, G.T., Cox, J.L., Furman, J.P., King, F.J.: Interservice
Procedures for Instructional Systems Development: Phase 4 and 5. Tech. rep.,
Florida State University (1975)



10 J. E. Bieger & K. R. Thórisson

8. Burke, L.A., Hutchins, H.M.: Training transfer: An integrative literature review.
Human resource development review 6(3) (2007)

9. Hasselmo, M.E.: Avoiding catastrophic forgetting. Trends in cognitive sciences
21(6), 407–408 (2017)

10. Hengst, B.: Hierarchical approaches. In: Reinforcement learning. Springer (2012)
11. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,

A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A.: Overcoming
catastrophic forgetting in neural networks. PNAS 114(13), 3521–3526 (2017)

12. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: Proceedings of CogSci 2011. vol. 33 (2011)

13. Looks, M.: Competent Program Evolution. Ph.D. thesis, Washington University
(2006)

14. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using
computational intelligence: a survey. Knowledge-Based Systems 80, 14–23 (2015)

15. Marcus, G.: Deep learning: A critical appraisal. CoRR abs/1801.00631 (2018)
16. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez,

M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P.,
Chella, A., Jonsson, G.K.: Bounded Recursive Self-Improvement. Technical RUTR-
SCS13006, Reykjavik University, Reykjavik, Iceland (2013)

17. Pollock, J.L.: Defeasible reasoning and degrees of justification. Argument and Com-
putation 1(1), 7–22 (2010)

18. Schreiber, G.: Knowledge engineering and management: the CommonKADS
methodology. MIT press (2000)

19. Silver, D.L., Yang, Q., Li, L.: Lifelong Machine Learning Systems: Beyond Learning
Algorithms. In: AAAI Spring Symposium: Lifelong Machine Learning (2013)

20. Skinner, B.F.: The behavior of organisms: An experimental analysis. Appleton-
Century-Crofts Inc., New York (1938)

21. Steunebrink, B.R., Koutnk, J., Thórisson, K.R., Nivel, E., Schmidhuber, J.:
Resource-Bounded Machines are Motivated to be Effective, Efficient, and Curi-
ous. In: Proceedings of AGI-13. Beijing (2013)

22. Steunebrink, B.R., Thórisson, K.R., Schmidhuber, J.: Growing recursive self-
improvers. In: Proceedings of AGI-16. New York, NY, USA (2016)

23. Teague, R.C., Gittelman, S.S., Park, O.c.: A review of the literature on part-task
and whole-task training and context dependency. Tech. rep., ARI, US (1994)

24. Teh, Y.W., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell, R.,
Heess, N., Pascanu, R.: Distral: Robust Multitask Reinforcement Learning. CoRR
abs/1707.04175 (2017)

25. Thórisson, K.R., Bieger, J., Thorarensen, T., Sigurðardóttir, J.S., Steunebrink,
B.R.: Why Artificial Intelligence Needs a Task Theory — And What it Might
Look Like. In: Proceedings of AGI-16. New York, NY, USA (2016)

26. Vygotsky, L.S.: Interaction between Learning and Development. In: Mind in soci-
ety: The development of higher psychological processes. Harvard University Press,
Cambridge, MA (1978)

27. Wood, D., Bruner, J.S., Ross, G.: The role of tutoring in problem solving. Journal
of child psychology and psychiatry 17(2), 89–100 (1976)

28. Zhan, Y., Taylor, M.E.: Online transfer learning in reinforcement learning domains.
CoRR abs/1507.00436 (2015)


	Task Analysis for Teaching Cumulative Learners

