
Self-Programming: Operationalizing Autonomy 

Eric Nivel & Kristinn R. Thórisson 
 

Center for Analysis and Design of Intelligent Agents / School of Computer Science, Reykjavik University 

Kringlunni 1, 103 Reykjavik, Iceland 

{eric, thorisson}@ru.is 

 

Abstract

Lacking an operational definition of autonomy has 
considerably weakened the concept's impact in systems 
engineering. Most current “autonomous” systems are built 
to operate in conditions more or less fully described a priori, 
which is insufficient for achieving highly autonomous 
systems that adapt efficiently to unforeseen situations. In an 
effort to clarify the nature of autonomy we propose an 
operational definition of autonomy: a self-programming 
process. We introduce Ikon Flux, a proto-architecture for 
self-programming systems and we describe how it meets 
key requirements for the construction of such systems. 

Structural Autonomy as Self-Programming 

We aim at the construction of machines able to adapt to 
unforeseen situations in open-ended environments. 
Adaptation is used here in a strong sense as the ability of a 
machine not only to maintain but also to improve its utility 
function and so, in partially specified conditions with 
limited resources (including time) and knowledge. As a 
case in point, today’s Mars rovers would simply ignore the 
presence of an alien character waving its tentacles in front 
of the cameras: observers on Earth would probably see and 
identify it, but the rover itself would simply not be aware 
of this extraordinary situation and engineers would have to 
upload software upgrades to change its mission and plans. 
In sharp contrast to such engineering, we expect adaptation 
to be performed automatically, i.e. with no further 
intervention by programmers after a machine enters 
service. Our adaptable rover would be fitted with software 
aiming at discovering facts in a general fashion, that is, not 
limited to ultra-specific mission schemes. This software 
would ideally be able to generate new missions and related 
skills according to the context, within the limitations of its 
resources - hardware, energy, time horizon, etc.  

Structural Autonomy 

The mainstream approach outlined above consists in the 
main of sophisticated ways for selecting and tuning hard-
coded goals and behaviors for handling situations framed 
in hard-coded ontologies. Systems designed this way 
belong to the class of behaviorally autonomous systems 
[2], and result in fact from the traditional top-down design 
approach: a machine’s operation is fully specified, as is the 
full range of its operating contexts, and it is the duty of its 
operator to ensure that the operational conditions always 
comply to said specification - otherwise the system ceases 
to function correctly. The point here is that such machines 

are meant not to change. Adding such change, or 
adaptation, to the requirements of a machine calls for an 
orthogonal perspective that addresses change as a desirable 
and controllable phenomenon. We envision motivations, 
goals and behaviors as being dynamically (re)constructed 
by the machine as a result of changes in its internal 
structure. This perspective - structural autonomy - draws 
on Varela’s work on operationally closed systems [14]: 

“machine[s] organized (defined as a unity) as a 
network of processes of production (transformation 
and destruction) of components which: (i) through 
their interactions and transformations continuously 
regenerate and realize the network of processes 
(relations) that produced them; and (ii) constitute it 
(the machine) as a concrete unity in space in which 
they (the components) exist by specifying the 
topological domain of its realization as such a 
network.” 

Although this generic definition applies primarily to bio-
chemical substrates, it can be adapted to computational 
substrates. We map Varela’s terminology as follows: 

� Component: a program. The function of a program is 
to synthesize (i.e. to produce or to modify) other 
programs. For example, generating new missions is 
creating new programs that define goals, resource 
usage policies, measurement and control procedures, 
etc. In this view, planning is generating programs (a 
plan and a program to enact it). In a similar way, 
learning is modifying the existing programs to 
perform more efficiently. 

� Process: the execution of a program. 

� Network of processes: the graph formed by the 
execution of programs, admitting each other as an 
input and synthesizing others (rewrite graphs). 

� Space: the memory of the computer, holding the code 
of the machine, exogenous components (e.g. device 
drivers, libraries) and its inputs/outputs from/to the 
world. 

� Topological domain: the domain where synthesis is 
enabled as an observable and controllable process. 
This domain traverses increasing levels of abstraction 
and is defined at a low level by the synthesis rules, 
syntax and semantics, and at higher levels by goal and 
plan generating programs and related programs for 
measuring progress. 



 

Program synthesis operates on symbolic data - the 
programs that constitute the machine. It follows that such 
constituents must be described to allow reasoning 
(symbolic computation) about what they do (e.g. actions 
on the world), what their impact will be (prediction) - or 
could be, given hypothetical inputs (simulation) - what 
they require to run (e.g. CPU power, memory, time, pre-
conditions in the world), when their execution is 
appropriate, etc. Such descriptions constitute models of the 
programs of the machine: models encode the machine’s 
operational semantics. The same idea can easily be 
extended to entities or phenomena in the world, models 
then encode either (1) their operational semantics in the 
world through the descriptions of their apparent behaviors 
or, (2) the operational semantics of the machine as an 
entity situated in the world (constraints and possible 
actions in the world, reactions from entities, etc.). 

Under operational closure the utility function is defined 
recursively as the set of the system’s behaviors, some 
among the latter rewriting the former in sequential steps. 
But this alone does not define the purpose of the utility 
function, as mere survival is not operational in the context 
of machines: death is no threat to a computer, whereas 
failure to define and fulfill its mission shall be. To remain 
within the scope of this paper, suffice it to say that 
teleology has also to be mapped from biology onto an 
application domain (e.g. surviving → succeeding at 
discovering interesting facts on a foreign planet). Program 
synthesis is a process that has to be designed with regards 
to (meta)goals in light of the current situation and available 
resources. Accordingly, we see “evolution” – not natural 
evolution but system evolution – as a controlled and 
planned reflective process. It is essentially a global and 
never-terminating process of architectural synthesis, 
whose output bears at every step the semantics of 
instructions to perform the next rewriting step. This 
instantiates in a computational substrate a fundamental 
property of (natural) evolutionary systems called semantic 
closure (see [5, 9]). Semantic closure is [8] 

“a self-referential relation between the physical and 
symbolic aspects of material organizations with open-
ended evolutionary potential: only material 
organizations capable of performing autonomous 
classifications in a self-referential closure, where 
matter assumes both physical and symbolic attributes, 
can maintain the functional value required for 
evolution”. 

A computational autonomous system is a dynamic agency 
of programs, states, goals and models and as such these 
assume the “physical” - i.e. constitutive - attributes 
mentioned above. System evolution must be observable 
and controllable, and thus has to be based on and driven by 
models, a requirement for systems engineering (coming 
from control theory). Some models describe the current 
structure and operation of the system, some others describe 
the synthesis steps capable of achieving goals according to 
internal drives, and finally yet some other models define 

procedures for measuring progress. To summarize, a 
computational structurally autonomous system is (1) 
situated, (2) performing in real-time, (3) based on and 
driven by models and, (4) operationally and semantically 
closed. The operational closure is a continuous 
program/model/goal synthesis process, and the semantic 
closure a continuous process of observation and control of 
the synthesis, that results itself from the synthesis process. 

Self-Programming 

We call self-programming the global process that animates 
computational structurally autonomous systems, i.e. the 
implementation of both the operational and semantic 
closures. Accordingly, a self-programming machine – the 
self - is constituted in the main by three categories of code: 

� C1: the programs that act on the world and the self 
(sensors

1
 and actuators). These are programs that 

evaluate the structure and execution of code 
(processes) and, respectively, synthesize code; they 
operate in any of the three categories. 

� C2: the models that describe the programs in C1, 
entities and phenomena in the world - including the 
self in the world - and programs in the self. Goals 
contextualize models and they also belong to C2. 

� C3: the states of the self and of the world - past, 
present and anticipated - including the inputs/outputs 
of the machine. 

In the absence of principles for spontaneous genesis we 
have to assume the existence of a set of initial hand-crafted 
knowledge - the bootstrap segment. It consists of 
ontologies, states, models, internal drives, exemplary 
behaviors and programming skills. 

Self-programming requires a new class of programming 
language featuring low complexity, high expressivity and 
runtime reflectivity. Using any of the mainstream 
languages available today to write a program that generates 
another one and integrates it in an existing system is a real 
challenge. First, difficulties lie in these languages lacking 
explicit operational semantics: to infer the purpose of 
source code, a program would have to evaluate the 
assembly code against a formal model of the machine 
(hardware, operating system, libraries, etc) – the latter 
being definitely unavailable. Second, the language 
structures are not reflected at assembly level either and it is 
practically impossible from the sole reading of the memory 
to rebuild objects, functions, classes and templates: one 
would need a complete SysML blueprint from the 
designer. In other words, what is good for a human 
programmer is not so good for a system having to 
synthesize its own code in real-time. As several recent 
works now clearly indicate (e.g. [10, 15]), a good approach 
is to reduce the apparent complexity of the computational 
substrate (language and executive) and to code short 
programs in assembly-style while retaining significant 

                                                 
1
  Sensing is acting, i.e. building - or reusing - observation procedures to 

sample phenomena in selected regions of the world or the self. 



 

expressivity. More over, self-programming is a process 
that reasons not only about the structure of programs but 
also about their execution. For example a reasoning set of 
programs has to be aware of the resource expenditure and 
time horizon of a given process, of the author (program) 
and conditions (input and context) of code synthesis, and 
of the success or failure of code invocation. The 
programming language must then be supported by an 
executive able to generate runtime data on the fly to reflect 
the status of program rewriting. 

As a foundation to implement autonomous systems for 
real-world conditions, automatic theorem proving is most 
likely not as appropriate as it may seem in theory. Theories 
of universal problem solving impose actually a stringent 
constraint: they require the exhaustive axiomatization of 
the problem domain and space. For proof-based self-
rewriting systems (cf. [11]) this means that complete 
axiomatization is also required for the machine itself. 
However, modern hardware and operating systems present 
such a great complexity and diversity that axiomatizing 
these systems is already a daunting task way out of reach 
of today’s formal engineering methods – not to mention 
the practicalities of cost. More over, the pace of evolution 
of these components is now so fast that we would need 
universal standards to anchor the development of industrial 
systems in theory. Standards taking at least two decades 
from inception to wide establishment, it seems that by and 
large, the need for exhaustive axiomatization drives 
theorem proving away from industrial practice. We have 
no choice but to accept that theories - and knowledge in 
general - can only be given or constructed in partial ways, 
and to trade provable optimality for tractability. Self-
programming has thus to be performed in an experimental 
way instead of a theoretical way: an autonomous system 
would attempt to model its constituents and update these 
models from experience. For example, by learning the 
regular regime of operation of its sensors such a system 
could attempt to detect malfunctions or defects. It would 
then adapt to this new constraint, in the fashion it adapts to 
changes in its environment. From his perspective, the 
models that specify and control adaptation (program 
construction) are a-priori neither general nor optimal. They 
operate only in specific contexts, and these are modeled 
only partially as the dimensions of the problem space have 
to be incrementally discovered and validated - or defeated - 
by experience, for example under the control of programs 
that reason defeasibly (see e.g. [7]). A system continuously 
modeling its own operation has to do so at multiple levels 
of abstraction, from the program rewriting up to the level 
of global processes (e.g. the utility function), thus turning 
eventually into a fully self-modeling system (see e.g. [4]). 

Open-ended evolution requires the constant observation 
and discovery of phenomena: these are either external to 
the system (e.g. a tentacle waving) or internal - in which 
case they constitute the phenomenology of the self-
programming process. Modeling is the identification of 
processes underlying this phenomenology down to the 
level of executable knowledge - programs. On the one 

hand, when no explanation is available, for example a 
sound featuring a distinct pitch for some reason not yet 
known, there is at least a geometric saliency we would like 
to capture in relevant spatio-temporal spaces. When on the 
other hand a phenomenon results from known dynamics, 
i.e. programs rewriting each other, we speak of 
computational saliency, to be observed in the system’s 
state space. Phenomena are salient forms manifesting an 
underlying and possibly hidden process. They must be 
captured potentially at any scale - e.g. from the scale of 
optimizing some low-level programs to the scale of 
reconfiguring the entire system. Accordingly, we define 
states as global and stable regimes of operation: at the 
atomic level states are the stable existence of particular 
programs and objects (models, inputs/outputs, etc.), while 
higher-level states are abstract processes whose 
coordinates in the state space identify and/or control the 
execution of the programs that produce theses states. From 
this perspective, making sense is identifying - or provoking 
- causal production relationships between processes: a 
phenomenon P makes sense through the development of its 
pragmatics - the effects it provokes - in the system, and P 
means another phenomenon P’ if observing P leads to the 
same (or analogue) pragmatics as for P’. Making sense is a 
process performed regardless of the length or duration of 
production graphs; it is a process that can be observed or 
fostered at any arbitrary scale. 

Ikon Flux: an Architecture for Self-

Programming Systems 

Ikon Flux is a fully implemented prototypical architecture 
for self-programming systems - a prototype being an 
abstract type to be instantiated in a concrete domain. It is 
not the architecture of a particular autonomous system but 
rather a computational substrate to frame the engineering 
of such architectures. It is out of the scope of this paper to 
provide a full and detailed description of Ikon Flux (for 
further details see [5]); here we will focus on how this 
proto-architecture meets the key requirements for self-
programming discussed in the previous section. 

A New Computational Substrate 

Ikon Flux consists of a language and an executive designed 
to simplify the task of programs rewriting other programs, 
in a unified memory distributed over a cluster of 
computing nodes. The language is an interpreted, 
functional and data-driven language. Axiomatic objects 
have low-level semantics (primitive types, operators and 
functions) and programs are stateless and have no side 
effects. Programs are also kept simple by virtue of 
abstraction: memory allocation, parallelism, code 
distribution, load balancing and object synchronization are 
all implicit. Since programs are potential inputs/outputs for 
other programs, they are considered data and unified as 
objects. Primitive types define prototypical and executable 
models of code structures, in the form of graphs of short 
(64 bytes) code fragments. Types are dynamic and 



 

expressed in terms of other structures, which at some point 
derive from axioms. For example the type program 
embeds sub-structures such as a pattern (input) and code 
synthesis functions (outputs): these are explicit - they 
specify in a program-readable way the instructions to be 
performed by the executive and their effects - and there is 
no need for an additional model to describe a program’s 
operational semantics. Ikon Flux neither defines nor allows 
any opaque, coarse-grained axiomatic constructs like for 
example long-term memory, planner or attention 
mechanism. High-level structures such as these have to be 
either hand-coded in terms of existing structures or result 
from code production by existing structures. However, to 
encompass wider technical domains (e.g. algebra, 
differential topology, etc.), Ikon Flux allows the manual 
extension of the set of primitives with user-defined code. 

Programs in Ikon Flux all run in parallel, and they react 
automatically to the presence of any other object. Reaction 
is constrained by patterns on code structures, and pattern 
matching is the only mechanism for evaluating formal 
structures. Pattern matching is deep, i.e. patterns are, as 
any object, encoded in graphs and specify sub-structures 
and conditions at any depth in a target structure. Pattern 
matching is performed by the Ikon Flux executive system-
wide, that is, (1) on any object regardless of its distribution 
in the cluster and, (2) patterns can be defined as 
combinations of multiple and inter-dependent patterns 
targeting different objects amongst the entire system, i.e. to 
identify tuples of correlated objects. Objects in Ikon Flux 
have a limited lifespan, controlled by a resilience value, 
and can be activated/deactivated either as input data, via an 
intensity value, or as a program via an activation value. 
Rewriting is performed upon successful pattern-matching 
(1) by producing new code explicitly specified in programs 
and (2) by modifying the control values (resilience, 
intensity and activation) of target objects. 

Programs in Ikon Flux encode indifferently production 
rules or equations (with the expressivity of first order 
logic) and the executive performs both forward chaining 
(rewriting) and backward chaining. The latter has been 
implemented as a support for planning, but the executive is 
not a planning system itself: it is the responsibility of the 
programs to define and constrain the search space. In that 
respect, Ikon Flux does not provide nor does it use any 
heuristics: these are to be generated - and applied - by the 
programs themselves to control the activation/intensity 
values of the objects in the system. 

Runtime reflective data are automatically notified by the 
executive and injected in the system as objects encoded in 
the Ikon Flux language. For example, the invocation of a 
function triggers the injection of a process object which in 
turn will be referenced by a completion object in case of 
termination, indicating the run time, resource usage and the 
program responsible for the termination if any. Process 
objects are also used by the executive to notify a system of 
any rewriting that occurred in the past. 

At a higher level of organization, the language allows the 

construction of internal sub-systems as groups of objects 
that altogether contribute to a given function of the system. 
In this context, function means a process of arbitrary 
granularity, level of detail and abstraction that transforms 
the system state. Internal sub-systems are intended for 
macro-modeling purposes to describe global functions of 
the system itself, as well as behaviors, roles or functions of 
entities in the world. Internal sub-systems can be allocated 
a dedicated instance of the executive to perform rewritings 
in isolation from the main self-programming process: they 
can read and write the entire memory and their code can 
also be read, but not written, from their exterior. This is 
meant as a support for the modeling/construction of large-
scale systems as recursive organizations of sub-systems. 

There are some functions that cannot be expressed in the 
Ikon Flux language, either for efficiency reasons or 
because their re-implementation is too costly. Such 
functions are, for example, low-level audio/video signal 
processing, device drivers, and in general functions which 
do not need to evolve. Typically these functions are kept in 
their existing implementation and run on separate 
machines. Their code is hidden from rewriting programs 
and gathered in dedicated sub-systems called external sub-
systems, which are wrapped in dedicated interfaces to 
communicate with the Ikon Flux executive. An interface 
consists of (1) specific axiomatic objects (types and 
functions) and (2) a converter to translate Ikon Flux objects 
into binary code invocation and vice versa. External sub-
systems functions constitute the system’s boundary in the 
world and are the only functions that do have side effects. 

Global Semantics 

Ikon Flux defines a state space dimension as an object 
constituted by IR and the specification of an arbitrary 
reference process. Projecting an object on a dimension 
means rating its contribution (either as an input data or as a 
program) to the rewriting graphs that contributed to the 
achievement (or failure) of the reference process. This 
contribution is expressed by either an intensity or an 
activation value that is subsequently used to compute the 
object’s final control values. Some dimensions are known 
a-priori, they are application-dependent and must be given 
by the programmer, but some are a-priori unknown, as they 
relate to newly discovered phenomena, and as any other 
object, dimensions are in general also the subject of 
dynamic production and decay. To allow self-reference, 
any object in a given system can be projected on any 
dimension and such a projection is an object as well. This 
also holds for the dimensions and sub-spaces can thus be 
represented symbolically in the global state space itself. 

As discussed earlier, self-programming has to perform in 
light of goal achievement

2
. A general definition for “goal” 

is “a set of regions in the state space”, and this implies the 

                                                 
2
  Geometric saliency detection is given goal semantics: the expectation 
of a stable form in space using a particular observation procedure – e.g. a 

program to detect occurrences of uncommon pitch patterns in sounds. 



 

existence of a distance function over the state space to 
assess goal achievement. Thus, in addition to space 
dimensions, an autonomous system in Ikon Flux has to 
maintain and evolve distance functions, the combination of 
the two forming a topological space. As for the 
dimensions, the distance function is in general impossible 
to provide a-priori, except for the known dimensions: in 
general, the distance function has to be computed by the 
system itself, deriving programs from the programmer-
supplied stock. There is, however, a particular case where 
the distance function can be given axiomatically: the case 
of pregnance satisfaction. Thom [12, 13] defines a 
pregnance - like hunger, fear, and reproduction in the 
animal reign - as an internal and global dynamics, we say 
global process, that targets abstract forms (e.g. anything 
edible will do for a famished dog) and constitute the 
ultimate reflective standard to measure the system’s utility 
(for the dog, survival). Goals (and constraints) can be 
considered as instantiated pregnances (e.g. eating a 
particular bone) and they are identified thereafter as 
pregnances. In Ikon Flux a pregnance is implemented as an 
object type for specifying abstract regions in the state 
space, using a pattern. For example, hunger could be 
encoded as (1) a pregnance object P defining a pattern like 
“a state such as the intensity of P is lower than it is now” 
and (2) a program P’ that modifies the intensity of P 
according to an underlying biological model - the 
execution of P’ being the expression of hunger as a 
process. As processes, pregnances are used to define 
dimensions of the state space and along these, the distance 
function is defined by the executive: for a given object O it 
is the length (in time) of the shortest rewriting path - if any 
- that from O leads to an increase (or decrease) of the 
intensity of the pregnance. This measurement is computed 
by the executive for each object upon request by any 
program, e.g. when the intensity of a pregnance changes. 

In Thom’s Semiophysics [13], when a form, e.g. a 
discernable event over a noisy background, becomes 
salient enough under the empire of a pregnance, it can, 
under some conditions, trigger the contraction of event-
reaction loops in shorter ones. This is called the “investing 
of forms by a pregnance”, or pregnance channeling. Thom 
gives an example of thereof in his interpretation of 
Pavlov’s famous experiment: the bell becomes invested by 
the pregnance hunger, to the point where its sole ringing 
triggers a response normally associated to the subsequent 
occurrence of the meat: the bell assumes the pragmatics of 
the meat. Subsumed by a pregnance, a form progressively 
stands for - means - another form. In Ikon Flux pregnance 
channeling can be typically implemented as the 
combination of (1) underlying models for pregnances - the 
consumption / digestion process, to which salivating is a 
positive contribution - (2) programs that learn an 
interaction pattern - occurrence of the bell, then of the 
meat, then of the rewriting of the event “meat” into the 
salivation reaction - and (3) programs that promote this 
pattern to a program - rewriting “bell ringing” into the 
invocation of the function “salivate”. Learning is, in our 

example, identifying recurrent values for the projections of 
the events (occurrences of bell, meat and rewriting events) 
along the dimension associated to the pregnance hunger 
and related intermediate processes; feedback (or 
reinforcement) comes as the satisfaction of the pregnance. 
Pregnance channeling constitutes a semantic association 
between events and reactions at a global scale: as a global 
learning mechanism it can lead to behavior conditioning 
(as in Pavlov’s experiment), but it is also one possible 
mechanism for implementing associative memories where 
pregnance channeling triggers the spreading of intensity 
control values across the system. Put briefly, plunging 
processes into topological spaces enables the identification 
of causal and dynamic relations throughout the entire state 
time-space for observing and controlling the system as a 
whole. This has also been demonstrated with a massively 
multi-agent architecture [1] whose essential parameters are 
represented in a topological space and controlled in real-
time using morphological analysis. 

Implementation 

The development of Ikon Flux started in 1998, and in 2005 
version 1.6 was used to test a system (Loki) in the field. 
The context was live theatrical performances

3
 where Loki 

was in charge of generating and enacting the stage control 
according to the development of the drama. Loki was part 
of the full production period, adjusting its reactions to the 
rehearsal events like any of the actors and stage hands, 
given the input of the director. Loki thus constituted a fully 
valid crew member as human actors responded to Loki's 
actions in an adaptive way, and vice versa along the lines 
of constructivist theatre. Loki was able to control reliably 
and in real-time a complex machinery (wide variety of 
sensors/actuators and constraints) in a rich, noisy and 
unstructured environment under frequent and significant 
changes (e.g. human behaviors, live modifications of the 
script). It performed both in supervised and unsupervised 
modes (resp. during rehearsals and live shows) and for 20 
days (cummulative time). Loki performed under 
considerable financial and time pressure and under these 
conditions no formal evaluation could be conducted: this is 
left for the development of future systems.  Although this 
field-testing represents a limited evaluation of the full set 
of Ikon Flux's ideas, it verified three key features: (1) Ikon 
Flux theory is implementable; (2) systems implemented on 
its foundation can adapt in practical real-time, both on 
short and long timescales; and (3) Ikon Flux architectures 
can be reliable enough to maintain their place in a multi-
person, multi-week interaction involving continuous 
change while meeting real goals.  

So far, our experience with Loki justifies the pursuit of 
further developments with great confidence. Nevertheless, 
much work remains to be done to address all the issues 
pertaining to the engineering of fully autonomous systems 

                                                 
3
  In particular, the play Roma Amor – director J.M. Musial - premiered 

at the Cite des Sciences et de L’Industrie, Paris. Work supported by grants 

from the French Agency for Research (ANVAR) and Ministry of Culture.  



 

like the Mars rover we described in the Introduction; there 
exist today no actual methodology for the principled 
design of non-trivial evolutionary systems. This is an open 
issue we are currently investigating on the basis of several 
techniques and concepts we have experimented for the 
construction of Loki. Here is a brief overview of these. 
First, in a traditional top-down fashion, we leverage prior 
knowledge by hand-crafting analogy-making programs. 
These are used to infer goals and plans by generating new 
heuristics from the ones provided in the bootstrap segment, 
and for unifying local models into more general ones. 
Second - and this is a more decisive research avenue - we 
identify and foster programmatically the formation and the 
transformation of high-level structures, functions and 
processes from the bottom up. This is required essentially 
(1) to measure and control the stability of functions, (2) to 
understand their formation for building new ones for 
arbitrary purposes, (3) to form concepts operationally for 
keeping the system complexity at a reasonable level as it 
produces new knowledge, and (4) to optimize existing 
rewrite graphs. To this end we have included in the 
bootstrap segment some “architectural” code: it consists of 
ad-hoc programs and models designed to identify and 
construct high-level organizations such as functions - 
stable coupling over time of inputs and effects - organons - 
ephemeral aggregates of code forming a substrate for a 
function, i.e. abstract patterns of computation flux - 
organisms - aggregates of organons operationally closed 
for a set of functions - and individuals - aggregates of 
functions, organons and organisms semantically closed for 
a pregnance. However, to do so in a general and 
deterministic way remains unsolved. Notice also that, at 
this stage of development, a significant part of the 
bootstrap segment has been kept away from evolution, 
notably architectural code and internal drives. 

Performing deep pattern matching over a massive amount 
of fine-grained objects

4
 in real-time is computationally 

intensive, but not intractable. Ikon Flux has been 
implemented on clusters of standard PCs running RTAI5. 
Our measurements of Loki’s performance show that, under 
constant load, rewriting speed scales well with the number 
of processors; but they also show that scalability - the 
admissible load - is severely limited by current networks 
and protocols (TCP/IP over Ethernet). As a result, a new 
version (2.0) is planned, targeted at multi-core processors 
communicating by RDMA over Infiniband. 

Conclusion 

In the domain of computational systems, autonomy can be 
operationalized by the concept of self-programming for 
which we have presented a prototype: a dynamic, real-time 
and self-referential architecture for building and grounding 
knowledge and processes in high-dimensional topological 

                                                 
4
 Loki was constituted by roughly 300 000 objects in average. 
5
 A real-time kernel extension for Linux [www.rtai.org] paired with 

RTnet a real-time network protocol stack [www.rts.uni-hannover.de/rtnet] 

spaces. For such systems, harnessing the emergence of 
high-order organizations in a general scalable way calls for 
new engineering methodologies. As we have argued here, 
these must be based on a process-oriented and generative 
approach. To this end we are currently investigating the 
possibility of modeling self-programming using Goldfarb’s 
Evolving Transformation System [3]. 

References 

[1] Campagne J.C. Morphologie et systèmes multi-agents. Ph.D. 

thesis, Université Pierre et Marie Curie, Paris. 2005 

[2] Froese T., Virgo N., Izquierdo E. Autonomy: A review and a 

reappraisal. In F. Almeida e Costa et al. eds. Proc. of the 9th 

European Conference on Artificial Life. Springer-Verlag, Berlin. 

2007 

[3] Goldfarb L., Gay D. What is a structural representation? Fifth 

variation, Faculty of Computer Science, University of New 

Brunswick, Technical Report  TR05-175. 2005 

[4] Landauer C., Bellman K.L. Self-Modeling Systems. In R. 

Laddaga, H. Shrobe eds. Self-Adaptive Software: Applications. 

Springer Lecture Notes in Computer Science, 2614:238-256. 

2003 

[5] Nivel E. Ikon Flux 2.0. Reykjavik University, School of 

Computer Science Technical Report. RUTR-CS07006. 2007 

[6] Pattee H. Evolving Self-Reference: Matter, Symbols, and 

Semantic Closure. In Communication and Cognition. Artificial 

Intelligence, 12(1-2). 1995 

[7] Pollock J. OSCAR: An agent architecture based on defeasible 

reasoning. In Proc. of the 2008 AAAI Spring Symposium on 

Architectures for Intelligent Theory-Based Agents. 2008 

[8] Rocha L.M. ed. Communication and Cognition. Artificial 

Intelligence, Vol. 12, Nos. 1-2, pp. 3-8, Special Issue Self-

Reference in Biological and Cognitive Systems. 1995 

[9] Rocha L.M. Syntactic autonomy, cellular automata, and RNA 

editing: or why self-organization needs symbols to evolve and 

how it might evolve them. In Chandler J.L.R. and G, Van de 

Vijver eds. Closure: Emergent Organizations and Their 

Dynamics. Annals of the New York Academy of Sciences, 

901:207-223. 2000 

[10] Schmidhuber J. Optimal Ordered Problem Solver. Machine 

Learning, 54, 211-254. 2004 

[11] Schmidhuber J. Gödel machines: Fully Self-Referential 

Optimal Universal Self-Improvers. In Goertzel B. and Pennachin 

C. eds. Artificial General Intelligence, p. 119-226, 2006. 

[12] Thom R. Structural Stability and Morphogenesis. Reading, 

MA: W. A. Benjamin. 1972 

[13] Thom R. Semiophysics: A Sketch. Redwood City: Addison-

Wesley. 1990 

[14] Varela F.J., Maturana H.R. Autopoiesis and Cognition: The 

Realization of the Living. Boston, MA: Reidel. 1980 

[15] Yamamoto L., Schreckling D., Meyer T. Self-Replicating 

and Self-Modifying Programs in Fraglets. Proc. of the 2nd 

International Conference on Bio-Inspired Models of Network, 

Information, and Computing Systems. 2007 


