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Abstract—A significant problem facing researchers in rein-

forcement learning, and particularly in multi-objective learning,

is the dearth of good benchmarks. In this paper, we present

a method and software tool enabling the creation of random

problem instances, including multi-objective learning problems,

with specific structural properties. This tool, called Merlin (for

Multi-objective Environments for Reinforcement LearnINg), pro-

vides the ability to control these features in predictable ways,

thus allowing researchers to begin to build a more detailed

understanding about what features of a problem interact with a

given learning algorithm to improve or degrade the algorithm’s

performance. We present this method and tool, and briefly discuss

the controls provided by the generator, its supported options, and

their implications on the generated benchmark instances.

I. INTRODUCTION

The basic framework of Markov Decision Problems
(MDPs) learned via interaction with the environment is a
good fit for many difficult problems encountered in building
life-long learning systems. However, current approaches are
severely limited in how well they can cope with large numbers
of disparate tasks, and relatively little is understood about how
to build such systems. Solving these problems will require
understanding exactly how the current approaches fail and
characterizing the way that complex problem features affect
new algorithms that may be developed.

Practitioners in the field of reinforcement learning often
work with a small set of manually constructed benchmark
problems. Classically, problems like the inverted pendulum
or double-pendulum have been used to evaluate new learning
algorithms. As algorithms evolved, new problem domains
such as the mountain-car domain were created to pose addi-
tional challenges and exercise specific capabilities of targeted
learning algorithms. However, in almost all cases, problem
domains are manually constructed. The reasons for this are
understandable; unlike in the world of optimization, the need
for a coherent model of an underlying dynamical system to
learn from makes human intervention one of the only feasible
ways to generate new worlds. Naïve random generation of
instances can result in problems that are too easily solved or
are otherwise unrealistic.

This approach significantly limits the ability of researchers
to begin to develop their own internal models of the interaction
between features of a learning environment and features of
a learning algorithm. Put simply, it can be difficult to tell
how general a successful algorithm can be when testing of

the algorithm is limited to only the few domains that humans
have painstakingly developed and implemented.

Recently, researchers in the field of machine learning have
also begun to consider multiple objectives in the context of
reinforcement learning problems [5], [7]. However most prior
work has focused on somewhat more narrowly construed goals
or only a very small number of objectives, or both. These
problems, involving domains such as robot navigation with
a second task centered around power management (i.e., find
the goal state, but also keep yourself charged), are interesting
multi-objective problems, but the limited scope, size as mea-
sured by the number of tasks, and limited variability among
tasks render them insufficient to provide a comprehensive test
of multi-objective learning algorithms.

Here we should clarify a subtle distinction in terminol-
ogy. Within the general framework of MDPs with multiple
tasks, there are different interpretations of the precise na-
ture of the problem, each with its own potentially unique
approaches. These methods may be broken down into three
categories: multi-objective learning, multi-task learning, and
transfer learning [23]. In multi-objective learning, we assume
there is a single MDP to be learned, but that the reward
function is vector-valued. In this case, there is obviously a
single set of dynamics involved, but the agent must learn a set
of Pareto-optimal actions from each state in the environment.
In multi-task and transfer learning, the agent is concerned with
learning multiple MDPs, exploiting knowledge gained from
prior learning to speed the acquisition of the new skill. In
multi-task learning, it is assumed that all tasks are drawn from
the same distribution.

The three formalisms share several similarities and can
be applied in somewhat overlapping problem sets, but most
naturally cover different scenarios in which reinforcement
learning algorithms may be appropriate. For transfer and multi-
task learning, the aim is largely to produce agents that may
learn new skills over time – skills that were not needed and
whose available feedback signals were not available during
the agent’s initial learning phases. Conversely, multi-objective
learning more directly applies to systems that need to learn a
more complex set of behaviors simultaneously. The different
approaches may be combined as well, for example with a
transfer learning system using information gained by one
multi-objective learning algorithm to more efficiently acquire
skills in a novel multi-objective environment. In this work, our
focus is primarily on multi-objective reinforcment learning.
The agent will be presented with a single defined environment



involving multiple reward signals, possibly unrelated, and must
learn a set of actions that are mutually non-dominated for each
state in the environment.

It is our view that the current focus on manually con-
structed benchmark problems is only a part of the solution
to the problem of developing new and better multi-objective
learning algorithms. The advantages of real-world problem
domains are many. They are much more direct measures of the
ability of learning algorithms to solve the types of problems
that occur in real situations, and they are often very large
and challenging problems, providing ample opportunities to
demonstrate improved algorithms. However, real-world prob-
lems are also very difficult to interpret. If a method performs
well (or poorly), it is very difficult to generalize effectively
from that result. Would other methods perform better or worse?
Would the tested method perform well on similar types of
problems? The lack of direct visibility into the structure in
real-world problems hinders this sort of analysis greatly, while
synthetic benchmark instances can be generated with specific
structures, controls, etc. Thus we maintain that there is a need
for both approaches in advancing the state of multi-objective
learning.

So the situation is essentially that random problems, gener-
ated strategically, can help multi-objective learning researchers
greatly expand the range of problems and algorithms they are
able to study, but it can be very difficult to generate random
problems that don’t exhibit undesirable properties that can
nullify this potential benefit. In this paper, we describe one
approach to controlling some key properties of multi-objective
learning problems.

II. RELATED WORK

While no existing work has considered the problem of
generating multi-objective reinforcement learning problems
with the goal of providing controllable and tunable structure,
there has been quite a lot of work done in the general field of
multi-objective reinforcement learning. Modular Q-Learning
[14] and similar approaches have formed the basis of much
of this work. As we will discuss below, there is a significant
problem awaiting techniques such as these as the number of
simultaneous tasks required of the learner grows beyond the
smallest example domains, and thus there is a need for bench-
mark problems that can be extended to better evaluate these
methods under general domains. In addition, many studies of
multiple objectives in reinforcement learning problems have
focused on the problem of sequential objectives [10]. Rybicki
et. al. [19] considered a multi-objective reinforcement learning
problem using a combination of supervised and unsupervised
learning that focused on the transfer of knowledge between
tasks, but their work considered only a fairly simple test
environment, and did not address the long term challenges of
managing learning of many, often to some degree unrelated
tasks.

Similarly, several researchers have focused on generating
random MDPs for single-task learning domains. Early work
on learning policies for MDPs often exclusively used ran-
domly generated problems. Particularly in the case of finite
MDPs, generating random problems is very simple. However,
Archibald et. al. noted as early as 1995 the problem with

significant numbers of papers in the field being focused on
random problems with little or no control over critical prop-
erties of those problems [2]. In that work, a generator called
PROCON was proposed that allowed for the control of several
aspects of finite MDP structure, particularly the mixing time of
the resulting Markov chains. More recently, Bhatnagar et. al.
[3] developed a generator referred to as GARNET (Generated
Average Reward Non-stationary Environment Test-bench) that
remains a standard technique for researchers looking to apply
learning methods to random problems today [6], [18], [20].
However, both the PROCON and GARNET problems are
restricted to only single-task MDPs with a single global reward
signal to be maximized, and neither includes support for real-
valued state or action spaces.

In their work, Vamplew et. al. [24] proposed a set of
small benchmark problems for multi-objective learning. Some
of their problems were small enough to have the Pareto
Fronts known via exhaustive search. Others adapted known
problems from the single- task RL community by adding
objectives. Only one problem exhibited more than two tasks
– an extension of the mountain car problem. However, the
tasks chosen to add there were to minimize the number of
reversing actions and to minimize the number of accelerations.
In both cases, given the dynamics of the domain, there are
large correlations with the primary objective of escaping in
as little time as possible. We know from the multi-objective
optimization literature that the degree of correlation between
tasks is one of the most important factors governing the
performance of many multi-objective optimization algorithms
[15], [16]. One contribution of this paper is to examine this in
context of multi-objective reinforcement learning.

Recent work in multi-objective optimization (MOO) has
shown that even for small numbers of tasks, naïve approaches
to handling these trade-offs can fail catastrophically. Essen-
tially, as the number of tasks increases, any process that
tries to directly select Pareto optimal actions will necessarily
decay to a random walk. To understand why, consider the
definition of Pareto dominance. From a given state s, an action
a1 dominates an action a2 if and only if taking a1 results
in an estimated long-term reward not worse than a2 for all
tasks in the domain, and strictly better at at least one task.
Each time we add a task, we add a new dimension in which
a2 could be a better choice than a1 when faced with state
s. This exponential decrease in the probability that any one
action will dominate another as the number of tasks increases
beyond even very moderate levels means that direct search
for Pareto-optimal actions must devolve into random search.
Essentially, with five or more tasks, it becomes very likely that
a random action will be Pareto-optimal or near-optimal – just
picking any action at all is likely to result in moving toward
a favorable outcome with respect to at least one task. As a
result, MOO researchers view a qualitative difference between
what they have called “multi-objective” and “many-objective”
optimization, and to develop specific techniques for handling
the latter (considered as problems with five or more objectives).
Vamplew et. al. [24] advocated taking the lead from the
multi-objective optimization community in attempting to better
directly handle the problem of dealing with multiple objectives.
Recent work from that community has demonstrated that it is
critical to understand problem structure – most importantly the
interaction between tasks – if one is to design algorithms that



perform acceptably in higher dimensional task spaces.

It is also recognized within the RL community that testing
on unknown problems is valuable. The 2013 Reinforcement
Learning Competition (WRLCOMP) [25], held at ICML 2013,
included real-world helicopter control [17], [1] and inva-
sive species monitoring [12] tasks, but also included a third
“polyathlon” task, in which learners were given a series of
abstract and related problems to learn to solve. Such tasks are
incredibly useful for estimating robustness of learning agents,
but we aim to go a step further than this. In the WRLCOMP
workshop, the polyathlon task was still created by humans
with in-depth knowledge of how to specify the dynamics of
the problem. This paper describes one approach to generating
any number of problems automatically and provides methods
by which the problems can be “tuned”. That is, we aim to
provide the ability to generate a problem domain with specific
characteristics, and then to tweak these characteristics in a
controlled way. For instance, transfer learning methods can
be tested on a whole range of very similar problems, differing
only in the degree to which the target tasks are related. Or a
range of similar navigation problems can be generated, with
control over the statistical relationships between features in the
world (e.g., locations of goals and traps, etc.).

This is, of course, not to imply that existing problems
should be abandoned. For better understanding the role that
problem structure has on the performance of reinforcement
learning algorithms however, there is a definite need for
problem domains with tunable structure. This paper describes
a preliminary approach to generating such a variety of single
and multi-objective, continuous and discrete Markov Decision
Problems in such a way that researchers can generate problems
with specific characteristics to better understand the perfor-
mance of their algorithms on a variety of search spaces.

III. OVERVIEW OF THE MERLIN GENERATOR

To address these issues, we have developed a generator
called Merlin (Multi-objective Environments for Reinforce-
ment LearnINg). Merlin is implemented in Python, and takes a
modular approach to the problem, allowing the user to mix and
match different components of an MDP to generate problems
with the desired structure, including discrete and continuous
problems, problems with varying numbers and types of goals,
and problems including spatially structured dynamics.

MDPs, the underlying formalism behind reinforcement
learning problems, define a particular framework for decision
making in which an agent perceives the state of the environ-
ment, chooses an action from an available action set, executes
the action, and observes the consequences of the action. In
particular, in reinforcement learning, the results of executing an
action are a pair: an immediate reward and a new observation
of the state of the environment. The goal of the agent is to learn
a policy – a mapping of states to actions which if followed
many steps into the future, will result in maximizing the total
reward received by the agent.

More formally, we can define an MDP by the following
components:

• S – the state space consisting of all relevant informa-
tion perceived by the agent.

• A – the action space consisting of all possible actions
the agent may choose to take at a given time.

• Pa(s, s0) – the probability that executing action a

when in observed state s will put the environment into
state s

0.

• Ra(s, s0) – the immediate reward received after taking
action a in state s and transitioning to state s

0.

Note that while some algorithms for learning policies on MDPs
make further assumptions, often that S and A are finite for
instance, the basic framework is extremely general. In Merlin’s
modular system, different options for these four components
can be (mostly) independently selected to construct a given
problem type.

The performance of any algorithm for solving these prob-
lems will depend on the specifics of the problem structure. As
is known from the recent work in multi-objective optimization,
one of the most important aspects of this problem structure
is the number of distinct tasks and their degree of inter-
correlations. As such, Merlin also allows an arbitrary number
of tasks to be specified in the generated problem along with
the correlation between each pair. In the remainder of the
paper, we describe how Merlin works to combine selected
features into a single defined Markov Decision Process with
arbitrary numbers of tasks with (somewhat) arbitrarily complex
interrelationships.

IV. FINITE DISCRETE MDPS

It is easily seen that in the case of finite MDPs (i.e., those
in which both the state and action sets S and A are finite), the
dynamics can be captured by a non-deterministic finite state
machine, in the context of finite MDPs, called a transition
graph. If the state transition function P is deterministic, then
the underlying state machine is also deterministic. The simplest
form of random MDP considered here is a discrete model in
which there are n states, m actions, and k distinct tasks. Each
state-action pair thus maps to k rewards, one for each task.
The state transition function is modeled by a directed random
multi-graph with n nodes, each with exactly m outgoing edges
(i.e., all actions are available from every state). Note that the in-
degree of each node is not constant, but all nodes have positive
in-degree. That is, all nodes are reachable in the graph from
any starting position.

There is a large body of existing knowledge regarding
the properties of different types of random graphs. Many
of the most common types, such as the Erdõs-Rényi model
[8], are not necessarily good candidates for representing the
underlying transition dynamics in an MDP intended for testing
reinforcement learning algorithms. In that specific case, the
issue is that these graphs tend to have exhibit the so-called
“small-world” structure in which the distance between any two
nodes is likely to be small [4]. In the context of reinforcement
learning, this means that the goal state is never very far away
from any state in the graph, and the resulting problems may
be too easy (this is related to the mixing time of the Markov
chain, which the PROCON generator explicitly tries to ensure
will be suitably large).

Other types of graphs, such as the random-caterpillar and
random-lobster graph types [13], [11] allow more precise



Fig. 1. Example of a small random fern with backbone length 5 and 5-node
fronds.

control over the mixing time of the processes. Currently, all
graph generators supported by the Python networkx package
can be easily used as the basis for a generated instance in
Merlin, as well as a few additional models the authors find
useful. One particularly useful addition is what we’re calling
a random fern graph. A random fern is like a random lobster,
but rather than simple 2-node chains hanging off the backbone,
we attach larger and more complex graphs. Thus the overall
structure is a backbone with many individually disjoint graphs
attached as leaves, like the fronds on a fern. Figure 1 shows a
small example.

No start or goal state is determined by the generator.
Rather, there is a distribution of (vector-valued) rewards over
every edge in the graph. The random graph can be viewed as
the most basic transition graph, but Merlin supports several
others which can be more useful in generating challenging
instances.

Abstract graphs form an extremely flexible basis for spec-
ifying the transition dynamics of random MDPs, but can also
be useful to look at more specific and semantically meaningful
domains. Merlin provides some support for such problems. A
common simple domain for benchmarking RL algorithms is
the problem of learning navigation in spatial domains such as
grid-world. Each state is connected to 2d other states in a fixed
fashion dictated by spatial constraints (e.g., the agent can move
left or right (1D); left, right, up, and down (2D); etc.). Mazes
are a special case of the 2-dimensional grid-world domain
in which there are walls present that block the agent from
moving into certain states. We provide a specific generator
for 2-dimensional mazes, along with code to visualize the
mazes as well as the behavior of a given RL agent learning to
navigate the maze. This allows Merlin to generate problems
similar to the multi-objective deep-sea diver problem proposed
by Vamplew [24].

Unlike most existing work in reinforcement learning, in the
multi-objective model there exists no single reward signal to be
maximized over time. Instead, there are k individual tasks to be
learned, and each task contributes an immediate reward upon
each state/action transition. Thus the multi-objective learning
problem is one in which the reward signal is vector-valued.
All other aspects of the learning problem remain the same.

A key difference between conventional reinforcement
learning approaches and multi-objective methods lies in action

selection. In the multi-objective realm, there is no well-defined
“best” action to be selected in exploitative stages. Rather, there
is a range of trade-offs represented by the available actions,
each of which may be better or worse than others depending
on which subset of tasks are viewed to be most valuable at
the current time. Given an environment in which agents can
learn to feed pets, vacuum the floors, and take out the garbage,
we want a single agent to learn to perform all three tasks
concurrently as it develops, but this implies that at any given
time, it may find that it needs to go left to feed a hungry
pet and go right to empty an overflowing garbage can. In
this case, neither “left” nor “right” may be considered the
optimal action; we can say only that they are (possibly) non-
dominated. A key principle in multi-objective learning is that
additional information is needed in order to perform the final
action selection, often in the form of a human decision maker
or a human-specified preference function. The goal of a multi-
objective learner is to learn an appropriate set of options to
pass on to this secondary decision-making process.

In Merlin, the rewards are assigned by sampling a multi-
variate normal distribution with a specified covariance matrix,
given by the user in the form of a correlation matrix and stan-
dard deviations along each task. Formally, the user generates
an instance by specifying the off-diagonal components of an
upper-triangular matrix CR, such that CR

i,j = ri,j , where ri,j

denotes the correlation coefficient between tasks i and j. Along
with the correlation matrix, a vector ⌃ = (�1,�2, . . . ,�k) is
given with �i denoting the standard deviation of reward values
for task i. A covariance matrix C is then computed using the
identity C = diag (⌃)CR diag (⌃).

Arbitrary correlation matrices can be specified by the
user, subject only to physical constraints – specifically the
derived covariance matrix CR must be positive definite. This
restriction prohibits illogical inter-task relationships, such as
the situation that task 1 is highly positively correlated with
task 2; task 2 is highly positively correlated with task 3,
and task 1 is highly anticorrelated with task 3. For any
valid covariance matrix then, CR characterizes a multivariate
normal distribution, which is then sampled as many times as
needed to obtain a reward value for every state- action-task
triplet in the generated instance. The resulting samples are then
reshaped appropriately to yield k columns of mn (the number
of states and actions respectively) values each such that the
pairwise correlation coefficient between columns i and j is
approximately ri,j .

For spatial navigation problems, we take “correlation”
between tasks to imply not necessarily that the value of each
tasks rewards are high, but that the spatial location of the
rewarding and penalizing states in the graph is correlated. That
is, if there are two pots of gold in a grid-world problem with
high correlation values, then they will be located near one
another in the graph, but not necessarily with correlated values.

V. CONTINUOUS MDPS

For finite MDPs, the procedures described above are
sufficient, but many of the most interesting applications of
reinforcement learning are continuous problems. As such, it
is vital that any proposed test suite or generator include the
ability to deal with continuous models. Of course, it is easy



to generate a continuous Markov Decision Problem, but the
most obvious ways do not admit the possibility of controlling,
or even predicting important aspects of the structure of the
generated problems.

Most widely used reinforcement learning algorithms as-
sume finite state and action sets. Continuous problems can be
handled by discretizing the continuous values with a suitable
granularity, but such knowledge may be difficult to obtain.
In other cases, the granularity required to learn a suitable
policy may be so fine that, while finite, the size of the
discretized spaces is still too large to be effectively learned.
Actor-critic methods [21], [3] are a commonly used technique
for dealing with continuous problems and very large state
and action spaces. In those methods, a continuous model
tries to learn a more compact representation of the observed
state-transition dynamics at run-time. The proposed methods
here share many similarities with actor-critic algorithms, but
rather than learning an approximation to a discrete model via
observation at the time of learning, we do so as a way to
directly represent continuous problems.

In finite MDPs, the states and actions may be completely
arbitrary (e.g., “from state S, executing action A yields a
new state S

0”). No semantic information need be attached
to the labels of states and actions. However, in problems
with continuous state and/or action spaces, this is obviously
not true. In the classic inverted pendulum problem, the states
correspond to physical measurements of the system, and the
transition dynamics are specific by numeric functions of the
state-values and action-values. In order to generate random
continuous MDPs then, Merlin must have some method by
which states and actions may be assigned numeric values, and
the dynamics should ideally have some degree of structure to
them that depends on these values.

The approach proposed here is to split the problem into
two separate parts. Initially, we generate a discrete problem,
using the same graph generation algorithms described in the
previous section. This allows us to ensure that, among other
things, that the state space is reasonably well covered and that
the underlying dynamics of the model are connected. Then the
discrete model is annotated with state and action values and
used to learn a generative (continuous) model which can serve
as the true continuous MDP instance.

One option for producing these annotations is to generate
state values uniformly at random. Merlin can support this
method, but the resulting problems are likely not representative
of the types of structure that we’re most often interested in. In
most real problems, the autocorrelation of state values along a
random walk is usually somewhat positive. Applying a small
action in a known state is more likely to result in a new state
that is similar to the prior one. Ideally one would like the
ability to control how “rugged” the walk through the state-
space graph is for a given problem.

To approximate this type of structure, we take a series
of random walks through the (un-annotated) graph without
replacement of visited nodes, recording each node encountered
along the way. When no unvisited nodes are reachable, we
generate a time series of real values of length N (where N is
the number of nodes visited on this walk) and assign each
node in order of visitation the corresponding value in the

time series. For multi-dimensional state vectors, we generate
k independent time-series (one for each dimension of the state
space) and use each as one dimension of the state vector. If
there are still unlabeled nodes in the graph, new random walks
are constructed until all nodes have been assigned a state value.

To provide the autocorrelation structure mentioned above,
multiple methods of generating the time series are provided.
In addition to uniform random generation, Merlin includes
a Gaussian random walk in which each value is generated
from the prior step by adding a zero-mean Gaussian random
number with a specified variance, and the random midpoint
displacement method popularized in fractal terrain generation
[9]. Figure 2 shows examples of the two methods. As shown
in the figure, each method has a parameter governing the
ruggedness, but the fractal method allows a separation between
micro-level ruggedness and macro-level ruggedness, while the
Gaussian walk has a single scale parameter governing both.

Once all the nodes of the graph have been annotated with
state values using the methods described above, each edge
must be assigned a numeric action value. Unlike state values,
the action values for a problem are typically bounded only
by some range, e.g., you may apply a force of between �1
and +1. Randomly assigning action values to edges would be
a reasonable approach, but as the state and action values are
going to be used as training data for a regression model, it
is useful if we can ensure that (a) we have some reasonable
coverage of the range of possible actions from a given state
in the training set, and (b) that we do not generate two nearly
identical actions from a single state that map onto two very
different successor states.

Here, a relatively simple solution is chosen. A user-
specified parameter sets the range of possible action values,
and this range is partitioned into E non-overlapping intervals,
where E is the number of outgoing edges from the current
node. Each edge is then labeled with an action value sampled
uniformly at random from the interval corresponding to the
edge.

This mapping of values to both states and actions then
defines part of a continuous MDP. However, the vast majority
of real-valued states are not represented in the finite set of an-
notated nodes, nor are the small set of actions representative of
a problem with truly real-valued actions. To solve this problem,
we use the annotated graph as training data for a supervised
learner with the goal of learning the underlying dynamics of
the discrete problem. If, in the graph, node A is connected
to node B via edge E, we construct a training point from the
assigned mapping as (state_value[A], action_value[E]) !
state_value[B]. If the classifier used to learn these dynamics
builds a continuous internal model for prediction, then we can
use this internal model as a drop-in replacement for the discrete
version of the problem.

In principle, any continuous model could be used, but
the specific needs of the problem make some methods less
suitable than others for the task. In particular, the variations
in state-values as an agent moves from one part of the space
to another may be important, but many learning models may
be biased towards treating them as noise to be smoothed. To
take a simplistic example, consider a “pot-of-gold” reward
function that is zero everywhere except for one state. In this



Fig. 2. Three sample random state-value progressions using Gaussian random walks (top, from left, � = 1.0, 2.5, 5.0) and the Random Midpoint Displacement
fractal method (bottom, from left, R = 0.85, 0.6, 0.5).

model, there is a single state/action pair which yields a positive
reward; all others yield zero. If we approximate this function
using, for example, linear regression, we lose the critical
property of the reward function – that it is uniform throughout
the space except for the one positive transition which is the
very property that makes the problem interesting.

Because of this, Merlin attempts to approximate the dy-
namics of transition and reward functions using much less reg-
ularization that would be typical for conventional classification
or regression tasks. In essence, we want to maintain as much
of the local structure in the underlying dynamics as possible,
while inferring only the real-values that were not present in the
training set. This does open the door to overfitting becoming
problematic. In practice, this aspect of Merlin is somewhat
experimental. It often generates sensible continuous models,
but some care must be taken with the generated instances
to ensure that they do not exhibit undesirable behavior as
they generalize away from the state-action pairs they were
trained on. Work is ongoing to improve the reliability of the
approximation schemes.

Because we do want some variation that would ordinarily
be considered a sign of overfitting, Gaussian Processes can
be a fairly natural approach to the problem. Unlike SVMs, for
example, they are dense and guaranteed to perfectly reproduce
the training data. Some care is needed to ensure that sufficient
coverage of the state/action spaces is given during training
to prevent the model from straying too far from the observed
values, but if done properly, the resulting approximation model
captures very well the structure present in the underlying
graph, while still providing a true continuous model.

One drawback of Gaussian processes is that when used in
this way, they can be very demanding of memory. For large
graphs, the approximate model may be prohibitive to deal with.
Merlin provides additional approximation methods as well for
cases in which the Gaussian process model is a poor fit.
Currently Merlin provides direct support feed-forward neural
networks (trained via the standard backpropagation algorithm)
and support vector regression to form the surrogate model.
However, any other supervised regression method can be fairly
easily swapped in if needed.

VI. PERTURBATION OF GENERATED INSTANCES

Once the model has been trained, it is written out in a form
that can be read back in and used to provide a reinforcement
learning agent with a model of the state transition and reward
dynamics of the problem. Another benefit to this approach is
that once learned, the model can be perturbed by a specified
amount to yield many more problems that have similar, but
not identical structure. This self-contained model makes inte-
gration with most code bases relatively simple, and work on
integration with RL-Glue [22] is in progress.

Consider the case of a neural network approximation model
of the state transition dynamics. The network has a set of
parameters – the weights of the network trained via backprop-
agation. If we alter X% of those parameters by adding some
noise, we obtain a new approximation model that will behave,
to approximately a prescribed degree, similar to the existing
one. This opens up the possibility of performing controlled
experiments with learning algorithms. If a learner performs
extremely well on one problem, we can not only generate
many more random problem instances with the same hyper-
parameters (here meaning the parameters passed to Merlin
to generate the instance), but we can also begin to alter
the instances to detect the point at which the algorithm’s
performance begins to change. While this method does not
provide detailed information regarding exactly what features of
the instance the algorithm was responding to, it does provide
useful information regarding how robust the learner is to
changes in the type of problems it has been tested with.

This provides one of the key benefits of our approach.
Unlike manually constructed models, we can explore the space
of problem domains around a given model. This allows a great
deal of information to be obtained about how different learning
algorithms react to different types of problem structure. Not
only can you estimate robustness of the algorithm more
effectively, but you can also begin to build an understanding
of why a particular approach succeeds or fails by careful
experimentation.

VII. EXPERIMENTAL ANALYSIS

There are several important types of problem structure that
are ultimately important to understanding algorithm perfor-
mance. As the primary novelty in this contribution involves the
generation of multi-task problems, we pay particular attention



TABLE I. AVERAGE PARETO FRONT SIZE ACROSS ALL STATES FOR
(LEFT) BI-OBJECTIVE INSTANCES WITH THE SPECIFIED CORRELATION

COEFFICIENTS BETWEEN TASKS, AND (RIGHT) MULTI-OBJECTIVE
INSTANCES WITH 1000 STATES, 20 ACTIONS, AND k UNCORRELATED

TASKS.

r Size of Pareto Front
0.6 1.91 ± 0.85
0.2 2.39 ± 1.02
0.0 2.77 ± 1.03

-0.2 3.19 ± 1.10
-0.7 4.19 ± 1.20

k Size of Pareto Front
2 3.60 ± 1.44
3 7.22 ± 2.33
4 10.98 ± 2.67
5 14.19 ± 2.51

10 19.68 ± 0.60

to aspects of the problems that directly impact the multi-
objective aspects of the generated instances. Due to space
constraints, we also focus on the discrete instance generation
methods.

As mentioned previously, in the multi-objective optimiza-
tion community, it has been found that a critical factor is the
degree to which an algorithm can differentiate between the
desirability of different candidate solutions. In the context of
reinforcement learning, this refers to the ability to discriminate
between good and bad actions in a given state. One critical
factor affecting this structure is the number of tasks (and their
inter-relationships). Merlin supports arbitrary numbers of tasks,
and the task relationships may be specified using a correlation
matrix as described in Section IV. We generated 50 instances
with 500 states, 8 actions, and 3 tasks with a correlation matrix

R =

 
1.0 0.7 �0.2
0.7 1.0 �0.3

�0.2 �0.3 1.0

!
.

Measuring the sample correlations between the rewards across
the 50 instances yielded
 

1.0± 0.0 0.703± 0.007 �0.202± 0.014
0.703± 0.007 1.0± 0.0 �0.298± 0.017

�0.202± 0.014 �0.298± 0.017 1.0± 0.0

!
.

The residuals are primarily a function of problem size, with
larger problems yielding correlations closer to the target than
smaller problems, but even with quite small problems, the
generated instances tend to closely adhere to the desired task
relationships. This has been verified over a larger set of sample
instances, but these are elided from the paper for space.

We next measured the impact of both problem size (mea-
sured by number of tasks) and this correlation structure on the
Pareto fronts across the state space. To do this, we generated
another set of instances with varying parameters, and then
approximated the Pareto action set at each state by running
several long random walks and performing SARSA weight
updates at each step. The algorithm is equivalent to SARSA
with ✏-greedy selection and ✏ = 1.0 (i.e., all actions were cho-
sen at random). We performed a 5000 of these random walks
from different starting positions, with each walk consisting of
100,000 steps, and after all runs, calculated the nondominated
actions from each state. Table I shows the results of these
experiments.

From these tables, we see two obvious trends. Most strik-
ingly, increasing the number of tasks dramatically increases
the size of the Pareto-optimal set of actions. By the time we
reach 10 objectives, essentially every possible action from any
state is Pareto-optimal. This strongly highlights the need for

Fig. 3. Sample Pareto fronts obtained from randomly selected states on
a problem with 1000 states, 20 actions, and two moderately anti-correlated
objectives.

algorithms that do more than simply enumerate options. It
says that all else being equal, multi-objective reinforcement
learning algorithms likely mut include some form of external
multi-criteria decision-making process to break ties during
the learning process. We also see that even with smaller
numbers of tasks, increased correlations between tasks reduces
the number of Pareto-optimal actions available, and anti-
correlation increases the dimensionality of the Pareto-optimal
action set. As might be expected with random rewards, the
obtained Pareto fronts are not necessarily convex. Figure 3
shows examples of the obtained fronts from one of the uniform
random graph problems.

One final type of structure that is important for any MDP
in the context of reinforcement learning, multi-objective or
otherwise, is related to the hitting time of the chain. In a
typical application of RL, there may be a small set of states that
provide all the positive and negative reward to the agent. For
instance, learning to play games generally involves some small
uniform reward signal for every move until the game is won or
lost, at which point a larger signal is generated for the agent to
learn from. In order to model interesting problems of this type
it is important for any generator to have the ability to create
problem instances in which there are goal states that cannot be
reached in a small number of moves from an arbitrary starting
state.

Much of the relevant functionality in Merlin is orthogonal
to the selection of the underlying graph type, so one could
substitute an arbitrary transition graph in for the dynamics
and then impose the desired number of tasks and the inter-
task reward structures on top of this graph using the methods
described earlier. One area of ongoing work is to incorporate
more types of transition graphs from the literature into Merlin
directly. However, we also include some rudimentary methods
for having more control over the transition structure than the
uniform random graphs allow.

The random fern graphs described in Section IV are one
such approach. These more complex graphs serve to lead a
reinforcement learner into a separate part of the state space
from which it may be difficult to escape to other parts. This
can be used to increase the expected hitting time of a random
walk on the chain. Due to space constraints, we present only
a small sample demonstrating this effect, as shown in Figure
4. There, we show how quickly a random walk can cover the
graph using small and slightly larger instances of a uniform
random graph and a random fern with the same number of
nodes and edges. We see that when the “fronds” of the fern
are relatively small, the walk covers the graph very quickly.
However, by making the fronds deeper and more complex, we
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Fig. 4. Comparison of the estimated cover time for different classes of graphs,
two random ferns and two uniform random graphs, in each pair a small and
moderately larger instance.

can force the agent to spend large amounts of time exploring
these somewhat isolated regions of the state space.

VIII. SUMMARY

We have developed a tool for generating random MDP
instances, including both discrete and continuous and single
and multi-objective problems with support for tunable control
over several aspects of problem structure. The primary benefit
of the proposed method is to provide the ability to test
reinforcement learning algorithms, particularly multi-objective
algorithms, across a wide range of abstract problems.

The implementation of this method in the form of the
Merlin tool is available from https://github.com/deong/merlin.
The tool provides a flexible interface by which different aspects
of a Markov Decision Process can be combined to generate
large numbers of random problem instances sharing specified
structural properties. These problems can be saved and restored
allowing for integration into existing reinforcement learning
code-bases.

Work is ongoing to integrate other existing work such as the
GARNET and PROCON generators into the framework, which
would allow multi-objective learning researchers to use direct
extensions of these known generators. There are several other
aspects in which Merlin could be improved as well. Support for
continuous MDPs is included at present, but needs additional
research to be a completely usable black-box generator –
currently it requires some care to generate suitable continuous
instances. Another such area of future work is in modeling
non-deterministic MDPs and modeling additional types of real-
world-inspired problems. Additionally, work is ongoing is to
use the generator to perform a much greater review of the
performance of existing multi-objective learning methods and
extend the generator to more realistic problem classes.
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