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The development of artificial intelligence (AI) systems has to date been largely one of man-
ual labor. This constructionist approach to AI has resulted in systems with limited-domain
application and severe performance brittleness. No AI architecture to date incorporates, in a
single system, the many features that make natural intelligence general-purpose, including
system-wide attention, analogy-making, system-wide learning, and various other complex
transversal functions. Going beyond current AI systems will require significantly more
complex system architecture than attempted to date. The heavy reliance on direct human
specification and intervention in constructionist AI brings severe theoretical and practical
limitations to any system built that way.
One way to address the challenge of artificial general intelligence (AGI) is replacing a
top-down architectural design approach with methods that allow the system to manage its
own growth. This calls for a fundamental shift from hand-crafting to self-organizing archi-
tectures and self-generated code – what we call a constructivist AI approach, in reference
to the self-constructive principles on which it must be based. Methodologies employed
for constructivist AI will be very different from today’s software development methods;
instead of relying on direct design of mental functions and their implementation in a cog-
nitive architecture, they must address the principles – the “seeds” – from which a cognitive
architecture can automatically grow. In this paper I describe the argument in detail and
examine some of the implications of this impending paradigm shift.

9.1 Introduction

Artificial intelligence researchers have traditionally been rather optimistic about the rate of

progress in the field. The origin of this optimism dates back numerous deacdes, possibly
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as far back as our understanding of the electrical properties of neurons and their role in

controlling animal behavior, but at the very least to the invention of using electricity for au-

tomatic calculation and related tasks – tasks that only humans used to be capable of. These

realizations seemed so laden with potential that even the most ardent skeptics couldn’t help

imagining near-future scenarios where electrical machines would be doing all sorts of tasks

requiring intelligence, helping out in every area of human endeavor.

In spite of measurable progress since the early discoveries, one big question still re-

mains unanswered: How does the human and animal mind work? Bits and pieces of

answers have been popping out of neuroscience, cognitive science, psychology, and AI

research, but a holistic picture seems as far in the future as ever. What we would like to see

– and this is a vision shared by many of those who started the field of AI over 50 years ago

– is an artificial system that can learn numerous disparate tasks and facts, reliably perform

them in a variety of circumstances and environments of real-world complexity; a system

that can apply itself to learning a wide range of skills in a wide range of domains. Such

a system would be considered by most as “generally intelligent”. A trivial example is an

AI that can learn, over a period of say 3 months, to cook dinner, do the dishes, and fix

automobiles. An AI that can acquire the skills to invent new things, solve global warming,

and negotiate peace treaties would be yet another step forward, but for all we know, this

might not be too far-fetched if we can achieve the former.

A functioning brain is a reasonably good place to start studying how thought works –

after all natural intelligence is what gave us the idea to build artificial minds in the first

place. Consider functions of natural minds such as global attention with introspective ca-

pabilities, the ability to discover, understand and abstract facts and causal chains, to make

analogies and inferences, and to learn a large amount of vastly different skills, facts and

tasks, including the control of one’s own thoughts. These are features that seem simply

too critical to leave out when attempting to build an intelligent system. It is in part the

historical neglect of such key features – but especially their integration – that motivates the

present discussion.

The vast collection of atoms and molecules found in everything we see in this universe

tells us little about familiar phenomena such as oceans, rainforests and Picasso paintings.

In the same way, brain neurons are but one of the many building blocks behind the complex

phenomenon we normally recognize as intelligence. Just like the atoms in the trunk of a tree

or water molecules on the surface of the Earth, neurons participate in pattens of interaction

that form complex structures of lower granularity, all of which are more complex than any
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single neuron alone. Without the right superstructures, brain neurons are nothing more than

fancy amoebas, and just as far from what we recognize as high-level intelligence.

Studying only neurons for finding out how the mind works is akin to restricting oneself

to atoms when studying weather patterns. Similarly, languages used today for programming

computers are too restrictive – instead of helping us build complex animated systems they

focus our attention on grains of sand, which are then used to implement bricks – software

modules – which, no surprise, turn out to be great for building brick houses, but are too

inflexible for creating the mobile autonomous robot we were hoping for. In short, modern

software techniques are too inflexible for helping us realize the kinds of complex dynamic

systems necessary to support general intelligence.

What is called for are new methodologies that can bring more power to AI development

teams, enabling them to study cognition in a much more holistic way than possible today,

and focus on architecture – the operation of the system as a whole. To see why this is so

we need to look more closely at what it is that makes natural intelligence special.

9.2 The Nature of (General) Intelligence

Whether or not natural intelligence is at the center of our quest for thinking machines,

it certainly gives us a benchmark; even simple animals are capable of an array of skills way

beyond the most advanced man-made machines. Just to take an example, a fully grown

human brain must contain millions of task-specific abilities. This fact in itself is impres-

sive, but pales in comparison to the fact that these skills have been acquired largely au-

tonomously by the system itself, through self-directed growth, development, and training,

and are managed, selected, improved, updated, and replaced dynamically, while the system

is in use. An integrated system with these capabilities is able to apply acquired skills in

realtime in varied circumstances; it can determine – on the fly – when and how to combine

them to achieve its goals. And in spite of already having a vast amount of acquired skills,

it must retain the ability to acquire new ones, some of which may have very little overlap

with any prior existing knowledge.

The field of artificial intelligence has so far produced numerous partial solutions to

what we normally call intelligent behavior. These address isolated sub-topics such as play-

ing board games, using data from a camera to perform a small set of predetermined oper-

ations, transcribing spoken words into written ones, and learning a limited set of actions

from experience. In systems that learn, the learning targets (goals) are hand-picked by the
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programmer; in systems that can to some extent “see” their environment, the variations in

operating contexts and lighting must be highly restricted; in systems that can play board

games, the types of games are limited in numerous ways – in short, there are significant

limitations to the systems in each of these areas. No system has yet been built that can

learn two or more of these domains by itself, given only the top-level goal of simply learn-

ing “any task that comes your way”. These systems are nonetheless labeled as “artificially

intelligent” by a majority of the research community.

In contrast, what we mean by “general” intelligence is the ability of a system to learn

many skills (e.g. games, reading, singing, playing racketball, building houses, etc.) and to

learn to perform these in many different circumstances and environments. To some extent

one could say that the ability to “learn to learn” may be an important characteristic of such

a system. Wang (2004) puts this in the following way:

“If the existing domain-specific AI techniques are seen as tools, each of which

is designed to solve a special problem, then to get a general-purpose intelligent

system, it is not enough to put these tools into a toolbox. What we need here

is a hand. To build an integrated system that is self-consistent, it is crucial to

build the system around a general and flexible core, as the hand that uses the tools

[assuming] different forms and shapes.”

Many abilities of an average human mind, that are still largely missing from present

AI systems, may be critical for higher-level intelligence, including: The ability to learn

through experience via examples or through instruction; to separate important things from

unimportant ones in light of the system’s goals and generalize this to a diverse set of situa-

tions, goals and tasks; steering attention to important issues, objects and events; the ability

to quickly judge how much time to spend on the various subtasks of a task in a com-

plex sequence of actions; the ability to continuously improve attention steering; to make

analogies between anything and everything; the ability to learn a wide range of related or

unrelated skills without damaging what was learned before; and the ability to use intro-

spection (thinking about one’s own thinking) as a way to understand and improve one’s

own behavior and mental processes, and ultimately one’s performance and existence in the

world.

These are but a few examples of many pan-architectural abilities that involve large

parts of the entire system, including the process of their development, training, and situated

application. All of these abilities are desirable for a generally intelligent artificial mind,
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and many of them may be necessary. For example, a system working on the docks and

helping to tie boats to the pier must be able to ignore rain and glaring sun, the shouts of

others doing their own tasks, detect the edge of the pier, catch a glimpse of the rope in

the air, prepare its manipulators to catch it, catch it, and tie it to the pier – all within the

span of a few seconds. In a real-world scenario this task has so many parameters that the

system’s realtime attentional capabilities must be quite powerful. It is hard to see how

a general-purpose intelligence can be implemented without an attention mechanism that

can – in realtime – learn to shift focus of attention effectively from internal events (e.g.

remembering the name of a colleague) to external events (e.g. apologizing to those present

for not remembering her name), and at runtime – while operating – improve this skill based

on the goals presented by social norms. Natural intelligences probably include many such

attention mechanisms, at different levels of detail. Attention is just one of the seemingly

complex transversal skills – pan-architectural skills that represent in some way fundamental

operational characteristics of the system – without which it seems rather unlikely that we

will ever see artificial general intelligence, whether in the lab or on the street.

The enormous gap in size and complexity between a single neuron and a functioning

animal brain harbors a host of challenging questions; the size and nature of this challenge

is completely unclear. What is clear, however, is that a fully formed brain is made up of

a network of neurons forming substructure upon substructure of causal information con-

nections, which in turn form architectures within architectures within architectures, nested

at numerous levels of granularity, each having a complex relationship with the others both

within and between layers of granularity [10, 34]. This relationship, in the form of data

connections, determines how the mind deals with information captured by sensory organs,

how it is manipulated, responded to, and learned from over time. The architectures imple-

ment highly coordinated storage systems, comparison mechanisms, reasoning systems, and

control systems. For example, our sense of balance informs us how to apply forces to our

arm when we reach for a glass of water while standing on a rocking boat. Past experience

in similar situations tells us to move slowly. Our sense of where the glass is positioned

in space informs our movement; the information from our eyes and inner ear combines to

form a plan, and produce control signals for the muscles, instructing them how to get the

hand moving in the direction of the glass without us falling down or tipping the glass over.

A system that can do this in real-time is impressive; a system that can learn to do this, for

a large set of variations thereof, along with a host of other tasks, must also have a highly

flexible architecture.
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Elsewhere I have discussed how the computational architecture, software implementa-

tion, and the cognitive architecture that it implements, need not be isomorphic [35]. Thus,

the arguments made here do not rest on, and do not need to rest on, assumptions about the

particular kind of architecture in the human and animal mind; in the drive for a new method-

ology we are primarily concerned with the operational characteristics that the system we

aim to build – the architecture – must have. Past discussions about cognitive architecture,

whether the mind is primarily “symbol-based” (cf. [20]), “dynamical” (cf. [9, 41]), “mas-

sively modular” (cf. [2]), or something else entirely, can thus be put aside. Instead we focus

on the sheer size of the system and the extreme architectural plasticity, while exhibiting a

tight integration calling for a high degree of interdependencies between an enormous set

of functions. Just as an ecosystem cannot be understood by studying one lake and three

inhabiting animal species, intelligence cannot be realized in machines by modeling only a

few of its necessary features; by neglecting critical interdependencies of its relatively large

number of heterogeneous mechanisms most dissections are prevented from providing more

than a small fragment of the big picture. General intelligence is thus a system that imple-

ments numerous complex functions organized at multiple levels of organization. This is the

kind of system we want to build, and it cannot be achieved with the present methodologies,

as will become evident in the next section.

To summarize, work towards artificial general intelligence (AGI) cannot ignore neces-

sary features of such systems, including:

• Tight integration: A general-purpose system must tightly and finely coordinate a host

of skills, including their acquisition, transitions between skills at runtime, how to com-

bine two or more skills, and transfer of learning between them over time at many levels

of temporal and topical detail.

• Transversal functions: Related to the last point, but a separate issue; lies at the heart

of system flexibility and generality: The system must have pan-architectural charac-

teristics that enable it to operate consistently as a whole, to be highly adaptive (yet

robust) in its own operation across the board, including meta-cognitive abilities. Some

such functions have been listed already, namely attention, learning, analogy-making

capabilities, and self-inspection, to name some.

• Time: Ignoring (general) temporal constraints is not an option if we want AGI. Time

is a semantic property, and the system must be able to understand – and be able to

learn to understand – time as a real-world phenomenon in relation to its own skills and

architectural operation.
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• Large architecture: An architecture that is considerably larger and more complex than

systems being built in AI labs today is likely unavoidable, unless we are targeting

toy systems. In a complex architecture the issue of concurrency of processes must be

addressed, a problem that has not yet been sufficiently resolved in present software

and hardware. This scaling problem cannot be addressed by the usual “we’ll wait for

Moore’s law to catch up” [19] because the issue does not primarily revolve around

speed of execution, but around the nature of the architectural principles of the system

and their runtime operation.

This list could be extended even further with various other desirable features found

in natural intelligences such as predictable robustness and graceful degradation; the im-

portant point to understand here is that if some (or all) of these features must exist in the

same system, then it is highly unlikely that we can create a system that addresses them

unless we address them at the same time, for (at least) one obvious reason: For any par-

tially operating complex architecture, retrofitting one or more of these into it would be a

practical – and possibly a theoretical – impossibility (cf. [11]). As I myself and others have

argued before [43], the conclusion can only be that the fundamental principles of an AGI

must be addressed holistically. This is clearly a reason to think long and hard about our

methodological approach to the work at hand.

9.3 Constructionist AI: A Critical Look

In computer science, architecture refers to the layout of a large software system made

up of many interacting parts, often organized as structures within structures, and an op-

eration where the “whole is greater than the sum of the parts”. Although not perfect, the

metaphorical reference to physical structures and urban layout is not too far off; in both

cases system designs are the result of compromises that the designers had to make based

on a large and often conflicting set of constraints, which they resolved through their own

insight and ingenuity. In both cases traffic and sequence of events is steered by how things

are connected; in the case of software architecture, it is the traffic of information – who

does what when and who sends and receives what information when.1

There is another parallel between urban planning and software development that is even

more important; it has to do with the tools and methodologies used to design and imple-
1I use the term “software architecture” here somewhat more inclusively than the metaphorical sense might imply,

to cover both the parts responsible for system operation, processing, and data manipulation, as well as the data
items and data structures that they operate on.
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ment the target subject. When using computer simulations as an integral part of a research

methodology, as is done increasingly in many fields including astrophysics, cognitive sci-

ence, and biology, an important determinant of the speed of progress is how such software

models are developed and implemented; the methodology used to write the software and

the surrounding software framework in which they are developed and run, is in fact a key

determinant of progress. Could present methodologies in computer science be used to

address the challenges that artificial general intelligence (AGI) presents?

Since software systems are developed by human coders, the programming languages

now used have been designed for human use and readability, and it is no surprise that they

reflect prototypical ways in which humans understand the world. For instance, the most

popular method for organizing programming languages in recent years is based on “object

orientation,” in which data structures and processes are organized into groups intended to

give the human designer a better overview of the system being developed. Dependencies

between the operation and information flow in such groups, that is, what particulars of what

groups of processes are allowed to receive, process, and output the various types of data, is

decided at design time. This also holds for the groups’ operational semantics, where each

group is essentially a special-purpose processor that has special-purpose behavior, with a

pre-defined role in the system as a whole, defined by the software coder at design time. In

this constructionist approach variables, commands, and data, play the role of bricks; the

software developer takes the role of the “construction worker.”

The field of artificial intelligence too relies on a constructionist approach: Systems are

built by hand, and both the gross and fine levels of architectures are laid down “brick by

brick.” This is where we find the most important similarity between architecture and soft-

ware development, and the one with which we are primarily concerned here; in both cases

everything – from the fine points to the overall layout of the final large-scale processing

structures – is defined, decided and placed in the system by human designers.

As history unequivocally shows, all AI systems developed to date with constructionist

methodologies have had the following drawbacks, when compared to natural intelligence:

• They are extremely limited in what they can do, and certainly don’t come anywhere

close to addressing the issues discussed in the prior section, especially transversal

functions such as global attention mechanisms and system-wide learning.

• They are brittle, stripped of the ability to operate outside of the limited scope targeted

by their designer. More often than not they also tend to be brittle when operating

within their target domain, especially when operating for prolonged periods, which
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reveals their sensitivity to small errors in their implementation and lack of graceful

degradation in respect to partial failure of some components.

To be sure, AI researchers often extend and augment typical software development

methodologies in various ways, going beyond what can be done with “standard” ap-

proaches. The question then becomes, how far could constructionist methodology be

taken?

Over the last few decades only a handful of methodologies have been proposed for

building large, integrated AI systems – Behavior-Oriented Design (BOD; [5]), the Sub-

sumption Architecture [4], Belief, Desires, Intentions (BDI; cf. [28]), and the Construc-

tionist Design Methodology (CDM) [37] are among them. CDM rests on solid present-day

principles of software engineering, but is specifically designed to help developers man-

age system expansion; its principles allow continuous architecture-preserving expansion of

complex systems involving large numbers of executable modules, computers, developers,

and research teams.2

The Cognitive Map architecture [22], implemented on the Honda ASIMO robot, en-

ables it to play card games with children using reciprocal speech and gesture. Imple-

menting and coordinating state of the art vision and speech recognition methods, novel

spatio-temporal interpretation mechanisms and human-robot interaction, this system is

fairly large, and it is among the relatively few that make it a specific goal to push the

envelope on scale and breadth of integration.

The Cognitive Map architecture has benefited greatly from the application of the CDM

to its construction, as system development has involved many developers over several years.

The architecture is implemented as multiple semi-independent modules running on multi-

ple CPUs interacting over a network. Each module is responsible for various parts of the

robot’s operations, including numerous perceptors for detecting and indexing perceived

phenomena and various types of deciders, spatial, and semantic memory systems, action

controllers, etc. Each of the modules is a (hand-crafted) piece of software, counting any-

where from a few dozen lines of code to tens of thousands. As most of the modules are

at the smaller end of this spectrum, interaction and network traffic during system runtime

is substantial. The components in the Cognitive Map architecture are coordinated via an

infrastructure called Psyclone AIOS, a middleware that targets large AI systems based on

multiple dynamically interacting modules, with powerful blackboard-based data sharing
2Results of the application of CDM have been collected for several types of systems, in many contexts, at three

different research institutions, CADIA [15, 29, 38], Honda Research Labs (HRI-US) [21, 22] and the Computer
Graphics and User Interfaces Lab at Columbia University [37].
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mechanisms [39]. Psyclone AIOS allows multiple programming languages to be used to-

gether, supports easy distribution of processes over a network, handles data streams that

must be routed to various destinations at runtime (e.g. from video cameras), and offers

various other features that help with AI architecture development. The system supports

directly the principles of the CDM and is certainly among the most flexible such systems

involving the creation and management of large architectures.3

In light of progress within the field of robotics and AI, the ASIMO Cognitive Map ar-

chitecture is a strong contender: It integrates a large set of functionality in more complex

ways than comparable systems did only a few years ago. It relies on a methodology specif-

ically targeted to AI and robotic systems, where multiple diverse functions implemented

via thousands of lines of code must be tightly integrated and coordinated in realtime. So

how large is the advancement demonstrated by this system?

The resulting system has all of the same crippling flaws as the vast majority of such sys-

tems built before it: It is brittle, and complex to the degree that it is becoming exponentially

more expensive to add features to it – we are already eyeing the limit. Worst of all, it has

still not addressed – with the exception of a slight increase in breadth – a single one of the

key features listed above as necessary for AGI systems. In spite of good intentions, neither

the CDM – nor any of the other methodologies, for that matter – could help address the

difficult questions of transversal functions and architectural construction which are orders

of magnitude larger than attempted to date.

Some of the systems I have been involved with developing have contained an unusually

large number of modules, with sizes varying from very small (a few dozen lines of code)

to very large (tens of thousands). We refer to them as “granular” architectures (cf. [15]).

In these systems the algorithms coordinating the modules (i.e. the gross architecture) dy-

namically control which components are active at what time, which ones receive input

from where, etc. Some of the components can change dynamically, such as the Index-

ers/Deciders in the Cognitive Map [21], and learn, such as the module complex for learn-

ing turntaking in the artificial radio-show host [15]. Increased granularity certainly helps

making the architecture more powerful. But yet again, the modules in these systems are

typically black-box with prescribed dependencies, which precludes them from automati-

cally changing their operation, expand their reach, or even modify their input and output

profiles in any significant way, beyond what the coder could prescribe. Their inputs and

outputs are directly dependent on the surrounding architecture, which is restricted by the
3Other solutions addressing similar needs include Elvin [33], the Open Agent Architecture [18] and NetP [13].
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inability of components to change their operation. Many component technologies used in

these architectures are built from different theoretical assumptions about their operating

context, increasing this dependency problem.

On the practical side, many problems get worse as the architectures get bigger, e.g. for

lack of fault tolerance (such as code-level bugs). Some new problems are introduced, espe-

cially architecture-level problems and those we call interaction problems: Loosely-coupled

modules often have complex (and infrequent) patterns of interaction that are difficult to un-

derstand for the developers in the runtime system; interaction problems grow exponentially

as the system gets bigger. A constructionist approach does not help us unlock tight inter-

dependencies between components, or remove the need for humans to oversee and directly

interact with the system at the code level.

Examples of other AI architectures with ambitions towards artificial general intelli-

gence include LIDA [8], AKIRA [25], NARS [45], SOAR [16], CLARION [32], ACT-

R [1], OSCAR [27], and Ikon Flux [23]. However, those that have been tested on non-trivial

tasks, such as ACT-R, SOAR, and CLARION, are based on constructionist methodologies

with clear limitations in scaling arising thereof; those that promise to go beyond current

practices, e.g. Ikon Flux, NARS, LIDA, and OSCAR, suffer from having either been ap-

plied only to toy problems, or are so new that thorough evaluation is still pending.

No matter how dynamic and granular the components of an architecture are made, or

which expanded version of a constructionist methodology is being applied, a heavy reliance

on manual construction has the following effects:

• System components that are fairly static. Manual construction limits the complexity

that can be built into each component.

• The sheer number of components that can form a single architecture is limited by what

a designer or team can handle.

• The components and their interconnections in the architecture are managed by algo-

rithms that are hand-crafted themselves, and thus also of limited flexibility.

Together these three problems remove hopes of autonomous architectural adaptation and

system growth. Without system-wide adaptation, the systems cannot break free of tar-

geted learning. Like most if not all other engineered systems of a comparable scale and

level of integration, e.g. telephone networks, CPUs, and power grids, these systems are

incapable of architecture-level evolution, precluding architecture-wide learning (what one

might metaphorically think of as “cognitive growth”) and deep automatic adaptation, all of

which precludes general-purpose systems capable of applying themselves autonomously to
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arbitrary problems and environments. That is precisely the kind of flexibility we want a

new methodology to enable us to imbue an AI architecture with.

The solution – and most fruitful way for AI in the coming decades – rests on the de-

velopment of a new style of programming, with greater attention given to the architectural

makeup, structure, and nature of large complex systems, bringing with it the element of

automated systems management, resting on the principles of transparent operational se-

mantics.

9.4 The Call for a New Methodology

Available evidence strongly indicates that the power of general intelligence, arising

from a high degree of architectural plasticity, is of a complexity well beyond the maximum

reach of traditional software methodologies. At least three shortcomings of constructionist

AI need to be addressed in a new methodology: Scale, integration, and flexibility. These

are fundamental shortcomings of all software systems developed to date, yet, as we have

seen above, they must all be overcome at the same time in the same system, if we wish to

achieve artificial general intelligence. Any approach that is successful in addressing these

must therefore represent a fundamentally new type of methodology.

Scale matters in at least two ways. First, we have reason to believe that a fairly large set

of cognitive functions is necessary for even modestly complex real-world environments. A

small system, one that was of a size that could be implemented by a handful of engineers

in half a decade, is not likely to support the reliable running of supernumerary functions.

And historical evidence certainly does not help refute this claim: In spite of decades of

dealing with the various problems of scaling beyond toy contexts (“context” interpreted

in a rather general form, as in “the ocean” versus “the desert”; “indoors” versus “out-

doors,” etc.), standard component-based software methodology has theoretical limitations

in the size of systems that it can allow to be built; as these systems are programmed by

humans, their size and complexity is in fact restricted by the industriousness of a dedicated

team of researchers in the same way that building a house is. This is the reason why we

still have not seen systems that scale easily. What is needed is the equivalent of a highly

automated factory. Second, a small system is not very likely to lend sufficient support

to the kind of functions that characterize higher-level intelligences, such as system-wide

analogy-making, abstraction, cross-domain knowledge and knowledge transfer, dynamic
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and learnable attention, all of which require transversal functionality of some sort to be of

general use.4

The issue of integration ultimately revolves around software architecture. Most archi-

tectures built to date are coarse-grained, built of relatively large modules, because this is

the kind of architecture that traditional methodologies most naturally support. The size

of components in constructionist systems built to date varies from “a few” to “dozens”,

depending on which system you look at. To take some concrete examples, in our own

single-mind (as opposed to multi-agent) systems we have had close to 100 modules, most

of which are only a few pages of C++ code each, but often include two or three significantly

larger ones (thousands of lines or more) in the full system (see e.g. [38]). Each of these may

have somewhere from 0 to, at most, 20 parameters that can be changed or tuned at runtime.

Such a system simply does not permit the highly dynamic communication and behavior

patterns required for these sophisticated functionalities. More importantly, the architecture

is too inflexible for sub-functions to be shared between modules at the gross-architecture

level. In such an arrangement tight integration is precluded: For AGIs we need a tighter,

deeper integration of cognitive functions; we need a methodology that allows us to design

architectures composed of tens of thousands of components with ease – where the smallest

component is peewee-size (the size of a medium-size C++ operation [40]) and where the

combination of these into larger programs, and their management, is largely automatic.

We are looking for more than a linear increase in the power of our systems to operate

reliably, and in a variety of (unforeseen) circumstances; experience strongly suggests that a

linear increase in present methods will not bring this about: Nothing in traditional methods

shows even a hint of how more flexible systems could be built using that approach. One of

the biggest challenges in AI today is to move away from brittle, limited-domain systems.

Hand-crafted software systems tend to break very easily, for example when taking inputs

outside the scope of those anticipated by their designers or because of unexpected interac-

tion effects amongst the systems’ components. What seems clear is that a new methodology

must inevitably revolve around what could be thought of as “meta”-programs; programs

that guide the creation of new programs that guide the system’s interaction patterns with

the world, and possibly test these in simulation mode beforehand, as a “mental exercise”,

to predict how well they might work. The systems need to have a reliable way to judge

whether prior knowledge exists to solve the problem, and whether the problem or situation
4Although system-wide learning and self-modification could be realized in isolation by a small system, these

features are likely to be impossible to maintain in a large system when taking a constructionist approach, and we
need the system to incorporate all of these features in a unified manner.
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falls within what the system has already encountered or whether it finds itself in completely

new circumstances. So, we need a methodology for designing a system whose output, cog-

nitive work, is a set of programs that are more or less new compared to what existed in the

system before; programs that can be given a chance to guide the system in its interactions

with new operating contexts (domains), and ways to assess the results of such “hypothesis

testing”: The programs must be compared and evaluated on the grounds of the results they

achieve. It may even be necessary for the evaluation itself to be learnable, for, after all,

the system should be as self-organizing as possible. For a large system, doing all of this

with present reinforcement learning and genetic algorithm techniques is likely to be too

limited, too slow, or, most probably, impossible; the system must therefore be endowed

with analogy making, reasoning, and inference capabilities to support such skills.

If we can create systems that can adapt their operating characteristics from one context

to another, and propose what would have to be fairly new techniques with a better chance

of enabling the system’s operation in the new envrionment, then we have created a system

that can change its own architecture. And that is exactly what I believe we need: For any

real-world domain (e.g. an indoor office environment) that is sufficiently different from

another real-world domain (e.g. a busy street), creating a system that can not only operate

but learn to operate in both, as well as in new domains, must be a system that can change

its own operation in fundamentally new ways – these systems would have self-organizing

architectures that largely manage their own growth.

9.5 Towards a New Constructivist AI

A system that can learn to change its own architecture in sensible ways is a construc-

tivist AI system, as it is to some significant extent self-constructive [36]. The name and

inspiration comes partly from Piaget [26], who argued that during their youth humans de-

velop cognitive faculties via a self-directed “constructive” process, emphasizing the active

role that a learning mind itself has in any learning process. Piaget’s ideas later became the

foundation for the work by Drescher [7], who brought this idea to artificial intelligence,

arguing that AI should study the way minds grow. The present work shares Drescher’s

aim for more powerful ways of learning, aligning with the general hypothesis behind his

work that an (artificial) mind requires sophisticated abilities to build representations and

grow its knowledge about the world based on its own direct experiences. But in the present

work we take this idea a step further by arguing for a fundamental change in methodolog-
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ical assumptions, emphasizing the need for new principles of automatic management of

whole AI architectures – i.e. the mind itself: It is not only the system’s learning but the

control structures themselves that must be part of such cognitive development and con-

stant (auto-)construction. The methodologies employed for such AI development – con-

structivist AI – are likely to be qualitatively different from today’s software development

methods.

Here a drive for constructivist AI – that is, a system that can modify its own internal

structures to improve its own operational characteristics, based on experience – arises thus

from two fundamental assumptions, namely that (a) constructionist methodologies (i.e. by

and large all traditional software development techniques) are not sufficient – both in princi-

ple and in practice – to realize systems with artificial general intelligence; (b) the hypothesis

that automation of not just parameter tuning or control of (coarse-grained) module opera-

tion but of architectural construction (as understood in computer science) and management

is what is needed to address this shortcoming. This is in line with the ideas presented by

the proponents of second-order cybernetics and cybernetic epistemology [42] [12], which

studies the nature of self-regulation.

In our approach we are by and large ruling out all methodologies that require some

form of hand-coding of domain-level operational functionality (what Wang metaphorically

referred to as “tools” [43]), as well as any and all approaches that require extensive hand-

coding of the final static architecture for an artificial general intelligence (metaphorically

referred to as “hand” by [43], limiting initial (manual) construction to a form of “seed” – a

kind of meta-program – which automates the management of all levels below. This is what

we call constructivist AI. Pure constructivist systems do not exist yet in practice, but some

theoretical work already shows promise in this direction.

The following are topics that I consider likely to play a critical role in the impending

paradigm shift towards constructivist AI. The topics are: Temporal grounding, feedback

loops, pan-architectural pattern matching, small white-box components, and architecture

meta-programming and integration. Other key factors probably exist that are not included

here, so this list should be considered a necessary but insufficient set of topics to focus on in

the coming decades as we turn our sights to building larger, more self-organizing systems.

9.5.1 Temporal Grounding

As now seems widely accepted in the AI community, it is fairly useless to talk of an

entity being “intelligent” without referencing the context in which the entity operates. In-
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telligence must be judged by its behavioral effects on the world in particular circumstances

which are not part of the entity’s operation: We cannot rightfully show an entity to be

smart unless we consider both what the entity does and what kinds of challenges the envi-

ronment presents. This means that intelligent behavior requires grounding – a meaningful

“hook-up” between an intelligent system’s thoughts and the world in which it operates.

This grounding must include a connection to both space and time: Ignoring either would

cripple the entity’s possibility of acting intelligently in its world, whether real or virtual.

So, for one, the entity must have a means to be situated in this world – it must have a

body, a (limited) collection of sensors to accept raw data through and some (limited) set of

actuators – to affect its surroundings. By the same token, its body must be connected to

the entity’s internal thought/computational processes to transfer the results of its thinking

to the body.5

The issue goes beyond situatedness, which is a necessary but not sufficient condition

for grounding: via situated perception and action, a feedback loop is created allowing the

system to adapt to its environment and to produce models of the world that enable it to

plan in that world, using predicted results of sequences of actions (plans). Results that do

not match predictions become grounds for revision of its models of the world, and thus

enable it to learn to exist in the given environment (cf. [44]). Therefore, to be grounded, an

intelligent entity must be able to compute using processes that have a causal, predictable

relationship with the external reality.

This leads us to a discussion of time. As any student of computer science knows, com-

putation can be discussed, scrutinized and reasoned about without regard for how long it

actually takes in a particular implemented system. It may be argued that this simplification

has to some extent helped advance the fields of computer science and engineering. How-

ever, lack of a stronger foundation for the semantics of the actual, realtime execution of

computational operations has hampered progress in fields dealing with highly time-critical

topics, such as embedded systems, user interfaces, distributed networks, and artificial in-

telligence systems. As others have pointed out, timeliness is a semantic property [17] and

must be treated as such. To be grounded, the computational operations of an intelligent

entity must have a causal, temporally contextualized and predictable – and thus temporally

meaningful – relationship with the external reality.

To make an intelligent machine that does not understand time is a strange undertak-

ing. No example of natural intelligence exists where time isn’t integral in its operation:
5Froese (2007) gives a good overview of past research on these topics.
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When it comes to doing intelligent things in the world, time is of the essence. Indeed, in

a world without the arrow of time there would be little need for the kind of intelligence

we see in nature. The lack of a strong connection between computational operations and

the temporal dimension is preventing a necessary theoretical and practical understanding

of the construction of large architectural solutions that operate predictably under external

time constraints. We need to find ways to build an operational knowledge of external time

into AI architectures.

To use its own mental powers wisely an intelligent machine must not only be able to

understand the march of the real-world clock itself, it should preferably understand its own

capabilities and limitations with regards to time, lest it cannot properly make plans to guide

its own learning or evolution. One method is to link the execution of the software tightly

with the CPUs operation and inputs from the system’s operating environment to create a

clear semantic relationship between logical operations and the passing of realtime (running

of the CPU), in a way that allows the system to do the inferencing and modeling of this

relation itself and use this in its own operation throughout the abstraction layers in the

entire architecture, producing a temporally grounded system. This is not mere conjecture;

in the Ikon Flux system [23] lambda terms were used to implement this idea in a system

containing hundreds of thousands of such terms, showing that this is indeed possible on

large architectural scales, even on present hardware. And as mentioned above, the full

perception-action loop needs to be included in these operational semantics.

There are thus at least three key aspects of temporal representation. The first is the

perception of external time. The system exists in some world; this world has a clock;

any system that cannot reasonably and accurately sense time at a resolution relevant to its

operation will not be able to take actions with regards to events that march along to this

clock, and thus – by definition – is not intelligent. Second, an intelligent system must have

a representation of mental time and be able to estimate how long its own mental operations

take. Third, an AI architecture must understand how the first two aspects relate, so that

mental actions can be planned for based on externally or internally-imposed timelines and

deadlines. The challenge is how to implement this in distributed, fine-grained architectures

with parallel execution of subcomponents.

9.5.2 Feedback Loops

Any generally intelligent system operating in the real world, or a world of equivalent

complexity, will have vastly greater information available than the mind of such a system
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will have time to process. Thus, only a tiny fraction of the available data in the world

is being processed by the system at any point in time. The actual data selected to be

thought about must be selected based on the system’s goals – of which there will be many,

for any system of reasonable complexity. To be able to respond to unexpected events

the system must further divide its processing capability between thinking about long-term

things (those that have not happened yet and are either wanted, or to be avoided), and those

that require immediate processing. Any mechanism that manages how the system chooses

this division is generally called attention, or considered a part of an attentional mechanism.

Attention is intricately linked with the perception-action loop, which deals with how the

system monitors for changes in the world, and how quickly it is able to respond to these.

For any intelligent system in a reasonably complex environment the nature and operation

of these mechanisms are of utmost importance, as they are fundamental to the cognitive

makeup of the system and put limits on all its other cognitive abilities.

Focus on the perception-action loop in current AI curricula is minimal. A quick look

at some of the more popular textbooks on the subject reveals hardly any mention of the

subject. Given that this most important loop in intelligent systems is largely ignored in

the mainstream AI literature, it is no surprise that the little discussion there is dwells on

their trivial aspects. Yet the only means for intelligent systems to achieve stability far from

(thermodynamic) equilibrium is through feedback loops. The growth of a system, and its

adaptation to genuinely new contexts, must rely on feedback loops to stabilise the system

and protect it from collapsing. Furthermore, any expansion or modification of existing

skills or capabilities, whether it is to support more complex inferencing, making skills

more general-purpose or improving the performance on a particular task, requires an eval-

uation feedback loop. For general-purpose intelligence such loops need to permeate the

intelligence architecture.

The way any entity achieves grounding is through feedback loops: repeated interac-

tions which serve as experiments on the context in which the entity finds itself, and the

abstractions which it has built of that context, of its own actions, and of its tasks. Feedback

loops related to the complexities of tasks are key to a system’s ability to learn particular

tasks, and about the world. But the process must involve not only experience (feedback)

of its actions on the context outside itself, it must also involve the context of its internal

processes. So self-modeling is a necessary part of any intelligent being. The feedback

loop between the system’s thinking and its evaluation of its own cognitive actions is there-

fore just as important as that to the external world, because this determines the system’s
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ability to learn to learn. This, it can be argued, is a key aspect of general intelligence.

Together these extremely important feedback loops provide a foundation for any increases

in a system’s intelligence.

Self-organization requires feedback loops, and constructionist AI methodologies make

no contributions in this respect. The science of self-organization is a young discipline that

has made relatively slow progress (cf. [30, 46]). As a result, concrete results are hard to

come by (cf. [14]). Perhaps one of the important contributions that this field has to offer at

present is to show how the principles behind self-organization call for a way of thinking that

is very different from that employed in traditional software development methodologies.

9.5.3 Pan-Architectural Pattern Matching

Complex, tightly-integrated intelligence architectures will not work without large-scale

pattern matching, that is, pattern matching that involves large portions of the system it-

self, both in knowledge of domain (e.g. tasks, contexts, objects, etc.) and of architecture

(e.g. perception and action structures, hypothesis generation methods, etc.). Such pattern-

matching functionality plays many roles; I will mention a few.

Any creature living in a complex world must be able to classify and remember the

salient features of a large number of contexts.6 Without knowing which features to re-

member, as is bound to happen regularly as various new contexts are encountered, it must

store potential features – a much larger set than the (ultimately) relevant features – and

subsequently hone these as it experiences an increasingly larger numbers of contexts over

time. In a complex environment like the real-world, the number of potential states or task-

relevant contexts a being may find itself in is virtually infinite. Yet the being’s processing

power, unlike the number of contexts it may find itself in, is finite. So, as already men-

tioned, it must have some sort of attention.7 At any point in time the attentional mechanism

selects memories, mental processes, memories of having applied/used a mental process for

a particular purpose, or all of the above, to determine which mental process to apply in

the present, identify potential for improvement, or simply for the purpose of reminiscing

about the past. The pan-architectural nature of such mechanisms crystallizes in the rather

large amounts of recall required for prior patterns involving not only features of objects to
6One way to think of contextual change, and hence the differentiators between one context and another, is as the

smallest amount of change in a particular environmental configuration that renders a priorly successful behavior
for achieving a particular goal in that configuration unable to achieve that goal after the change.

7Here “attention” refers to a broader set of actions than our typical introspective notion of attention, including
the global control of parts of the mind that are active at any point in time, as well as what each one is doing.
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be recognized, or the contexts in which these objects (including the creature itself) may be

at any point, but also involving the way in which the being controls its attention in these

contexts with regards to its task (something which it must also be able to learn), the various

analogies it has made for the purpose of choosing a course of action, and the mechanisms

that made these analogies possible. To do all this in realtime in one and the same system

is obviously a challenge. This will, however, be impossible without the ability to compare

key portions of the system’s knowledge and control structures through large-scale pattern

matching.

Yet another example of a process for which such transversal pattern matching is impor-

tant is the growth of the system as it gets smarter with experience. To grow in a particular

way, according to some specification,8 the architecture must have built-in ways to compare

its own status between days, months, and years, and verify that this growth is according

to the specification. This might involve pattern matching of large parts of the realtime

mind, that is, the part of the mind that controls the creature from moment to moment at

different points in time. For a large, heterogeneous architecture such architecture-scale

pattern matching can get quite complicated. But it is unlikely that we will ever build highly

intelligent artificial systems without it.

9.5.4 Transparent Operational Semantics

As already discussed, most integration in AI systems has involved relatively small num-

bers of the functions found in natural minds. A close look at these components – whether

they are computer vision, speech recognition, navigation capabilities, planning, or other

such specialized mechanisms – reveals internals with an intricate structure based on pro-

gramming languages with syntax targeted for human programmers, involving mixtures of

commercial and home-brewed algorithms. The syntax and semantics of “black-box” inter-

nals is difficult or impossible to discover from the outside, by observing only their inputs,

outputs, and behaviors. This is a critical issue in self-organizing systems: The more opaque

complex mechanisms encompassed by any single component in an architecture are, the

harder it is to understand its operational semantics. In other words, the greater the com-

plexity of atomic components, the greater the intelligence required to understand them.

For this reason, to make architectures that construct themselves, we must move away from

large black-box components.
8Such a specification could be small or medium-sized, compared to the resulting system, and it could be evolved,

as our DNA has been, or provided via new meta-programming methods.
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But the grand goal of self-construction cuts even deeper than dictating the size of our

building blocks: It calls for them to have a somewhat different nature. Without excep-

tion, present programming languages used in AI are designed for human interpretation. By

requiring human-level intelligence to be understood, these programming languages have

little chance of being interpreted by other software programs automatically; their opera-

tional semantics are well above a semantic threshold of complexity that can be understood

by automatic methods presently available. Creating systems that can inspect their own

code, for the purpose of improving their own operation, thus requires that we first solve the

problem we started out to solve, namely, the creation of an artificial general intelligence.

We need to move away from programming languages with complex syntax and seman-

tics (all programming languages intended for humans), towards transparent programming

languages with simple syntax and simple operational semantics. Such programming lan-

guages must have fewer basic atomic operations, and their combinatorics would be based

on simpler principles than current programming languages. A foundational mechanism of

such a programming language is likely to be small and large-scale pattern matching: Sys-

tems built with it would likely be fairly uniform in their semantics, from the small scale to

the gross architecture level, as then the same small number of pattern matching operations

could be used throughout the system – regardless of the level of granularity – to detect,

compare, add, delete, and improve any function implemented at any level of detail, from

code snippets to large architectural constructs.

Small “white-box” (transparent) components, executed asynchronously, where each

component implements one of only a few primitive functions, could help streamline the

assembly of architectural components. As long as each component is based on a few fun-

damental principles, it can easily be inspected; assemblies of these will thus also be easily

inspectable, and in turn enable the detection (identification, analysis, and modification) of

functional patterns realized by even large parts of an architecture. This is a prerequisite

for implementing automatic evaluation and learning operational semantics, which lies at

the heart of constructivist AI. Incidentally, this is also what is called for to enable transver-

sal functions implementing the kinds of introspection, system-wide learning and dynamic

attention which I have already argued as being necessary for artificial general intelligence.

How small need the components be? Elsewhere we have pointed out the need to move

towards what we call “peewee-size” granularity [40] – systems composed of hundreds of
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thousands of small modules, possibly millions.9 To see why the size of the smallest modifi-

able entities must be small, we need only look at a hypothetical cognitive operation involv-

ing hierarchical summation of excitation signals at several levels of detail: at the lowest

as well as the highest levels the system – e.g. for improving its operation – may need to

change addition to subtraction in particular places. In this case the operation being modi-

fied is addition. In a large system we are likely to find a vast number of such cases where,

during its growth, a system needs to modify its operation at such low levels of functional

detail. If each peewee-size module is no larger than a lambda term or small function writ-

ten in e.g. C++ we have reached the “code level,” as normally meant by that term – this

should thus be of a sufficiently low-level of granularity for building highly flexible systems:

self-constructive on temporal and complexity scales that we consider useful, yet running

on hardware that is already available.

I am aware of only one architecture that has actually implemented such an approach,

the Loki system, which was built using the Ikon Flux framework [23], a system based on

Lambda terms. The system implemented a live virtual performer in the play Roma Amor

which ran for a number of months at Cite des Sciences et de L’Industrie in Paris in 2005,

proving beyond question that this approach is tractable. Whether the extremely small size

of peewee granularity is required for self-construction or whether larger components can

be used is an important question that we are unable to answer at the moment. But what-

ever their size, the components – architectural building blocks – must be expressible using

simple syntax, as rich syntax begets rich semantics, and rich semantics call for smarter

self-inspection mechanisms whose required smarts eventually rise above a threshold of

complexity beyond which self-construction and self-organization can be bootstrapped, cap-

sizing the whole attempt. The finer the granularity and the simpler the syntax the more

likely it is to succeed in this regard; however, there may also be a lower bound, i.e. build-

ing blocks should not be “too simple”; if the operational semantics is kept at a level that

is “small enough but not smaller” than what can support self-inspection, there is reason to

believe a window opens up within which both practical and powerful components can be

realized.
9These numbers can be thought of as a rough guide – the actual number for any such architecture will of

course depend on a host of things that are hard to currently foresee, including processor speed, cost of memory
transactions, architectural distributedness, and more.
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9.5.5 Integration and Architecture Metaconstruction

Architectural meta-programming is needed to handle larger and more complex sys-

tems [3, 31], scaling up to systems with architectural designs that are more complex than

even the most complex systems yet engineered, such as microprocessors, the Terrestrial

telephone network, or the largest known natural neural networks [24]. A cognitive architec-

ture supporting many of the features seen in natural intelligence will be highly coordinated

and highly integrated – more so than probably any man-made dynamic system today. All

of the issues already discussed in this section are relevant to achieving archiectural meta-

programming and integration: General principles for learning a variety of contexts can

equally well be applied to the architecture itself, which then becomes yet another context.

Constructivist AI will certainly be easier if we find a “cognitive principle” as hypothe-

sized by [6], where the same small set of basic principles can be used throughout to con-

struct every function of a cognitive system. Perhaps fractal architectures – exhibiting self-

similarity at multiple levels of granularity – based on simple operational semantics is just

that principle. But it is fairly unlikely that a single principle alone will open up the doors to

artificial general intelligence – I find it more likely to be based around something like the

numerous electro-spatio-temporal principles, rooted in physics and chemistry, that make

a car engine run than, say, the principle of flight. Either way, there is no getting around

focusing on methods that deal more efficiently with large, distributed, semi-autonomously

evolving architectures with heterogeneous functionality and a high degree of flexibility at

coarse-grain levels. New meta-programming languages, constructivist design methodolo-

gies, and powerful visualization systems must be developed for significant progress to be

made. Transversal functions, as described above, are what ultimately forces us to look at

the whole architecture when thinking about our new methodology: Without taking the op-

eration of the whole into account, pan-architectural features are precluded. The transition

to architectures built via a constructivist methodology will be challenging.

9.6 Conclusions

The hope for generally intelligent machines has not disappeared, yet functions critical

to generally intelligent systems continue to be largely ignored, examples being the ability

to learn to operate in new environments, introspection, and pan-architectural attention.

Systems whose gross architecture is mostly designed from the top-down and pro-

grammed by hand, constructionist AI, has been the norm since the field’s inception, more
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than 50 years ago. Few methodologies have been proposed specifically for AI and re-

searchers have relied on standard software methodologies (with small additions and modi-

fications), one of the more popular ones in recent times being object-oriented programming

and component-based architectures. As far as large AI systems go these methodologies rely

on fairly primitive tools for integration and have generally resulted in brittle systems with

little or no adaptation ability and targeted domain application.

Based on the weaknesses inherent in current practices, the conclusion argued for here

is that the limitations of present AI software systems cannot be addressed through incre-

mental improvement of current practices, even assuming continued exponential growth of

computing power, because the approach has fundamental theoretical and practical limita-

tions: AI systems built to date show that while some integration is possible using current

software development methods and extensions thereof (cf. [37]), the kind of deep integra-

tion needed for developing general artificial intelligence is unlikely to be attained this way.

Standard software development methods do not scale; they assume that their results can be

linearly combined, but this is unlikely to produce systemic features that seem key in general

intelligence; too many difficult problems, including a freely roving attentional mechanism,

equally capable of real-world inspection and introspection, system-wide learning, cogni-

tive growth and improvement, to take some key examples, would be left by the wayside.

To create generally intelligent systems we will need to build significantly larger and more

complex systems than can be built with present methods.

To address the limitations of present methodologies a paradigm shift is needed – a shift

towards constructivist AI, comprised of new methodologies that emphasize auto-generated

code and self-organization. Constructivist AI calls for a very different approach than of-

fered by traditional software methodologies, shifting the focus from manual “brick-laying”

to creating the equivalent of self-constructing “factories”. Architectures would be formed

through interactions between flexible autonomous auto-construction principles, where a

complex environment and initial “seed” code would interact to automatically create the

kinds of architectures needed for general-purpose intelligence.

In this paper I have outlined some of the key topics that need to be advanced in or-

der for this paradigm shift to happen, including a stronger emphasis on feedback loops,

temporal grounding, architecture metaprogramming and integration, pan-architectural pat-

tern matching and transparent operational semantics with small white-box components.

The list, while non-exhaustive, clearly illustrates the relatively large shift in focus that

needs to happen, as most of these topics are not well understood today. To increase our
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chances of progress towards artificial general intelligence, future work in AI should fo-

cus on constructivist-based tools including new development environments, programming

languages, and architectural metaconstruction principles.

Acknowledgments

This is an updated version of my BICA 2009 keynote paper [36]. I would like to thank

Eric Nivel for brilliant insights and numerous discussions on these topics, as well as excel-

lent suggestions for improving the paper. Big thanks to Pei Wang, Hannes H. Vilhjalmsson,

Deon Garrett, Kevin McGee, Hrafn Th. Thorisson and Gudny R. Jonsdottir for valuable

comments and suggestions for improvement, and to the anonymous reviewers for helpful

comments. Thanks to the HUMANOBS team for helping lay the groundwork for an excit-

ing future. This work was supported in part by the EU-funded project HUMANOBS: Hu-

manoids That Learn Socio-Communicative Skills Through Observation, contract no. FP7-

STREP-231453 (www.humanobs.org), and by a Strategic Research Programme Centres of

Excellence and Research Clusters 2009-2016 project grant (IIIM; www.iiim.is) awarded by

the Science and Technology Policy Board of Iceland and managed by the Icelandic Center

for Research (Rannís; www.rannis.is).

Bibliography

[1] Anderson, J. R. (1996). Act: A simple theory of complex cognition, American Psychologist 51,
pp. 355–365.

[2] Barrett, H. C. and Kurzban, R. (2006). Modularity in cognition: Framing the debate, Psycho-

logical Revivew 113(3), pp. 628–647.
[3] Baum, E. B. (2009). Project to build programs that understand, in Proceedings of the Second

Conference on Artificial General Intelligence, pp. 1–6.
[4] Brooks, R. A. (1986). Robust layered control system for a mobile robot, IEEE Journal of

Robotics and Automation 2(1), p. 14–23.
[5] Bryson, J. (2003). The behavior-oriented design of modular agent intelligence, Lecture notes in

computer science 2592, pp. 61–76.
[6] Cassimatis, N. (2006). A cognitive substrate for achieving human-level intelligence, A.I. Mag-

azine 27(2), pp. 45–56.
[7] Drescher, G. L. (1991). Made-up minds: a constructivist approach to artificial intelligence

(M.I.T. Press, Boston, Massachusetts).
[8] Franklin, S. (2011). Global workspace theory, shanahan, and LIDA, International Journal of

Machine Consciousness 3(2).
[9] Froese, T. (2007). On the role of AI in the ongoing paradigm shift within the cognitive sciences,

50 Years of Artificial Intelligence - Lecture Notes in Computer Science 4850, pp. 63–75.
[10] Garel, S. and Rubenstein, J. L. R. (2004). Patterning of the cerebral cortex, in M. S. Gazzaniga

(ed.), The Cognitive Neurosciences III, pp. 69–84.



April 27, 2012 18:35 Atlantis Press Book - 9.75in x 6.5in book_Wang

172 Theoretical Foundations of Artificial General Intelligence

[11] Garlan, D., Allen, R. and Ockerbloom, J. (1995). Architectural mismatch or why it’s hard to
build systems out of existing parts, in Proceedings of the Seventeenth International Conference

on Software Engineering, pp. 179–185.
[12] Heylighen, F. and Joslyn, C. (2001). Cybernetics and second order cybernetics, in R. A. Mayers

(ed.), Encyclopedia of Physical Science and Technology, Vol. 4 (Academic Press), pp. 155–170.
[13] Hsiao, K., Gorniak, P. and Roy, D. (2005). Netp: A network API for building heterogeneous

modular intelligent systems, in Proceedings of AAAI 2005 Workshop on modular construction

of human-like intelligence. AAAI Technical Report WS-05–08, pp. 24–31.
[14] Iizuka, H. and Paolo, E. A. D. (2007). Toward spinozist robotics: Exploring the minimal dy-

namics of behavioural preference, Adaptive Behavior 15(4), pp. 359–376.
[15] Jonsdottir, G. R., Thórisson, K. R. and Eric, N. (2008). Learning smooth, human-like turntaking

in realtime dialogue, in IVA ’08: Proceedings of the 8th international conference on Intelligent

Virtual Agents (Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-540-85482-1, pp. 162–175,
http://dx.doi.org/10.1007/978-3-540-85483-8_17.

[16] Laird, J. (2008). Extending the soar cognitive architecture, in Proceedings of the 2008 confer-

ence on Artificial General Intelligence, pp. 224–235.
[17] Lee, E. E. (2009). Computing needs time, Communications of the ACM 52(5), pp. 70–79.
[18] Martin, D., Cheyer, A. and Moran, D. (1999). The open agent architecture: A framework for

building distributed software systems, Applied Artificial Intelligence 13(1-2), pp. 91–128.
[19] Moore, G. E. (1965). Cramming more components onto integrated circuits, Electronics Review

31(8).
[20] Newell, A. and Simon, H. A. (1976). Computer science as empirical enquiry: Symbols and

search, Communications of the Association for Computing Machinery 19(3), p. 113–126.
[21] Ng-Thow-Hing, V., List, T., Thórisson, K. R., Lim, J. and Wormer, J. (2007). Design and eval-

uation of communication middleware in a distributed humanoid robot architecture, in IROS ’07

Workshop: Measures and Procedures for the Evaluation of Robot Architectures and Middle-

ware.
[22] Ng-Thow-Hing, V., Thórisson, K. R., Sarvadevabhatla, R. K., Wormer, J. and List, T. (2009).

Cognitive map architecture: Faciliation of human-robot interaction in humanoid robots, IEEE

Robotics & Automation 16(1), pp. 55–66.
[23] Nivel, E. (2007). Ikon flux 2.0, Tech. rep., Reykjavik University Department of Computer Sci-

ence, technical Report RUTR-CS07006.
[24] Oshio, K., Morita, S., Osana, Y. and Oka, K. (1998). C. elegans synaptic connectivity data,

Technical Report of CCeP, Keio Future, No. 1, Keyo University .
[25] Pezzulo, G. and Calvi, G. (2007). Designing modular architectures in the framework akira,

Multiagent and Grid Systems , pp. 65–86.
[26] Piaget, J. (1950). The Psychology of Intelligence (Routledge and Kegan Paul, London, Eng-

land).
[27] Pollock, J. L. (2008). Oscar: An architecture for generally intelligent agents, Frontiers in Arti-

ficial Intelligence and Applications 171, pp. 275–286.
[28] Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture, in

J. Allen, R. Fikes and E. Sandewall (eds.), Proceedings of the 2nd International Conference on

Principles of Knowledge Representation and Reasoning (Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA), pp. 473–484.

[29] Saemundsson, R. J., Thórisson, K. R., Jonsdottir, G. R., Arinbjarnar, M., Finnsson, H., Gud-
nason, H., Hafsteinsson, V., Hannesson, G., Isleifsdottir, J., Jóhannsson, Á., Kristjansson, G.
and Sigmundarson, S. (2006). Modular simulation of knowledge development in industry: A
multi-level framework, in WEHIA - Proc. of the First Intl. Conf. on Economic Science with

Heterogeneous Interacting Agents (Bologna, Italy).



April 27, 2012 18:35 Atlantis Press Book - 9.75in x 6.5in book_Wang

Bibliography 173

[30] Salthe, S. N. and Matsuno, K. (1995). Self-organization in hierarchical systems, Journal of

Social and Evolurionary Systems 18(4), pp. 327–3.
[31] Sanz, R., López, I., Rodríguez, M. and Hernandéz, C. (2007). Principles for consciousness in

integrated cognitive control, in Neural Networks, Vol. 20, pp. 938–946.
[32] Sun, R., Merrill, E. and Peterson, T. (2001). From implicit skills to explicit knowledge: A

bottom-up model of skill learning, Cognitive Science 25, pp. 203–244.
[33] Sutton, P., Arkins, R. and Segall, B. (2001). Supporting disconnectedness - transparent in-

formation delivery for mobile and invisible computing, in CCGrid 2001 IEEE International

Symposium on Cluster Computing and the Grid, pp. 277–285.
[34] Swanson, L. W. (2001). Interactive brain maps and atlases, in M. A. Arbib and J. S. Grethe

(eds.), Computing the Brain (Academic Press), pp. 167–177.
[35] Thórisson, K. R. (2008). Modeling multimodal communication as a complex system. in

I. Wachsmuth and G. Knoblich (eds.), ZiF Workshop, Lecture Notes in Computer Science, Vol.
4930 (Springer), ISBN 978-3-540-79036-5, pp. 143–168.

[36] Thórisson, K. R. (2009). From constructionist to constructivist A.I. in A. Samsonovich (ed.),
Keynote, AAAI Fall Symposium Series: Biologically Inspired Cognitive Architectures; AAAI

Tech Report FS-09-01 (AAAI press), pp. 175–183.
[37] Thórisson, K. R., Benko, H., Arnold, A., Abramov, D., Maskey, S. and Vaseekaran, A. (2004).

Constructionist design methodology for interactive intelligences, A.I. Magazine 25(4), pp. 77–
90.

[38] Thórisson, K. R. and Jonsdottir, G. R. (2008). A granular architecture for dynamic realtime
dialogue, in Intelligent Virtual Agents, IVA08, pp. 1–3.

[39] Thórisson, K. R., List, T., Pennock, C. and DiPirro, J. (2005). Whiteboards: Scheduling black-
boards for semantic routing of messages & streams. in AAAI-05, AAAI Technical Report WS-

05-08, pp. 8–15.
[40] Thórisson, K. R. and Nivel, E. (2009). Achieving artificial general intelligence through peewee

granularity, in Proceedings of the Second Conference on Artificial General Intelligence, pp.
222–223.

[41] van Gelder, T. J. (1995). What might cognition be, if not computation? Journal of Philosophy

91, pp. 345–381.
[42] von Foerster, H. (1995). The Cybernetics of Cybernetics (2nd edition), 2nd edn. (FutureSystems

Inc.).
[43] Wang, P. (2004). Toward a unified artificial intelligence, in In Papers from the 2004 AAAI Fall

Symposium on Achieving Human-Level Intelligence through Integrated Research and Systems,
pp. 83–90.

[44] Wang, P. (2005). Experience-grounded semantics: A theory for intelligent systems, in Cognitive

Systems Research (Springer-Verlag), pp. 282–302.
[45] Wang, P. (2006). Rigid Flexibility: The Logic of Intelligence (Springer).
[46] Zitterbart, M. and De Meer, H. (eds.) (2011). International Workshop on self-organizing sys-

tems (IWSOS 2011) (Springer, New York, NY, USA).



April 27, 2012 18:35 Atlantis Press Book - 9.75in x 6.5in book_Wang


