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Abstract. The overall behavior and nature of complex natural systems is in 
large part determined by the number and variety of the mechanisms involved – 
and the complexity of their interactions. Embodied natural communication 
belongs to this class of systems, encompassing many cognitive mechanisms that 
interact in highly complex ways, both within and between communicating 
individuals, constituting a heterogeneous, large, densely-coupled system 
(HeLD). HeLDs call for finer model granularity than other types of systems, lest 
we risk them to be not only incomplete but likely incorrect. Consequently, 
models of communication must encompass a large subset of the functions and 
couplings that make up the real system, calling for a powerful methodology for 
integrating information from multiple fields and for producing runnable models. 
In this paper I propose such an approach, abstract module hierarchies, that 
leverages the benefits of modular construction without forcing modularity on 
the phenomena being modeled.  

Keywords: Multimodal realtime communication, computational model, complex 
natural system, heterogeneous large system, abstract module, theory of dialogue. 

1   Introduction 

A large number of mental mechanisms play a role in embodied dialogue, from task 
planning to sentence composition to control of eye gaze from moment to moment. 
How these are coordinated has to be explained if we want to claim that we understand 
communication. Examples of what a complete theory of dialogue should be able to 
explain is whether/how some eyeblinks seem to be related to the production of speech 
content, how it is that sometimes there are less than 50 msec gaps between speaking 
turns, how facial expressions or intonation can modify the meaning of utterances, and 
why people look at their hands when doing some types of gestures and not when 
doing others. Ideally it should also explain how and why communicative and social 
behaviors are affected in certain ways and not others by certain drugs such as alcohol. 

A basic theory of human dialogue presupposes that humans communicate – it is 
not its role to explain why they communicate in the first place or how such 
communication systems came about; that is the realm of sociology, biology and 
evolution science. Suffice it to say that without communication a species has less 



survival potential, and that the mechanism of reciprocity between individuals of a 
species must be present for such systems of communication to emerge. Assuming that 
an individual of a communicating species must have certain basic abilities to perceive 
and act in ways to communicate in a certain way, we must also postulate certain 
perceptual and representational capabilities related to communicative interaction.  

Among the properties of minds that most greatly seem to influence the 
commucative apparatus and its operation in realtime dialogue is cognitive capacity. 
Turntaking is a necessary mechanism to manage the limited processing capacity of a 
normal human mind in normal operation when processing information-rich content: 
The reason that we take turns when communicating is that the mind has a limited 
capacity to generate speech while concurrently hearing and understanding the other 
speech – attempting to do so for longer than a few seconds is sure to significantly 
reduce a person’s retention and understanding of  what was said around her (cf. [1, 
2]). Any model of realtime embodied dialogue must therefore take into consideration 
– in addition to the ability to generate speech, express concepts, gesture and take turns 
– attentional mechanisms and the inherent capacity of the various cognitive faculties. 
A necessary and sufficient model of dialogue should in fact be detailed enough that 
we could build an artificial system that can participate fully in human dialogue. Of 
course we are not going to build such a system on first attempt, or even second; as we 
must bring to bear on the task methodologies from several disciplines, this will take 
significant effort and time. 

This paper has two main parts. In the first part I argue that multimodal realtime 
dialogue shares many characteristics with other complex sytems, such as economies 
and ecosystems – what we refer to as heterogeneous, large, densely-coupled systems 
(HeLDs) – and must therefore be studied using some of the same methods as are 
being developed in these fields. Recognizing this fact may have important 
implications, in particular, that we need to supplement our efforts with methods from 
simulation and computational modeling theory. We will start by discussing the claim 
that embodied multimodal dialogue is a complex system, in the sense used by e.g. 
Simon [3]. Such systems embody/express emergent properties that have been difficult 
to understand without resorting to large, detailed computational models.  

In the second part of the paper I present ideas on the kinds of architectures that 
might implement such a complex system. In particular, we will discuss how a 
modeling approach called abstract module hierarchies that can overcome many of the 
difficulties associated with studying complex systems, and how modularity in 
implementation does not have to presuppose modularity at the cognitive or brain 
levels. We briefly present two systems exemplifying the use of abstract modules for 
modeling cognitive and neurocognitive mechanisms. Lastly we will look at arguments 
for why there might be reason to think that the brain is a modular computing 
substrate, and thus reason to expect isomorphism between cognitive and brain 
structures. 

2 Complexity of Cognitive Mechanisms 

Even the most casual analysis of human realtime communication reveals an intricate 
complexity of knowledge and behaviors that together define it. First I will briefly 



review three important sources of complexity, namely interaction at multiple 
timescales, perception-action loop and multiple information types.  

2.1   Multiple Levels of Detail 

The full range of dialogue behaviors can be affected by events on many space and 
timescales, from the emotional impact that a long-winded insult can have on the 
choice of one’s words to the implied surprise of 30 msec noise bursts from clicks of 
the tongue; from the threat “emanating from” a large fist shaken in one’s direction to 
the effects of Ethanol in alcoholic drinks on outbursts of “honesty”. 

The shortest and the longest behavioral event in a meaningful dialogue range from 
10-40 milliseconds (e.g. tongue click or a quick glance) upwards of several hours, 
possibly days.1 Meaningful behaviors thus span at least 4 orders of magnitude of time, 
even in the simplest cases of multimodal dialogue of meeting and saying “hi” in the 
hallway. Dialogue participants must keep track of events at the full range of 
timescales; various kinds of behaviors form clusters at certain timescales, or “bands”: 
eye movements and gaze at the low end (from 40 msec upwards of 1 second for 
lingering gaze), head, hand and arm movements between 1-2 per second, body 
movements a bit less frequent, and so on. The perception of each participant of others' 
behaviors, and their alignment and reciprocation of such behaviors by others, is 
highly task-dependent, yet bounded by the natural limitations inherent in the body and 
cognitive capabilities.  

Fine-grained analysis of the temporal nature of multimodal action during dialogue, 
from gaze and upwards, reveals significant repeated and mirrored patterns between 
dialogue partners [4], a clear sign that the perception and action of each participant is 
being coordinated to a very fine degree and that interaction behaviors happens at 
many timescales – gaze is met with gaze, verbal utterance with verbal utterance, 
gesture with gesture, topics are negotiated, abandoned and revisited. Clearly, tight 
coordination of such multi-dimensional events requires an intricate underlying 
architecture, where short- and long-term planning, powerful perception, reactive 
decisions and fine motor control all come together in a coherent way.  

2.2 Perception-Action Loop 

Dialogue, and especially multimodal dialogue, is inherently realtime. By perception-
action loop we mean the continuous, “on-line” ability of living beings to react to 
something that comes in through their sensors and monitor their own behavior and the 

                                                             
1 As the scale moves towards days, months and years, the category “meaningful dialogue” gets 

increasingly vague. We could use matching goals to classify a set of communicative events, 
such as utterances, gaze, facial expression, etc., into a larger communicative event such as 
interview, collaboration, etc. This method, however, has its limits, for as the size of the 
overarching goals increases the grouping becomes less obvious. To take an example, just 
because two people work at the same company, and thus share a positive attitude towards 
each other, we would hardly classify their greetings every day, over a period of e.g. 20 years, 
as “communicative event” lasting 20 years, even though their employer provides them with a 
shared goal and a context for greeting. In spite of its limitations, the method of using goals in 
the classification is useful in cases where the goals are fairly obvious.  



environment in a continuous fashion. At the low end the shortest possible voluntary 
path through this loop in humans, from sensation to action, is bounded by the choice 
reaction time, 90 ms [5], and at the high-end by the patience of participating in a 
back-and-forth with someone about a topic or class of topics, as well as the speed at 
which new thoughts and associations can be generated in relevance to that topic. 

An interval of 60 msec, from the time one senses something until they need to give 
a reply, or take turn, is not sufficient time to contemplate much at all, e.g. infer the 
major implications of a sentence such as “The Chinese have a vested interest in 
keeping business open to the West”, yet people do show visible and meaningful 
responses even as the sentence is being spoken. Quick, semi-automatic and fully 
automatic behaviors, such as fixations and saccades, have been classified as 
“reactive”; behavior based on deliberate and consciously reportable effort have been 
termed “deliberative” (cf. [6]). While the distinction seems crude, it has some basis in 
brain structure [7]. Where reactiveness cannot provide sufficient responses, prediction 
kicks in: Using various features of speech, gesture, intonation, gaze and so on, people 
will anticipate what a person is going to do and will act accordingly, to respond, 
comply, give turn or hand over a tool that was requested. Even the simplest target 
tracking tasks seem to involve realtime (close-horizon) prediction [8] as does 
listening to speech [9]. It seems likely that our cognitive apparatus employs several 
interwoven mechanisms for producing such intricately timed behaviors.  

2.3 Multiple Information Types – Numerous Forms of Constraints 

Computationally speaking, the data that enter into dialogue are of many types [10, 
11], spanning the full spectrum from deterministic to stochastic, continuous to 
discrete. In fact, the biggest criticism of turntaking research in the last 2-3 decades 
can be said to be a level of simplification that has had a chilling effect on progress and 
bound researchers in the shackles of side-effects, arguing over details such as whether 
there is such a thing as a “turn-constructional unit” and if so, it being sentential [12], 
syllable-based [13], multimodal (cf. [11, 14, 15]) or content-driven [11]. The situation 
painfully reminds one of the story about blind men arguing about an elephant2 – one 
touches the trunk and concludes that elephants are like snakes, another touches a leg 
and concludes that elephants are tree-like. The analogy has seldom been so 
appropriate, as a quick look at a few examples of successful turntaking shows: 
Efficient task-oriented communication on a noisy factory floor – no possibility to 
synchronize on syllables or full sentences; successful communication between the 
deaf (no sound at all); successful communication on the telephone – no multimodal 
information (although plenty of verbal paraverbal information) – the examples clearly 
argue against simplistic explanations of turntaking, as for example proposing that 
phoneme timing is its main perceptual driver [13]. As O'Connell et al. [11] point out, 
a proper turntaking theory should cover varied situations ranging from debates, to 
lectures, negotiations, task-oriented interactions, media interviews, dramatic 
performances, casual chats, formal meetings, etc. If such a theory is to provide an 
understanding of what drives turntaking, then it must provide a way to account for the 
(several) goals that will be in operation in any conversation – goals pertaining to the 

                                                             
2 Six Blind Men and the Elephant – poem by John Godfrey Saxe (1816-1887).  



 
 
Fig. 1. A grid of 100x100 cells in a cellular automaton, each determining its own state as 
represented by a color (shown here as one of 4 shades of gray), according to the rules in Figure 
2. Spiral patterns will emerge and persist over minutes and even hours of running. The spirals 
are emergent from the rules: It is difficult, if not impossible, to predict the emergence of such 
spirals looking only at the rules, partly because they only appear under certain initial 
conditions, but mainly because it is the interaction between the rules that produces them. Each 
snaphsot taken at the initial state (upper left), and then at 15 second intervals, ordered from left 
to right, top to bottom.  

individuals’ disposition (e.g. a seller who wants to maximize profit), social norms 
(e.g. no introductions at a store counter), relationships between the participants (e.g. 
friends who want to stay friendly), purpose of the interaction – the aligned goals 
between the individuals, i.e. the purpose of the interaction, etc.), cognitive limitations, 
characteristics and “parameter settings” (e.g. average and maximum speed of 
understanding what is being said, speed of planning, motivation levels, vested 
interest), as well as a host of issues related to semantics – from confusing sentences to 
Freudian slips – which can affect emotions, attitude and other things that influence 
timing and events in turntaking (see Figure 3). To explain these, however, it does not 

suffice to propose some simple mechanisms that can generate (some limited amount 
of) the surface phenomena observed in human dialogue – the mechanisms proposed 
must explain those and additionally how they interact with the various complexities of 
perception and direction of attention, the human ability to formulate coherent 
sentences, to understand them when spoken by others, and their ability to follow 
social etiquette. 

2.4 Emergence 

If scientists of an alien race were to land on Earth to analyze how automobiles 
operate, they would see numerous different behaviors of these entities: long rows 
moving slowly in packs, single cars zipping along dirt roads, cars stopped at a red 
light, single cars parked by houses and rows of cars parked by shopping centers, cars 



slowing down when approaching intersections, and a few incidences of cars jammed 
into each other. But as most Earthlings know, such high-level behaviors (the behavior 
of the whole traffic system within its environment, cities) are all emergent from 
interactions between several components such as the car's owners, the human laws 
pertaining to what may and may not be done while operating a motor vehicle – even 
the long-term goals of the car’s owners, e.g. not wanting to die. The observed 
behaviors of cars are an emergent property stemming from the interactions among 
these complex components. To the aliens’ delight, the fact that these components and 
their interactions are lawful means that observable effects can be classified, labeled 
and reproduced through manipulations, and modeled at the observable features level – 
the system’s gross-anatomy. To achieve accuracy and breadth in applicability of such 

a model one must, however, go beyond the surface phenomena and uncover hidden 
factors. Unless we lived in a perfectly bijective reality, we have to infer the 
underlying causality and for that we must build on what lies at the next organizational 
sub-level. 

Emergent phenomena have been extensively studied using cellular automata, 
where simple one, two or three-dimensional grids of cells, decides its own state based 
on the behaviors of its neighboring cells, according to a set of local rules (cf. [16]). 
Figure 1 shows an example of such a system: The spirals are an emergent pattern, 
stemming from a small set of identical rules (Figure 2) local to each square (there are 
100x100 cells in this example). The spirals are highly persistent in light of significant 
disturbances, but are quite sensitive to initial conditions and will not appear in about 
10% of cases with randomized initial conditions. These particular rules, however, 
need to all be present for the spirals to form: Taking out any single one will remove 
the appearance of spirals altogether.3  

                                                             
3 An interesting exception appears when removing Rule 3 – it makes the spirals somewhat less 

spirally but does not remove them completely. 

 
When Light Gray (LG) 
1. Turn MG: If there are more than 20 LG cells around and lifetime exceeds 

30 
2. Turn MG: If there are less than 12 LG cells around and lifetime exceeds 20 
3. Turn MG: If number of LG cells around equals 25 
4. Turn MG: If lifetime under any circumstance exceeds 60 
 
When Medium Gray (MG) 
5. Turn LG: If there are more than 8 LG cells around and their lifetime 

combined exceeds 80 and there are more than 10 MG cells around 
 
When Dark Gray (DG; only visible in the initial state) 
6. Turn MG: If there are more than 3 DG cells around and the sum of their 

lifetime exceeds 2 and lifetime is greater than 8 

Fig. 2. Rule set used for the states (grayscale) in the cellular automaton simulation in Fig. 1. 
Notice that LG and MG are responsible for the spiral patterns. (Lifetime means lifetime of the 
current cell, measured in simulation steps; around means the closest cells, in a 5x5 grid, 
surrounding the current cell.) 

 



If these alien scientists happened to be extreme optimists they might spend a 
lifetime studying only the observable features of automobiles, hoping to unravel the 
whole story that way. In the process they would know a lot about the high-level 
behaviors of cars but very little else. They would be able to describe and classify all 
of the cars' behaviors in fine detail, but they would never be able to explain all of 
them, because that is simply impossible without an underlying model of how cars are 
operated, have owners, are made of metal, must stay on roads, collide as a 
consequence of operator and mechanical problems, etc. For example, predicting that 
more collisions happen when the sun sits low on the horizon and hits the cars from the 
front is quite easy, based on prior observations, but explaining why it happens 
requires nothing short of an understanding of drivers and their perceptual apparatuses. 
Or consider explaining why the cars move without the concept of an engine; or of 
how an engine operates without some idea of fossil fuels, electricity and flammability, 
density and strength of aluminum and iron, etc. In other words, a model of their 
components and all elements related to the automobiles, constitutes a complete 
understanding of automobiles; social convention and cognitive limitations are needed 
for understanding traffic – the behavior of groups of cars in cities. The high-level 
behaviors of automobiles are an emergent property of the interactions between all the 
elements that matter to their behavior, nothing more and nothing less.  

2.6 Intermediate Conclusion 

As we have argued above, multimodal natural realtime dialogue is likely to be most 
adequately described as a complex system. Figure 3 gives a list of many factors and 
phenomena that can affect the way observable features in a dialogue turn out. The 
enormous complexity involved in even a single item on this list makes it ever clearer 
that embodied, realtime face-to-face communication is a complex system involving a 
large number of functions,4 the result of many interacting subsystems, none of which 
has clear domination over the system's characteristics – each element contributes to 
some part of the system's operation through its local operation and interactions with 
other elements. Evidence from evolution points in this direction too; in particular, 
evolution is likely to have come up with a tangled web of mental mechanisms that 
serve many purposes in many ways, because once one mechanism is in place it is 
more likely to be modified in subtle ways and reused than for another mechanism to 
evolve from scratch – a phenomenon called exaption. The result of such processes is 
systems with large amounts of structural dependencies – mixed heterogeneous 
systems. 
 

 
                                                             

4 The term function is used here as in psychology, anatomy and biology, as functioning, 
ability, role, etc., akin to the concept of structure in anthropology (cf. [17]): The “family” is 
a structure encompassing more than its parts, but yet can only be pointed at by naming its 
constituents or from the exterior, by naming its connections to the tribe, as it exists at a 
different level of organization. This kind of metonymy shows in fact that it’s beneficial to 
clearly separate the substrate and the emergent functions (i.e. to abstract based on 
organizational levels) when wanting to identify structuring feedback loops, to run them and 
validate (or dismiss) abstraction hypothesis. 



1. Timespace 
   1.1 Physical constraints 
      1.1.1 Body can only be in one place at a particular time 
      1.1.2 Sensory organs limited area coverage 
      1.1.3 Manipulators of limited number (arms-hands 2, fingers 2x5, typically) 
   1.2 Temporal constraints 
      1.2.1 Body takes time to move (especially important for sensory apparatus) 
      1.2.2 Body only exists a particular period in time (hence the need to communicate 

across time) 
      1.2.3 Sensory uptake takes time 
   1.3 Cognitive apparatus 
      1.3.1 Variable time for processing different types of information from senses 

2. Information-carrying capacity of our communicative apparatus (body) 
   2.1 Arms and hands 
        - Placement, speed, shape, manner of movement may all matter 
   2.2 Face 
      2.2.1 Gaze direction, fixations 
      2.2.2 Head direction, movement 
   2.3 Mouth 
       - Speech, non-speech sounds/paraverbals 
   2.4 Body 
        - Stance, direction, shape 

3. Cognitive capacity 
   3.1 Perceptual integration: Hearing and vision are different types of data 
   3.2 Attentional control 

 - To understand well we have to focus our attention on a single individual's 
communicative acts; this is perhaps the single biggest reason for the existence 
of turntaking 

      3.2.1 Visual attention 
      3.2.2 Auditory attention 
   3.3 Knowledge (this is big) 
      3.3.1 Individual differences 

 - Individuals have different amounts and types of knowledge, hence a need for 
grounding 

      3.3.2 Knowledge of social convention 
        - Various types of behavior may be inhibited or expected by social rules of 

conduct 
      3.3.3 Situation recognition 

     - A situation needs to be classified correctly in order to be acted upon with the 
intended effect 

   3.4 Memory 
      3.4.1 Memory types 

   - We have different memory systems for events, words, concepts; these have 
various limitations 

   3.5 Goals & Intentions 
      - Various goals may come into play; this is a list in and of itself. These factors are 

closely related to and interact strongly with knowledge. 
   3.6 Planning 
      3.6.1 Planning of body movement 
      3.6.2 Planning of words 
      3.6.3 Synchronization of various bodyparts 
        - For sensing (e.g. fixate on the right place) and for information production 
   3.6 Learning 
 

 
Fig. 3. These are only some of the constraints that a communicating system must take into 
account; most of them may influence, in one way or other, the way participants in dialogue 
behave. 

 



So how complex is natural multimodal communication? Is the complexity greater 
than that of an automobile (minus its human operator)? Surely. Is it more complex 
than the example cellular automata world depicted in Figure 1? Most certainly, as the 
preceding sections clearly hint at. How about an ecosystem? Probably not; besides 
being dependent on very complex energy transfers, many of the functional elements 
in a (human-less) ecosystem contain cognitive perceptuo-motor systems that rival 
human ones. Therefore we can assume that the complexity of multimodal 
communication, as a system of systems, lies somewhere between an automobile 
engine and an ecosystem. When trying to formalize systems with a large number of 
functions and inter-structural dependencies, the requirement for a high level of model 
detail is thus likely to be very strong, as no single factor explains a significant part of 
the whole system's operation, just as the rules in the spiral world example above.  

We can now make the following summary about multimodal realtime dialogue:  

(1) Observable behaviors of dialogue participants – glances, manual gestures, 
choice of words, intonation and prosody, etc. – are not any more sufficient for 
explaining the phenomena of communication than the movement of 
automobiles is sufficient to explain their operation.  

(2) In order to be adequate, our human communication models may very likely 
have to encompass most (if not all) the components and couplings that make 
up the system; anything less is likely to be both incomplete and incorrect. 
Leaving out a large set of phenomena tightly integrated with, and observed to 
affect, dialogue behaviors, such as e.g. gesture, prosody and intonation – even 
breathing – is very likely to leave us with an incomplete model of dialogue, 
quite possibly a model that is also incorrect.  

In face of this conclusion we need to answer several questions. The main one, the 
one we will address in the next section, is What methods can be employ to build a 
model that can take the part of a human dialogue participant and thus explain 
sufficiently how embodied multimodal dialogue works?  

3 Models & Methods 

If there is one thing clearer now than it was 50 years ago regarding natural language 
and dialogue, it would be that cognition related dialogue is more complex than had we 
dared to imagine. It has been said that biological research is difficult because in living 
systems everything is causally connected to everything else. Luckily this is unlikely 
to be true of cognitive mechanisms (and probably also biology), but we can be sure 
that any subsystem we may identify in multimodal dialogue is bound to have multiple 
connections to other subsystems in the human cognitive system.  

Historically, an important tool for studying human behavior in psychology has 
been hypothesis refutation. Based on Popper's (in)famous argument that hypotheses 
can never be proven, only refuted [18], much psychological research today addressing 
cognitive architecture proceeds by experimentation based on fairly broad-stroke 
generalizations about its information structures. However, as eloquently argued by 
Newell [19], “you can't play 20 questions with nature and hope to win”, meaning that 
a coarse-grain approach through hypothesis testing through human subject 



experimentation must be supported by other research methods.5 The general idea 
behind the information processing view of intelligence, as introduced by Turing [21, 
22] and others, has taken hold in many parts of psychological research. While strong 
versions of the thinking-as-computation stance have led to in-fights among 
researchers, modeling with structures does not imply isomorphism – that the modeled 
reality is modular – nor does it imply that the modeled object has to be 
computationally reducible.6 We will come back to these issues shortly.  

Simulation models vary widely depending on the phenomena under study. For 
example, the behavior of a homogenous system, e.g. a liquid consisting of one type of 
molecule in large numbers, behaving according to the laws of physics, can be 
described by relatively simple equations. Equations that take into consideration large-
scale indicators of monetary inflation can be used to model large-scale movements of 
a market. But in neither case can these equations be used to describe individual 
molecules or currency transactions, respectively. Not so for many other systems. 
Consider the example of a car engine: trying to understand how it works by only 
looking at the carburetor and the battery is not likely to get us very far. The 
automotive engine is composed of a large number of heterogeneous components, each 
responsible for only a small part of its total operation, yet ignoring any one of them 
will likely leave us with an incorrect model. To take a hypothetical example from the 
brain, we might be able to model spatial hearing sufficiently abstractly for certain 
tasks that the human auditory system needs to perform, but typically that (limited) 
model will break down in many other contexts and for many other tasks. If we want 
to have a finer granularity of the spatial hearing faculty, the only solution would be to 
model it in more detail, because what defines it at those other tasks may very likely be 
its composition at lower levels of detail, which interact in complex ways with other 
systems needed for other tasks. As the list in Figure 3 shows, a model that can take 
the vast amount of relevant systems into account, and produce the kinds of patterns 
observed in multimodal dialogue, is not going to be simple. The architecture of such a 
system will have much more in common with the global telephone network and 
Internet than with the mathematical models of physics, that is, it will most likely be 
composed of heterogeneous interacting systems that are “nearly decomposable” but 
not quite, and it will be highly detailed. Furthermore, these models will be highly 
dynamic. The only (presently known) way to make such models is to implement them 
as information structures, in the form of programs, and run them on computers, 
monitoring their performance and comparing it to the natural systems they are 
supposed to represent. This has been the conclusion in many other fields studying 

                                                             
5 Kosslyn [20] has taken this argument further and argued that binary decision making in 

researching complex systems can be done provided that the hypotheses are (a) anchored in 
detailed processing models and that (b) they are formulated from the viewpoint of multiple 
levels of analysis within a processing system. This is in accordance with the view argued 
here (see below). 

6 The computational stance is nevertheless an efficient framework for the construction of 
experimental (mathematical) models of the mind (cf. [23, 24, 25, 26]); it has advanced our 
understanding of the mind in several aspects, in many cases with superior results over other 
approaches, a good example being how neural impulses collect from the ears in the form of 
information that encodes position and orientation of sounds, directly in support of the 
survival of a species.  



complex systems and is recognized as a powerful methodology for studying weather 
systems, evolution of galaxies, physical processes and more (cf. [27, 28, 29, 30, 31, 
32]).  

3.1 Large Heterogeneous Systems & Model Validity 

Complex models with heterogeneous components call for a heightened need of 
thorough verification. One difficulty is that in such systems any subset of the 
observed behaviors can be mapped onto an infinitely large set of underlying 
hypothesized mechanisms, which are a challenge to verify. To take an analogy, 
uncovering the 8 rules of the spiral world (Figure 2) would be quite complicated 
simply by studying the emergent surface forms of the spirals. Numerous rule sets 
could undoubtedly be concocted that would generate similar, perhaps even identical 
spirals. But uncovering the actual rules would necessitate digging deeper, probably 
building a simulation of the world where one could try out different rule combinations 
running inside the logic believed to be responsible for their execution. Our human 
communication models might contain a high level of detail, but if it only addresses a 
limited level of detail it might be correct or it might be incorrect – in fact, there would 
be no way to tell. 

Part of the problem thus lies in the fact that most current models, produced by the 
standard divide-and-conquer approach, only address a subset of a system's behaviors; 
yet for most complex systems, if we were to attempt to create a model that addresses 
all of the system's behaviors, the set of possible underlying mechanisms would be 
greatly reduced [33] – quite possibly reducing the probable mechanisms behind it to a 
small finite set. A way to address this problem is thus to take an interdisciplinary 
approach, employing results from various levels of abstraction to bear on the 
modeling efforts. Use of such hierarchical approaches is common in e.g. physics, as 
all physicists know, for example, that behind the science of optics lie the more 
detailed models of electromagentic waves [34]. Thus, when dealing with 
heterogeneous, large, densely-coupled systems (HeLDs) it is important that we try to 
constrain the search space for possible designs, and one powerful way to do this is to 
build multilevel representations (cf. [33, 35, 36, 37]); indeed, in understanding natural 
HeLDs this may be the only way to get our models right. Notice that the thrust of the 
argument is not that multiple levels are “valid” or even “important”, as that is a 
commonly accepted view in science and philosophy, but rather, that to map correctly 
to the many ways subsystems interact in HeLDs they are a critical necessity, lest we 
chase variations on our altogether incorrect models ad infinitum.7 Unless simulations 
are built at fairly high levels of fidelity it is not possible to experiment with changes 
and modifications to the architecture at various levels of detail. Without this ability 
we cannot differentiate between a large set of models that, on paper, look like they 
might all work. To quote Simon [32] on this subject, for much simpler phenomena: “ 
Even a few particles, three or more, reacting in classical Newtonian fashion, create 
the notorious three-body problem, which is usually not solvable in closed form, and 
which, under many circumstances, leads to chaotic system behavior.” 

                                                             
7 A short overview of the importance, as well as pitfalls, of multiple levels of description in 

science is given by Bakker & Dulk [38]. 



So the solution to the problem of model validity, as well as the solution to 
increased model detail, is to attempt to anchor current models in a theory about 
phenomena at a higher or lower level of detail, assuming those theories have been 
experimentally grounded.  

Another useful weapon in the fight for complete and accurate models is modular 
construction. Modular approaches, in contrast to monolithic designs, have been 
shown to speed up the development of large, complex robotic and simulation systems, 
and to facilitate the collaborations of large teams of researchers [39, 40, 41, 42). To 
take some examples, Martinho et al. [43] created an architecture designed to facilitate 
modular, rapid development of theatrical agents for virtual worlds and modularity 
played a large role in the construction of Bischoff et al.'s HERMES robot [44]. 
Simmons et al's robot Grace [45], with over 20 collaborators from 5 institutions, is 
another great example of a project that has benefited from a modular approach. Of 
course, whether the mind/brain can be modeled in a modular fashion is still debated in 
the research community and not all are convinced of its merits. However, in the 
software engineering sense, this claim in its essence simply represents a practical 
solution to a highly challenging problem: it does not force us into – or even in the 
slightest sense imply – the view that the brain is literally a set of components. Rather, 
the claim of modular construction is that our understanding of the brain/mind can be 
fruitfully formalized that way when implemented as computer models. Of course, 
we'd like to incorporate as many faculties of the mind as possible when modeling 
cognition, but this is impossible to do all at once; unlike monolithic approaches, a 
modular approach enables us to do this incrementally and to capture many of its 
aspects in many ways, thus preserving their richness under various perspectives. The 
trick is to realize that a modular construction does not have to imply a theory of 
modularity. To see how this could be so, we need to look at some theoretical building 
blocks that can lead the way. And so the next question for our modeling efforts arises, 
What kinds of modularity? 

3.2 Abstract Modules & Near-Decomposability 

The concept of an abstract module builds on Simon’s [3, 46, 47] concept of “near-
decomposability” (ND): Systems that are divided into subsystems of interacting 
elements at multiple levels, where interactions between elements within a subsystem 
are an order of magnitude or two higher than interactions between subsystems. It can 
be found everywhere in nature, from the universe as a whole to biological to sub-
atomic systems. A module in this sense is a theoretically motivated or practically 
motivated subcomponent or building block of a larger system, with causal 
relationships (couplings) to other such subcomponents (Figure 4). Together the 
subcomponents and their couplings define the system in question. We will look at 
examples of this in section 3.3 below, but first we will provide a general account of 
the idea and its benefits.  

 An abstract module represents abstracted system functionality. It has a goal or 
purpose g, an input i, an internal state S, a transformation process P, and an output o. 
In the tradition of many multi-agent systems, the goal can be a human-imputed 
justification for the module’s existence – in other words the module’s role in the 
architecture – and need not reflect an underlying theory (just like the existence of the 



module itself). The transformation process transforms the input to an output according 
to some rules; if i is a continuous physical force and P is a damping mechanism, o 
will be some derivative of i according to mechanical laws; if i is some discrete 
information packet and P a routing mechanism o may be i in unmodified form but 
with a new destination.  

Figure 5-I shows causal relations between six physical (or hypothetical) entities 
with particular causal relationships. To model these using abstract modules, several 
approaches can be taken. In II, the relationships have been implemented as three 
simulation models, with messages taking the place of hypothesized (or real) 
causation; left-hand side in II represents transmitting modules and right-hand side 
receiving modules. In III, the structure in I has been implemented as two alternative 
modular models, X and Y. In X, two modules are used to represent all causal 
relationships of I. In Y some modules from II have been merged. Notice that even in 
this implementation, where e.g. each module is running on its own computer or as its 
own thread, the original physical/theoretical relationship between the causes and 
effects has not changed (except insofar as in this example their effects on each other 
may not have the same resolution as reality 
would have it). In both II and III the modules' 
internal state (see Figure 4) represents the 
state of the causes and effects in I. Looking at 
Figure 5-I as physical reality, or a theoretical 
model of physical reality, nothing in II or III 
has changed in our modularization of the 
physical or hypothetical systems in I.  

Because the approach can be employed 
purely for the practical purposes of getting a 
handle on excess complexity, it follows that 
the cognitive modules proposed by Fodor 
[48], for example, can be modeled as a single 
abstract module in which the module’s state 
and goal is not shared with other modules, 
only its input and output. But if the modular 
model is in this way completely independent of the theory, what then is the benefit of 
the modularization? Doesn’t it get in the way? The short answer is no – even if the 
modules in our implementation are completely orthogonal to the actual theory the 
system implements they will allow for the construction of larger, more detailed 
models, and help relate the work to related fields. Additionally they will help anchor a 
given level of organization in tangible, physical structures wherever this is 
appropriate. There are significant benefits to modularization: 

• Modular systems are easier to expand than monolithic ones. This is a well-
known fact in software engineering and computer science.  

• A modular model of a complex system is easier to simulate, as modules can be 
moved between processors. The primary reason why this is important in cognitive 
research is that so much of cognition has no serial dependencies and can (and 
should) therefore be executed in parallel. In addition, computing power is 
becoming increasingly available prices continue to drop and advances keep being 

Fig. 4. An abstract module is 
composed of a process P, input i, 
output o, a state S and a goal g. 



made. This point is less important for systems that are small enough to be run on 
single processors than more computationally intensive ones, but as the power of 
processors increases the benefits even there are becoming increasingly obvious.   

• Modular approaches facilitate collaborations between scientists, labs and 
universities. This is extremely important, as HeLDs are difficult to build; sharing 
models and runnable code between scientists and even institutions may speed up 
the progress of cognitive research by orders of magnitude [49].  

Even though modularization with abstract modules can be kept independent of the 
underlying model, this does not mean that modularization in a runnable model should 
never mirror modularization (whether hypothetical or real) in the system being 
modeled – quite the contrary: It may in fact sometimes be beneficial to make modules 
in a model directly mirror modules in the modeled system. To take the example of 
Fodor again, we could build a model where our abstract modules directly implement 
the way in which he intended his mind modularity to work.8 It is important to keep in 
mind, however, that when such assumptions about actual modularity are made they 
must be made explicitly and clearly and not implicitly, as is often the case. This 
allows the validity of such a local hypothetical modularization to be further 
investigated – and eventually decided – in the course of the model verification 
procedure.  

                                                             
8 This would presumably require a significant amount of detail to be added “between the lines” 

in his theory, as it is a relatively high-level and coarse-grained.  

Fig. 5. Causal relations between variables [V1, V6]. I, II and III, left-hand side: Causes; right-
hand side: Effects. Part I depicts physical causal relationships between variables (A – linear 
relation; B – logrithmic relation; C – hyperbolic relation). Alternatively, part I may represent 
theoretical models of physical or hypothetical constructs. In II, these relationships have been 
implemented as three modular simulation models, one module per causal factor and one per 
measured effect, with messages taking the place of physical relationships. The functions a and 
b connecting the modules have also been quantized from what they were in I. The left-hand side 
represents transmitting modules and the right-hand side receiving modules. In III, two modules 
are used to represent all causal relationships of I. In both II and III the modules' internal state 
(see Figure 4) represents the state of the causes and effects in I, respectively, and the 
modularization is thus independent of the theoretical model. 



The idea of abstract modules as presented here continues along the line of Marr’s 
[50] three levels of analysis, theory, representation and implementation9 – but abstract 
modules go further, dealing with complex system architectures, relationships between 
semi-independent entities, and abstractions at multiple levels of detail. Although to 
some extent compatible with Minsky’s Society of Mind [51] (multiple interacting 
subcomponents), the idea of abstract modules differs significantly from it in its 
emphasis (a) the importance of gross architecture in complex systems, (b) hierarchical 
models, and (b) the practical benefits of modularity for building runnable models. As 
Simon [3, 46, 47] points out about ND systems, they can be described as a hierarchy 
at multiple levels of abstraction (detail) where mechanisms at each level interact more 
between each other than any other part of the system as a whole. This concept is 
illustrated in Figure 6. The decomposition into levels, and subsystems at each level, 
can be structural and/or functional. A functionally decomposable system will have 
functions that can be isolated and implemented computationally as abstract modules – 
independently of how or whether its functional decomposition mirrors its actual 
physical/structural instantiation.10 As one descends down this scale, detail, i.e. 
physical and temporal granularity, increases – the model involves smaller objects 
operating at higher frequencies. 

Figure 7 shows three canonical abstracted examples of systems resulting from 
applying this methodology. In Example I a target system is decomposed at two main 
levels, the highest and the lowest. An example is e.g. a goal-stack for topics to be 
discussed (the high level), and neural mechanisms coding for the speaker’s 
representation of spatial relations so that he is able to look at the listener (low level). 
Alternatively, the lowest level could be a neural model of goal representation, with 
spatial relations simply modeled at the top level as Cartesian points in space. In 
Example II the system is decomposed into three levels; take our first model and add a 
middle level describing how neurally-encoded spatial information (lowest level) 
informs the control of neck and eye-muscle tension (mid-level) to bring head and eyes 
to the desired positions, relative to the speaker’s and listener’s bodies. Example III is 
an example of “the modeler's nightmare”: Here a system has multiple valid 
decompositions at any level (there are no discernable levels), potentially all equally 
good (or bad).  

Furthermore, some abstract modules at each level have causal connections to 
abstract modules at different levels of description. Encountering this situation may in 
fact point to a possibility that (a) the phenomena one is trying to model are in fact not 
causally connected or that (b) they are in essence atomic. Note though that this does 
not mean one cannot model the system in a modular fashion, only that the modules 
and their connections will have a high level of arbitrariness. 

                                                             
9 It is important to note that Marr’s usage of “implementation” referred to the substrate – the 

hardware – that a model runs on, that is, how a system can be realized physically e.g. the 
brain or a CPU, while my use of the term “implementation” is used throughout in the sense 
of “software implementation”, i.e. how a system is implemented as a software program. A 
key point here is that software implementations can approximate the hardware 
implementation to various degrees, along almost a continuous scale of fidelity.  

10 Of course any functional feature of an abstract runnable system must be implemented as 
causal chains at some physical level (not necessarily in a one-to-one relationship), lest we 
assume some sort of metaphysical causation – see Scheutz [52].  



A key feature of ND 
heterogeneous systems is that 
the causal chains between their 
elements are a tangled web of 
different types of interactions, 
or couplings (Figure 8). We 
can classify these along at least 
two main dimensions, density 
and tightness. A dense 
coupling between two 
components makes them 
highly dependent on each other 
on many variables; a sparse 
coupling means only one or a 
few variables on either side 
affect the other. A variable in 
component A is tightly coupled 
to a variable in component B if 
changes in it affect changes in 
the other in a (close to) 1:1 
relationship. A loose coupling 
implies a statistical 
relationship or that e.g. only 
part of the range of one 
variable affects the other. Of 
course, any given HeLD may 
be composed of a combination 
of components that vary along 
both dimensions; what makes 
a system a HeLD is its large 
number of components and the existence of a significant number of dense couplings. 
But what does it mean to implement a tightly coupled causal relationship (theoretical 
model) as loosely coupled modules (implementation model)? It means that the 
implementation model will probably represent the theoretical model incompletely 
(and the theoretical model may in turn implement the actual phenomenon 
incompletely), resulting in lower fidelity of simulation, and less predictive power. 
Depending on the questions asked of such a system, the answer may be wrong, or 
only correct to certain approximation. 

3.3 Model Examples 

Abstract modules can be used as building blocks for any sort of system; they can be 
used to turn architectural ideas into runnable models that can be put the scrutiny that 
only dynamic runnable models can (e.g. interaction with the real world). They have 
for example been used in one form or other for robotics [53, 54], models of market 
innovation [39], and neurocognitive modeling [55].  

Fig. 6. Abstraction levels: Each level of description can 
be broken into smaller constituents that interact through 
rules different from the level above. A causal 
connection at Level 0 (top arrow) may in fact stand for 
a complex set of causal interactions at the next level 
below (small arrows). 

 



To exemplify the use of abstract modules in the context of multimodal 
communication, we will now take a brief look at two systems that use abstract 
modules, both implementing turntaking skills. The first system implements a new 
version of the Ymir Turntaking Model (YTTM [56]), a model based on a broad set of 
psychological research on human face-to-face communication. The model 
incorporates multiple modes and has been tested extensively in realtime dialogue with 
people. A recent implementation of the model is speech-only but has several new 
perception mechanisms and a new system for managing real-time decision-making 
and planning. The model is built using around 20 abstract modules that implement 
various functions such as managing architecture-wide semi-global (internal) states 
that concern realtime resource (CPU) allocation, decisions and perceptual tasks, as 
well as speech recognition and speech synthesis (one module each). To take an 
example, intonation is processed in a special prosody processing module, decisions 
when to take and give turn are managed by a group of decider modules and the 
decision to start speaking is managed by a relatively large, modular planner. Most of 
these modules take input from 2-3 other abstract modules in the system. None of the 
implemented modules are purported to map directly, or even indirectly, to brain or 
cognitive “modules”. But they are assumed to implement functionalities that 
influence each other in the way that the system architecture implies.  

Fig. 7. All systems can be decomposed at multiple levels of abstraction; the more complete a 
theory is, the better such decompositions are theoretically connected. Here, circles represent 
decompositions of a system into abstract modules – each module containing an appropriate 
method for its function, e.g. an artificial neural net, rule set, fuzzy logic, etc.). The lowest level 
(bottom) represents the finest-grained grouping of functions and/or structure in the system; the 
highest level (top) represents the most abstract; lines represent coupling. Example I: 
Modularization at two scales; example II: modularization at three scales; example III: 
modularization and decomposition at multiple, overlapping scales. For number of neurons in 
the brain y' — 10y neurons. 



Fig. 8. Types of couplings between a set of 
heterogeneous abstract modules. I: Sparse 
coupling. II: Dense coupling. III: Tight 
coupling. IV: Loose coupling. 

In this system the density of the 
coupling between modules is 
moderate (averaging 5 connections 
per module), information transfer 
between modules is on the order of 6-
12k bits per second per module, and 
the coupling tightness is relatively 
high, implying that the majority of 
the modules operate highly 
predictably based on their input, and 
thus embody relatively simple 
internal processes.  

Although the YTTM so far seems 
a reasonable initial step in the 
direction of modeling complex 
multimodal realtime turntaking, 
significant additional research is 
needed, in particular regarding how 
the behavior produced by the model 
compares to real human data and 
whether the factors (causal chains) it 
proposes can be implemented by 
neural mechanisms – a necessity for 
any model claiming cognitive 
realism. Both of these are currently 
work in progress – the latter to be 
discussed in our next example.  

The second example of a system we will look at exemplifies how abstract modules 
can help connect theories at different levels of abstraction. In this system, selected 
parts of the YTTM, more specifically some of the abstract modules it proposes for 
handling decision and planning in multimodal turntaking [55], have been 
implemented as neural mechanisms. The neural planner is a modified version of the 
Augmented Competitive Queuing model (ACQ [57]), which was built to model 
Macaque brain mechanisms that control grasping [58, 59]. This new implementation 
of the YTTM gives it learning capabilities, but the key advance on other 
implementations of it is the increased level of detail in the implementation and its link 
to brain research.  

At the neural level the model now proposes motor schemas that compete for 
execution in a way that produces emergent action sequencing. Motor schemas are a 
kind of abstract modules that map directly onto purported neural mechanisms. Albeit 
somewhat simpler than the original decision and motor control mechanisms in the 
YTTM, the replaced sections are now anchored to empirical brain modeling: rather 
than being purely motivated by data from gross-behavior analysis they are 
theoretically motivated at a much finer level of granularity. Because of the flexibility 
of abstract modules, some parts of this neural implementation of the YTTM still 
include abstract modules that have not yet been linked to models from other fields, 
including modules that control motivational levels and perception of speech and 



gesture: these have been implemented to handle particular functions without any 
claims that their existence is somehow based on existing modularity found in the real 
world. In accordance with the above account, however, the factors these modules 
control, e.g. motivational level, are assumed to represent real-world factors. Because 
abstract modules help isolate logical, as well as structural, parts of a system in its 
model, modeling can be done without necessarily representing the whole system at a 
single level of abstraction.  

These two models of embodied multimodal turntaking together exemplify how 
levels of abstraction can be bridged with the help of abstract modules; the synthesis of 
the original cognitive turntaking model and a neural model of planning and motor 
control produced a mixed-level, mixed-abstraction approach, bridging cognitive and 
neural levels in a manageable way, and perhaps more importantly, in a way that can 
produce performance data that can be directly compared to the systems being studied.  

4 Neurocognitive Architecture 

One of the questions that arises when modeling cognitive phenomena as varied as 
those encountered in natural communication is whether we are likely to encounter the 
need to have our abstract modules represent actual modules. Put in a different way, is 
the brain/mind modular, and if so, to what extent? (That is, are there systems or 
mechanisms that clearly, or perhaps not so clearly, form spatial and/or structural 
groups?) One way to begin to answer this is to look at data produced by recent brain 
research, since neural structures is ultimately how all animal cognitive functionality 
must be implemented.  

Modularity and hierarchy are known to exist in the human brain [60]. The smallest 
scale thought to matter to its computation is the neuron and the set of chemical 
compounds known to be able to alter the computational characteristics of these. There 
are about 500 major groupings of neurons in the human brain where the groups are 
composed of a selected set of neurons; each of the groups consists of 5 types of 
neurons, on average, each of which sometimes creates sub-groupings [61]. The 
human brain thus consists of a total 2500 different types of neurons. Each of the 500 
groupings uses specific ways to compute, and each connects to other groups in 
specific ways. These groups then make up larger interconnected groups, many of 
which are dedicated to a particular part of mental processing such as vision, hearing, 
sight, motion control, speech generation, speech understanding, balance, emotions, 
etc. [61]. Of course these facts are not a proof that cognitive and brain architecture is 
isomorphic, but it hints strongly at modular organization on some levels of analysis. 
Further signs of modularity can be seen in the numerous gross anatomical areas 
identified in the last 30-40 years that have particular functional characteristics, 
including the several layers of visual processing in the back of the brain, neural nuclei 
for spatial hearing, learning (cf. [62, 63]), cognitive control and planning [64. 65], and 
more recently, strong evidence of causal connections between frontal lobes and 
decision making, obtained using transcranial magnetic stimulation [66]. These 
correspondences between mental-level phenomena and neural tissue, which is 
composed of heterogeneous types of neurons, give us some hope that a modeling 
methodology based on abstract modules will be relevant and successful in modeling 



mental phenomena computationally, including conversation skills. There exist, 
however, reasons to believe the opposite: Results from the complete mapping of all 
302 brain cells of the nematode C. elegans, and their 7000 synaptic connections [67], 
have not resulted in any significant deepening of our understanding of how a brain 
operates, and even simple tasks such as the nematode's crawling seem as unexplained 
as ever, from the perspective of its brain and neural architecture (cf. [68]).  

Elsewhere I have argued that AI researchers need to study intelligence in a larger 
context than they typically do, and that to do so they need new tools, methodologies 
and collaboration strategies to build larger models of the phenomena they are 
studying [49]. The same can be said about cognitive scientists and psychologists 
working on understanding human communication and cognition in general. Again, it 
is imperative that we build runnable models of these phenomena – it is the only 
(known) way to address the complexity explosion that happens when we try to 
understand larger parts of the human and animal minds. It is equally imperative that 
we aim at modeling these phenomena in toto – as completely and comprehensively as 
possible. 11 It is not enough for psychology to limit itself to (observable) behavior, or 
to a purely cognitive level – data, theories and methods from neurology, medicine, 
artificial intelligence and other fields must be used to help constrain the vastness of 
the possible explanations for the observable surface phenomena (even those produced 
in controlled experiments with large and repeatable results).  

So to understand complex systems such as the human mind/brain system we are 
going to need models at various levels of detail, for various purposes. In employing 
this method, one can choose the level of abstraction in accordance with the desired 
model resolution, available data, and available measuring techniques – in essence 
employing numerous instances of the model in Figure 4 at various levels in Figure 6, 
and then expand as more information comes to light. Scientific theory thus becomes 
built up over time, incrementally covering and explaining more phenomena and 
excluding alternative explanations. Evidence from research based on these 
assumptions, including the use of various versions of hierarchies of abstract modules, 
points to significant benefits of the approach (cf. [33, 40, 53, 55, 64, 71]). Eventually 
we will want them to be interconnected enough to present the “mind atlas”, with 
details of fine and gross anatomy and function equally represented in a runnable 
simulation. What that model will look like is an empirical question; however, the 
evidence so far indicates that it would be equally absurd to expect the human 
mind/brain to be exclusively built out of a huge number of uniform, specialized 
modules (what Bryson [69] calls “vertical modules”), as advocated – to different 
degrees – by e.g. some “massive modularity” hypothesis enthusiasts (see Carruthers 
[70] for a review), as it is to contend that the human mind/brain is a massive 
collection of undifferentiated neurons with no discernable low or high-level structures 
– neural spaghetti. Barrett and Kurzban [72] provide a thorough overview of 
arguments on both sides of the modularity debate.  

                                                             
11 In particular, a direct result of the requirement for a detailed, comprehensive, runnable model 

is that our models will – for the most part – never be complete; we will be doomed to build 
models for various purposes, for answering various sets of questions. This can already be 
seen in modeling efforts for many natural phenomena such as ocean currents, weather 
systems, ecosystems, etc.  



Clearly the human brain, and thus by extension the mind, is organized in many 
ways and on many levels, but both extremes on the organizational spectrum seem 
implausible. Assuming then that the substrate of the human mind lies somewhere 
along the spectrum from being perfectly hierarchically organized to being complete 
spaghetti, we need powerful tools to analyze and model it.  

5 Conclusion 

We have painted a picture of multimodal dialogue as a complex system composed of 
a large set of functions, produced by a multitude of systems and subsystems that 
interact in complex ways, producing emergent properties. With examples from 
cellular automata, cognitive modeling and brain research, I have argued that because 
of this, if we wish to obtain a comprehensive model of multimodal embodied 
communication, we cannot apply a divide-and-conquer approach exclusively, or only 
study the various (surface) dialogue phenomena or brain function in isolation – we 
have to take an integrative approach. Because of its complex-system nature, 
multimodal realtime dialogue calls for an approach that can model it at a high level 
granularity – a necessity for achieving correctness in models of complex systems. 

The evolution of science rests on the power of the tools we have at our disposal; 
the need for more powerful tools and methodologies for extending – and especially 
for interconnecting – research in psychology, brain science and cognitive science is as 
calling today as the need for the microscope was in the early days of biology. 
Whether or not one takes to either of the extremes in the mind-brain debate (extreme 
modularity or “neurocogntive spaghetti”), hierarchies of abstract modules can be a 
powerful approach to modeling large systems with complex causal structure.  

Abstract modules are an embodiment of abstracted functionality. They have been 
used in many systems to date, from humanoid robotics [40, 53, 54] to integrative 
cognitive models [55, 57, 58] to economic simulations [39], and shown to be a 
flexible and malleable methodology. Benefits of the approach are numerous, the main 
ones being (a) easier integration of models based on different theoretical foundations 
and originating in different disciplines, and (b) the ability to manage a greater amount 
of overall complexity. A third major benefit is (c) the ability to mix different levels of 
abstraction when building a model, to get increased levels of detail where needed. A 
fourth major benefit is that (d) isolated models built with the method can more easily 
be extended, can more easily be related to other models. Last but not least, (e) they 
can be run as simulations whose performance can be compared directly to the systems 
being modeled. 

We have looked at some evidence from brain research in support of the idea that 
functional validity coincides with structural validity, i.e. evidence of brain modularity 
may in some cases result in certain levels of isomorphism between cognitive models 
and the brain. As we have seen, however, not only can abstract modules be used for 
understanding behavior and cognition independently of whether the phenomena 
modeled are modular or not – that theory and implementation at different levels of 
abstraction can coincide but need not do so – but that the approach is also 
independent of physical and functional modularity (or monolithicity); functional and 
structural validity can be completely disjoint or can overlap to differing degrees in 



models based on abstract modules. As long as causal relationships are correctly 
identified and represented by the theory, abstract module hierarchies can be used to 
implement any theory as a runnable computer model, with the necessary and 
appropriate abstractness, fidelity and predictive power. For complex systems such as 
multimodal dialogue skills, which calls for modeling a wide range of realtime 
cognitive skills ranging from the control of saccades to social interaction, abstract 
module hierarchies represent a powerful and proven approach to scientific research.  
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