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Abstract. Human design of any novel system or artifact, e.g. a new type
of vehicle, house, or satellite, rests on both general real-world engineer-
ing knowledge and inventiveness. At the outset of the conceptual stage of
any such design process, requirements are often vague and conflicting—
even missing. Consequently, the conceptual engineering design process
has proven difficult to implement in machines. Thus, prior work on de-
sign automation has not surprisingly focused largely on the later steps
of design, which tend to be much more structured. We envision a future
of “synthetic engineers” that can help human experts with increasingly
complex and challenging systems design. Naturally, we may ask what
contemporary research on artificial general intelligence could contribute
to this vision. Conversely, we can investigate what goes on in the con-
ceptual engineering design process and ask whether this may provide
valuable insights into research on general machine intelligence. Taking
this perspective, and based on a review of two existing implemented
cognitive architectures, we present a set of what we consider necessary
cognitive faculties that must be coherently unified in a single agent archi-
tecture to automate the conceptual design process, and a set of minimum
requirements that any agent capable of conceptual design must meet.

Keywords: Artificial Intelligence · Engineering Design · Dynamic
Planning · Defeasible Non-Axiomatic Logic · Cumulative Learning

1 Introduction

Engineering design is a complex process that requires reconciling many design
requirements at varying levels of abstraction and detail, some of which may con-
flict, be poorly understood, or be in flux during the process [19]. We define a
design problem as the description of an as-yet unaddressed need that may be met
by the development of a new structure, process, or arrangement of components
and/or elements. Engineering design, in turn, is the process of finding optimal
solutions to the stated requirements given available resources. Successfully ad-
dressing an open design problem requires general problem-solving skills as well
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as physical action. To be successful, a solution to a design problem must rec-
oncile all stated requirements (constraints), which typically involve descriptions
spanning multiple levels of detail.

The process of solving an engineering problem requires iteration over ques-
tions and solutions, adapting to new conclusions, thinking creatively, and draw-
ing on experience. These are all skills that are difficult to capture in software
systems and, while computers have been used to assist human engineers for some
time [4, 14, 16], very few have aimed to reach higher levels of automation in a
way that allows the computer to actively participate in – or perhaps even direct
– the conceptual problem-solving phase of the process. Framing this discussion
are Altavilla and Blanco’s [2] levels of automation: at Level 1 the human designer
directs and executes everything, at Level 5 this is all performed autonomously
by a computer, and in between is a range wherein the computer provides varying
degrees of assistance to a human designer. Existing design automation systems
stand somewhere around Levels 2 to 3, in which human designers solve the
problems while computers mainly help with the execution. In order to reach
Levels 4 or 5, we propose applying existing research on general machine intelli-
gence (GMI) which has spent decades developing systems with exactly the skills
required to solve more advanced and conceptual problems. Additionally, bet-
ter automation of conceptual engineering is likely to have significant practical
importance, since enhancing humanities’ ability to solve engineering problems
would be of notable value in virtually every industry. Systems operating at Levels
4–5 in the automation hierarchy would be able to assist in problem-solving and,
covering a larger part of design process, empower human engineers by allowing
them to focus on the higher-level and more creative parts of the problem.

We believe that some initial efforts in this direction can be made with existing
GMI-aspiring cognitive architectures. Here we look at three key challenges in the
design process that such systems must address, autonomy, creativity, and causal-
ity, and propose a set of minimum requirements for these that any agent capable
of high-level conceptual design automation must meet. By seeking a better un-
derstanding of the design process and establishing basic system requirements,
the work aims to pave the way towards the first synthetic engineers.

2 Related Work

Though engineering design has been the subject of much research, it would ap-
pear that most theoretical conceptions of the design process are human-centric
and that no formal rigorous definition of the engineering method exists yet [17].
This is not to say that no attempts at formalizations exist, however. A good
example is the field of ‘axiomatic design’ pioneered by Suh in 1977 [14], which
organizes design around an ‘independence axiom’ that keeps designs modular
and an ‘information axiom’ that keeps them simple. These are applied through,
among other techniques, a design matrix that maps design requirements to de-
sign outcomes (referred to as ‘functional requirements’ and ‘design parameters,’
respectively) and analyzes any resulting dependencies of the outcome.
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A similar approach can be seen in TRIZ [16], which proposes several guiding
laws of engineering design. Formalizations that directly consider the reasoning
involved in the design process also exist; an example is the SAPPhIRE model
[4], which tracks the progression of design from abstract high-level processes
down to the details of implementation. Finally, Žavbi and Duhovnik [30] offer a
particularly interesting perspective by approaching a design as a series of linked
causal models based on physical laws. They demonstrate how, for example, a
microphone can be invented by chaining an equation for acoustic energy to one
for capacitance, then to one for an RC circuit, and then finally to an equation
for electric current. All of this work demonstrates that engineering design in-
volves processes that can be formalized, though not all of this work has yet been
integrated into a single software system.

Existing developments in practical design automation systems tend to focus
on lower levels of automation and broadly belong to one of two categories: nu-
merical and reasoning-based. Numerical systems directly manipulate geometry
to generate novel structures and solutions to problems; a key field here is gener-
ative design (GD) [10] which applies genetic algorithms, swarm optimization
[6] and related methods to find a solution to a set of physical design con-
straints. Reasoning-based approaches can greatly accelerate engineering design
given the potential to facilitate a guided search for a solution and generalize good
solutions onto a wider variety of problems. An example of existing reasoning-
based approaches to design is in knowledge-based engineering (KBE) systems
which use pre-planned causal relationships to capture human knowledge and ef-
ficiently develop designs for mass-customized products [26]. Finally, also worth
mentioning are large language models (LLMs) which initially appear to fall some-
where in between numerical and reasoning-based. It should be noted that, while
LLMs have demonstrated some engineering capabilities [9] and may be useful for
human designers in their ability to pose as potential users of a product [11], they
do not fundamentally represent causal relationships and so what reasoning they
do perform is only approximate at best [29]. Despite all of these developments
and regardless of architecture, it does not appear that any existing engineering
systems are capable of operating with the level of autonomy and cumulative
learning of a human engineer: numerical approaches do not have the ability to
learn from experience or consciously extract high-level patterns in their work,
knowledge-based systems can only handle so much novelty before a new model
must be constructed by a human engineer, and LLMs often struggle with con-
ceptualizing the problem, staying on task, and must be prompted continuously
and very carefully. Systems capable of a higher-level of design automation will
need to be able to confront these challenges and this may require an entirely
new cognitive architecture.

Many AI researchers consider contemporary AI methodologies to be inade-
quate for reaching general machine intelligence [1]. The Non-Axiomatic Reason-
ing System (NARS) [27] and the Autonomous Empirical Reasoning Architecture
(also called the Autocatalytic Endogenous Reflective Architecture or AERA3)

3 See http://www.openaera.org – accessed May 9th, 2025.
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[13] are two GMI-aspiring systems developed with a strong focus on reason-
ing and experiential learning; AERA with a particular emphasis on the kind of
causal reasoning [25] discussed by Žavbi and Duhovnik [30] and Campbell et
al. [5]. These systems have recently been applied in an engineering context [17];
there is good reason to investigate both further for their potential to solve known
limitations of current approaches to conceptual design automation.

3 Challenges in the Conceptual Design Process

We define three key challenge areas with respect to autonomous conceptual engi-
neering design: causality, creativity, and autonomy. First, the concept of modeled
causality provides a necessary framework for effectively and efficiently represent-
ing design constraints and the relationships between them; it is this structure
that gives rise to explainable design [23], a feature essential to any professional
engineering design solution. Creativity is posited as an essential mechanism by
which under-constrained problems can be solved and innovative solutions gen-
erated and explored [20]. Finally, the concept of autonomy captures how an en-
gineer must be free to make their own decisions as both problems and solutions
change and grow throughout the design process [22].

3.1 Causality in the Conceptual Design Process

When starting on a real-world engineering design, there is rarely the time, space,
or energy to explore every potentially-relevant small detail for every possible
high-level design option, and attempting to do so may threaten the completion
of the design process as a whole.4 For simple problems, an exhaustive exploration
may be feasible, but in order to save time and resources, we expect most problems
to require designers to be able to abstract away from low-level details and prior-
itize effectively. Imagine a worst-case scenario wherein all details are considered
relevant: in this case the high-level design could not proceed until all questions
about these minutiae have been answered—the time for completing the concep-
tual design is equal to that for completing the whole design. Needless to say,
this approach make some complex designs (e.g. bridges, aircraft, smartphones,
etc.) computationally intractable. Human designers constrain their search space
by, among other things, decomposing the problem’s requirements and applying
their knowledge of the problem domain to these requirements. The most obvious
way to do this is through general, and sometimes specific, cause-effect laws, that
preclude large swaths of potential options from practical consideration, thereby
making the task more feasible. A human designer can then explain when, where,
why, and how they abstracted a problem, and justify such decisions with verifi-
able arguments based on valid and verifiable cause-effect relations [25].
4 There is no option here for ignoring time in any practical automation of engineering

design, as any such system must be implemented on hardware running in the physical
world. Hence, all plans in the physical world are inherently time-constrained.
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This may not be as hard as it seems; design problems always come with a
set of requirements (with a goal to solve a specific problem in a particular way
within a limited time; c.f. [3, 17, 24]) which can often be (eventually) grounded in
knowledge of the physical world (assuming the problem is solvable). Additionally,
very few design requirements are fully independent, and relationships between
requirements often point in the direction of possible solutions. In this way, the
causal relationships between requirements, domain knowledge, and other po-
tential candidate solutions act not only to constrain the search space but can
actually guide the design.5 Consider a water bottle as an example: With the
requirements “must contain 1 liter” and “must be comfortable to hold” we can
see that, while 1 liter of water could take any shape, only certain shapes in cer-
tain sizes are comfortable to hold in the average human hand; one requirement
interacts with another so as to constrain and guide towards a solution.

During conceptual design, many potential solutions that seem viable may ac-
tually be in conflict. For instance, to satisfy the “must be comfortable to hold”
requirement, it might seem perfectly fine to put a handle on the water bottle,
based on available prior examples. However, guiding the design work towards an
acceptable solution requires a representations that can, in this case, produce in-
formation about incompatible relationships between handle size and small-bag
holding capacities. Without knowledge that allows answering questions about
why a solution may (or may not) satisfy requirements, separation between solu-
tions that are in conflict and those that are not may be impossible. Knowledge
enabling production/analysis of the details in the mapping between requirements
and solutions is needed,6 and this must involve causal relations [15].

Ultimately, to trust a design blueprint, we must be able to get answers about
how it works; the ability to argue using causal relationships between require-
ments and solutions is essential for establishing this trust. Reasoning over causal
relations is also needed for explanation generation; in a particularly intentional
design, every engineering design decision must come with an argument against
possible alternatives – “Why this option over that option?” – and an argued
relationship to the design requirements—“Why is this needed at all?”. Consider
the water bottle again; with a design based on causal relations one could ask
“Why is this water bottle a cylinder?” from which an explanation is produced
that this is “because it contains 1 liter of water and is comfortable to hold,” with
appropriate arguments (e.g. a list of alternatives that demonstrably fail to meet
requirements). Without reliable cause-effect models it is not clear at all how
such a response could be generated. It clearly could not be done with a solely
statistics-based approaches, as this could only offer suggestions about what is
likely to work, based on past observations, that they will almost certainly work
in this (possibly novel) circumstance, based on given background assumptions.

The intermediate conclusion here is this: an AI system capable of conceptual
design must be able to discover causal relationships in design requirements and

5 A particularly intentional design will be guided almost entirely by the relationships
between its design requirements; see the previously-discussed example from [30].

6 For a discussion on reasoned mappings versus statistical mappings, see [29].
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then reason about these to constrain the search space. Only then can it propose
a design that can then be explained, argued for, and eventually tested based on
its causally-grounded reasoning.

3.2 Informed Creativity in the Design Process

A fundamental challenge of an under-constrained problem is that, rather than
constraints pointing the way towards a unique solution, they open up to a mul-
titude of possible solutions. Narrowing these down to a final candidate solution
requires the designer to either discover more constraints or make an assumption
or decision about how the solution should look based on their own judgment.
One context in which creativity seems relevant in engineering design is in the
handling of such under-constrained problems. We see ‘creativity’ here as the in-
formed steering of making choices between alternatives, by selecting (from prior
experience) or generating explicit custom arguments, according to some chosen
principles, that can later be re-analyzed, reconsidered, and possibly reverted, in
light of new information.

To discover more constraints, a designer could work within the constrained
areas of the design and perform experiments to try to uncover them through
experience; this is the domain of research and development. The designer could
also attempt to further break down the existing constraints to elicit factors or
relationships at a finer level of detail. If more constraints cannot be discovered,
the designer can use their experience to substitute in solutions that have worked
for similar problems in the past, make their own assumptions as to what they
think the solution needs, or invent a wholly novel concept to fit the require-
ments in a new way. Slotting in similar solutions is relatively straightforward,
though this does require the ability to learn from problems and retain successful
strategies; these can narrow the search space by pointing the design in a cer-
tain direction that can be assumed to be promising based on prior experience.
Making such assumptions requires some understanding of the problem itself [21].
As in the discussion of causality, the designer may use their own interpretations
(read: causal models) of the problem domain and select a solution based on aes-
thetic principles or because it intuitively seems like the better option; if new
constraints are discovered, this direction can always be changed. Finally, there
may be a necessity to create a new concept from scratch; though this kind of
innovation is a much more advanced technique. For instance, in a world without
hinges, the concept of a “hinge” is a radical one—such ideas can only spring
forth through a process of analogy through ampliative reasoning [18, 24]; these
are key features of intelligence that are difficult to tease apart [22].

Regardless of how an under-constrained problem is resolved, it requires the
engineer to creatively reason their way through the situation. If they are unable
to further decompose the problem requirements, they must be able to make
a creative decision as to which direction the problem-solving process should
go. These decisions can be justified based on prior experience, assumptions,
or innovation but they must be made in order to select a design (or set of
designs) for further design, testing, and possible implementation [8]. All of this
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can be supported by the design system’s ability to apply causal reasoning and
argumentation to its design options, as this can allow it to explain and justify its
creative decisions and better apply its knowledge to under-constrained problems
that may require a dash of informed creativity.

3.3 Autonomy & Control of the Design Process

These final challenges are fundamentally about how a design system guides its
problem-solving process. Like any human engineer, a synthetic design system ex-
ploring a massive set of possible solutions must be free to make its own informed
decisions about how to analyze the problem constraints and in which direction
to take current solution candidates.

In terms of requirements analysis, it is rare for a problem to be fully and
comprehensively described at the outset of a design task; Smithers [19] posits
that every design problem begins with an Initial Requirement Description (IRD),
a description that is “incomplete, inconsistent, imprecise, or ambiguous or (more
typically) some combination of all of these” [19, p.7]. The first step in the solution
process is to gain a better understanding of what the requirements mean and
what motivates them. Sometimes this can be done by asking questions to elicit
the finer details of the requirements but it can also occur by suggesting possible
solutions and getting feedback on why they may not satisfy the IRD. In this
way, the problem specification and solution candidates tend to evolve together.

Consider, for instance, that a person decides they need a new computer.
An IRD consisting solely of “I need a new computer” is clearly incomplete and
the designer will need to flesh this out to gain a better understanding of the
problem. Often this involves prioritizing requirements (“it must be portable”,
“it must be within my budget”, “it should fit into my bag”, “I would prefer a
touchscreen”, “the color does not matter”, etc.). A key feature of this process is
the need to understand the reasons for these requirements: “Why does the user
need a new computer?”, “What do they hope to do with it?”, “Can that need be
better serviced by a smartphone?”. The exploratory nature of the design process
can also occasionally reveal entirely different solutions that may actually satisfy
the design specifications better than the obvious solution. However, none of this
is possible unless the designer has the autonomy to explore the solution space
under its own direction; it must be able to apply its causal understandings of the
requirements (as grounded in the physical world) to suggest possible solutions
to the IRD. Unpacking IRDs into constraints and meaningfully connecting them
to the domain that gives the design its context leads to useful solutions. The
decisions the designer makes to apply causal knowledge and reason creatively
around problems must be autonomous.

In doing so, it must not be restricted by simple fixed notions of a given
problem or even of the design process itself. Very few designs progress in a
fixed feed-forward nature; iteration and reflection are an important part of the
problem-solving process. This is where autonomy becomes critical in the design
process: When a problem is incompletely specified, a designer cannot simply
proceed linearly through the design process as if the solution were obvious from
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the outset. The design system must be able to control the direction of this
process such that it can follow paths that seem promising, revert back to the
drawing board when a dead end is discovered, and eventually select and propose
a solution candidate when/if one is found. Doing all of this requires giving the
system the necessary capacity for planning and autonomy so it can conduct its
own exploration and commit to design decisions under its own direction. Without
this, the human would still be left making all the key decisions.

4 Requirements for Conceptual Engineering Design

Based on these challenges, we can now summarize the key cognitive faculties
that an AI system must posses to be capable of conceptual engineering de-
sign. We contend these are necessary – but possibly not sufficient – to meet
the challenges of the conceptual design processes outlined above. The list makes
it rather clear that these cognitive functions are co-dependent, and could not
each be implemented as separate interacting systems; they must be seamlessly
integrated under one cognitive architecture. Any such cognitive architecture,
however, would have reached a strong starting point for addressing engineering
design capabilities.

For conceptual engineering design, an agent must be able to:

§1 ⟨R⟩ Consider the causal (and other) relationships between individual
requirements, as well as between the full set of requirements and
any proposed solution. This would enable it to compare design
features and requirements against real-world outcomes.

§2 ⟨C, R⟩ Make new categories and comparisons when existing
knowledge is insufficient, exploring unconventional and completely
new solutions in an informed manner.

§3 ⟨A⟩ Reason in an iterative fashion through the design, progressing
from high levels to low levels of detail, through loops of
re-consideration and re-design of prior levels and concepts. The
agent should also be able to reason about the design process itself
and identify the best ways to use its time for problem solving.

§4 ⟨C, R⟩ Deal with underconstrained problems at any level of detail
by decomposing requirements, suggesting solutions, and innovating.

§5 ⟨A, C, R⟩ Not be constrained to a simple top-down or bottom-up ap-
proach. The design process is causal, creative, and fluid, so any de-
signer must be able to autonomously progress through the design
process.

Brackets ⟨ ⟩ indicate which of the three categories each requirement calls on —
⟨R⟩: Experience-grounded knowledge of physical causal relations; ⟨C⟩: Creativ-
ity; ⟨A⟩: Autonomy and control.
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5 Cognitive Architectures & Engineering Design

As discussed in the Related Work section, most prior approaches to engineering
design automation [10, 26] lack a sufficient capacity for autonomous reasoning,
and thus tend to be limited to well-defined designs. Most of them also lack rea-
soning abilities [12]. Building a system with more advanced conceptual design
capabilities will require a different cognitive architecture that we have seen to
date. Two existing architectures that are promising for this purpose are NARS
[27] and AERA [13]. NARS is designed from the ground up to reason about pro-
cesses and facts, and AERA has been demonstrated to be capable of learning and
reasoning from experience about causal relationships. Both systems can handle
a problem and solution evolving simultaneously and are capable of discovering
constraints as they work iteratively through a problem. These qualities make
both systems of particular interest in engineering applications. As it stands,
these systems meet the requirements given in Section 4—they should possess all
the required cognitive faculties to handle design problems.

Fig. 1. The first steps of AERA’s plan to unscrew a screw
by designing a screwdriver made out of a heated, reshaped,
and cooled toothbrush (reproduced from [17]; see also [28]).

While efforts have
been somewhat lim-
ited towards imple-
menting synthetic en-
gineers in these ar-
chitectures, some no-
table progress has been
made in this direc-
tion. Here we will
mention the design
problem of unscrew-
ing a screw with-
out a screwdriver, as
demonstrated in the
OpenNARS for Ap-
plications project [7],

using only a toothbrush and a lighter. The problem can be solved by way of
fashioning a screwdriver out of the toothbrush using the lighter, by heating it
up, thrusting it into the screw to make it deform to its imprint, waiting for the
plastic to harden, and then using it to unscrew the screw. This can be considered
a very basic design problem as it involves accepting a requirement (“this screw
must be unscrewed”), knowing that screwdrivers can be fabricated from the ma-
terials at hand, and then using one’s understanding of the domain to develop
a workable solution. In NARS’ case, it uses ampliative reasoning to solve this
problem in a few steps of non-axiomatic reasoning [17, 24].

In AERA’s case this was addressed using AERA’s mechanism of causal-
relational models and composite states [17]. Given only basic causal models
(‘lighters can produce fire,’ ‘fire cause things to heat up,’ ‘heated plastic becomes
pliant,’ ‘pliant substances can be deformed,’ and ‘waiting can allow things to cool
and harden’), AERA discovered the same plan as NARS and was able to, in a



10 C. A. Schaff & K. R. Thórisson

very simple simulated environment, successfully unscrew the screw. In Fig. 1, we
can observe the first step of AERA’s planning starting on the right-hand side of
the diagram with the goal that screw ‘s’ must have state ‘unscrewed.’ It should
be noted that the knowledge AERA uses to perform the task does not come
from human hand-coding; rather, the names have been added for readability.
AERA then notes that this is possible if it instantiates its ‘UNSCREW’ model,
and that in order to do so it must first have some toothbrush ‘t’ with the ‘cooled’
state. Briefly summarizing, a similar reasoning process then continues to work
backwards linking a ‘WAIT’ model that will allow the toothbrush to cool, a
‘FORM’ model that will shape it into a screwdriver shape, and a ‘HEAT’ model
that will heat it up in the first place.7 With a complete plan formulated, AERA
can then execute its solution to fulfill the design requirement of unscrewing the
screw.

This simplified example demonstrates the principles and potential applica-
tions of autonomous causal reasoning in conceptual design; when given sufficient
information and the ability to investigate and make its own plans, a GMI-aspiring
agent was able to design a solution to a problem.

6 Conclusions & Future Work

We posit that research on general machine intelligence, unlike other AI research,
is necessary to address the challenge of synthetic engineering agents capable
of conceptual design. The five requirements we have identified support such a
stance, as few if any other fields of research are better suited to address them
in the necessary unified manner. Understanding the causal nature of reality
and how that influences the problem-solving process, creatively contributing
to impasses in an explainable manner (where multiple options are available),
and autonomously decomposing problem requirements in order to make design
decisions are all central faculties for any engineer, human or otherwise

While existing architectures such as AERA and NARS have only recently
been tested in this application, they should already meet the requirements to
perform these tasks. The next step in this work will be a more advanced test
implementation of a design agent. This work will most likely apply AERA, which
already presents important functionalities including autonomous causal model-
ing and unified abductive and deductive non-axiomatic reasoning; we believe
this will be of help in realizing a first implementation. However, as stated in the
introduction, it is quite possible that the listed requirements, while necessary,
are not sufficient to realize artificial agents capable of autonomous conceptual
engineering design. For now, however, they provide a viable next step in a search
for an answer.

Disclosure of Interests. The authors have no competing interests to declare.

7 Refer to Section 6.2 of [17] for the full analysis.
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