
Abstract The broad range of capabilities exhibited by humans and animals is
achieved through a large set of heterogeneous, tightly integrated cognitive mech-
anisms. To move artificial systems closer to such general-purpose intelligence we
cannot avoid replicating some subset—quite possibly a substantial portion—of this
large set. Progress in this direction requires that systems integration be taken more
seriously as a fundamental research problem. In this paper I make the argument
that intelligence must be studied holistically. I present key issues that must be
addressed in the area of integration and propose solutions for speeding up rate of
progress towards more powerful, integrated A.I. systems, including (a) tools for
building large, complex architectures, (b) a design methodology for building
realtime A.I. systems and (c) methods for facilitating code sharing at the
community level.
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Introduction

After 50 years of artificial intelligence (A.I.) research, a number of problems still
hold back progress in the field, both theoretical and pragmatic. One of these chal-
lenges has to do with integration and large-scale systems construction. A single
coordinated mind, such as that needed for a robot capable of performing complex
real-world tasks or holding efficient and appropriate realtime conversations with
humans, requires serious integration of a broad range of technologies from diverse
fields including natural communication, knowledge representation, vision, planning,
etc. In a system made of many different pieces, where the whole is larger than the
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sum of its parts—as with intelligent systems—the question about the inner workings
of the pieces themselves holds equal importance to the question about the nature of
the various dynamic glues that hold the pieces together. Brooks (1989) highlighted
this in his paper ‘‘How To Build Complete Creatures Rather Than Isolated Cog-
nitive Simulators’’. The theme also provides a backdrop in Minsky’s book The
Society of Mind (Minsky 1986). More recently, Minsky (2003) and Minsky, Singh, &
Sloman (2004) point out the continued lack of focus on integration as a topic in and
of itself. Brachman’s AAAI presidential address (Brachman, 2005) pointed out that
one of AAAI’s most important roles is to help unify all the different disciplines
needed to understand and create minds. To do so, Brachman emphasized, we need
to take the question of architecture seriously.

An A.I. Magazine report about the annual RoboCup robot soccer competition
stated that integration is ‘‘one of the biggest challenges remaining’’ in the field of
robotics (Pagello et al. 2004). Thrun (1998) has similarly said that ‘‘[w]hile recent
research has led to a large corpus of isolated component technologies, we still lack
effective methods for their integration.’’ The theme recurs in several papers in an
issue of A.I. Magazine dedicated to systems integration (cf. Swartout et al., 2006).
A few researchers have turned their full attention towards integration and archi-
tectural issues (cf. Albus, 1996; Bischoff, 2000; Gratch et al., 2002; MacMahon,
2005; Mavridis & Roy, 2005; Roy, 2005; Sloman, 1997; Thórisson, 1999), but the
challenge is not widely recognized or accepted by the majority of the A.I.
community.

The question is, as Thrun (1998) put it, ‘‘How can we build software architectures
that facilitate the assembly of large-scale [A.I.] software?’’ A few recent attempts to
build broad, general-purpose A.I. systems, such as cognitive robots, shows that the
most versatile solutions have been ones where numerous researchers collaborated
closely to integrate sub-systems each built by separate teams, forcing them into a
unified system (cf. Fink, Jungclaus, Ritter, & Saegerer, 1995; Fink, Jungclaus,
Kummer, Ritter, & Saegerer, 1996; Gupta & Hennacy, 2005; Johnson et al., 2004;
Martinho, Paiva, & Gomes, 2000; Maxwell et al., 2001; McGuire et al., 2002; Pagello
et al., 2004; Simmons et al., 2003). At hand is more than simply the task of ‘‘gluing
together’’ many of the isolated solutions developed to date. One cannot glue things
together if the right kinds of glue have yet to be invented.1

The issue of architecture is relevant to more than robot minds, where the obvious
vision, hearing, planning, motor control, balance, etc. need to play well together; it is
also relevant for disembodied systems that need to reason using different kinds of
methods—spatial, temporal, heuristic, inferencing. It is no less relevant to systems
that integrate information from very different kinds of real-world sources, be it
seismic, population density, and road systems for purposes of planning evacuation
during earthquakes, or time of year, weather forecast and traffic jams for doing
realtime traffic control in urban areas.

In this paper I argue that several things can and must be done to see faster
progress in the field of A.I. A system that comes into being from a myriad of

1 This analogy from carpentry, although having a certain intuitive appeal, has the obvious drawback
of implying that the integration in question can be done as soon as we find the ‘‘right kind of glue’’.
This is clearly not so, as in the case of mental faculties, to continue with the analogy, the situation is
more like gluing together n numbers of different kinds of materials, where n may lie somewhere
between 100 and 100 million, depending on which level of abstraction we are working at.

K. R. Thórisson
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complex interactions between complex components cannot be sufficiently under-
stood by only studying the components. To realize A.I. systems as impressive as
those seen in nature we must focus significantly more energy into system integration
and architecture, as well as improving research collaboration. The work speaks to all
of A.I. and cognitive science, as especially those who consider the capabilities of
present A.I. systems to be too narrow, and want to work towards increasing the
breadth, robustness and functionality of unified A.I. systems. It also speaks to
researchers interested in natural intelligence as either a source of inspiration for A.I.
or as the ultimate challenge for the field.

The remainder of this paper is organized as follows: First we will highlight
important issues and problems related to integration, from a theoretical as well as
practical perspective, and draw general inferences from this discussion. We then
present efforts that attempt to directly address the problems inferred.

Theory & Practice

On the practical side, complex A.I. systems are being built (and rebuilt) with very
little knowledge transfer between systems. Barriers to integration are created for
example through the use of different programming languages, different software
operating assumptions, and lack of computing power. These facts prevent integra-
tion of isolated modeling efforts and thus directly block the creation of larger, more
capable A.I. systems.

Interestingly, this lack of integrating implemented systems, each of which can be
said to embody some microtheory of cognition, runs directly counter to the fun-
damental idea of knowledge building in science. The problem is found in every
A.I. lab across the globe where students implement runnable systems as part of
their theses, sufficiently manageable to support their work but lacking in docu-
mentation and other features for successful hand-off to the next batch of
researchers. An undocumented and uncommented software system is fairly useless,
as anyone will know who has tried to use open-source software with deficient
documentation. If fellow students and researchers in the lab want to build their
work directly on what came before, after the original author leaves, they are
forced to base it on the thesis write-up or possibly—if they are lucky—slightly
more polished, published papers. Even when some documentation exists, a lack of
well-exposed APIs prevents it from being used in larger contexts. By most
measures the software is unusable.

So, instead of trying to build directly on systems already implemented,
researchers do one of two things: They either re-implement (some of the) func-
tionality of the former student’s software from scratch or they choose to do their
research in isolation from the functionality and context that that software would
have provided. In the former case the re-implemented system (a) will not be as good
as the original because it’s not the present researcher’s focus, (b) will be missing
some important features that were not conveyed in the write-up (either because of
transfer errors or because the original author thought them unimportant), (c) will
have taken way too much of the second researcher’s valuable research time, or (d)
all of the above. The result is a state where researchers either constantly reinvent the
wheel or produce their work in increased isolation. I maintain that neither of these
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states is desirable—both are damaging to scientific progress—but in fact, as I will
argue further below, they are especially damaging for A.I. research.

On average, constant reimplementation may slow down research progress by a
factor of 10, quite possibly more.2 The positive effects of code sharing can be seen in
the annual RoboCup competition (Pagello et al., 2004), where planning algorithms
of the winning team every year have been made available to next-year’s competitors.
Year-to-year progress in the performance of the competing robots has been quite
astounding, according to those intimate with robot and planning development. If we
did this for the whole field, and even added the (not so expensive) requirement that
the code be well documented and commented, the actual code developed by one
party could be used directly and instantly—in whole or in part—by other researchers
anywhere in the world. The results might be nothing short of spectacular. This
hypothetical picture makes it fairly obvious that our field sits squarely in the slow
lane: such sharing is as rare as to be practically nonexistent.3

The claim that research in isolation is highly undesirable in A.I. and cognitive
science calls for a bit more discussion. It has to do with the subject under study. We
can use the concepts of components and couplings to clarify. Components are the
functional elements of a particular mechanism; couplings describe the nature of their
interactions. These interactions can vary along at least two dimensions, rigidity and
complexity. A tight coupling is a rigid coupling: A change in one component is
closely reflected in the other component. We say that a coupling increases in rigidity
as the coupling between two components approaches 1:1,4 that is, any change of a
variable x in one component is directly reflected in a (constant, proportional) change
of variable y in the second component. Looseness in coupling can be reflected in
temporal delays (the larger the delay, the looser), the small size of the effect (large
changes in one component result in small changes in another), coarseness (high-
resolution changes in one parameter result in quantized, low-resolution changes its
coupled parameter) and random fluctuations. Couplings can also have a complexity
factor, from rich to simple: In a rich coupling a lot of information is shared between
components; simple couplings contain little information, e.g. a Boolean or a con-
tinuous one-dimensional range.

In systems with components that are tightly and richly coupled it is impossible to
predict or understand the state of one part of the system without knowing at least
something about the state or nature of the other parts. In systems that are coupled at
multiple levels of abstraction this is even more true. The difficulty we are up against
in A.I. is this: A mind is precisely such a system—a system with complex components
coupled at various levels of abstraction. Couplings between the components in any
intelligent system with broad skills will most likely vary greatly along the complexity
and rigidity dimensions, some more rigid than others, some more complex than
others. The couplings between the numerous psychological/cognitive components of
an operating human mind are a mixture of loose, tight, simple and rich.

2 In some cases there may be gains in quality as the same software gets re-implemented, but by and
large only when the original author is involved with the rewrite. There are various ways to calculate
these numbers.
3 Exceptions exist, of course. The open-sourcing of Cyc is a shining example (http://www.open-
cyc.org).
4 For the purposes of this modeling approach, a pair of components that have a permanent coupling
of 1:1 can be considered a single component.
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Systems with components that interact in such complex ways are not only difficult
to model—they are in most cases impossible to model without their operating context.
What does this mean? The idea of trying to model a small component of a working
mind is doomed to come up with a model that not only is incomplete but one that is
in fact incorrect. The conclusion can only be that to achieve truly intelligent artificial
systems we must build integrated, holistic models.

As if the above was not enough of a challenge, the only organ to generate human-
like intelligence at present—the human brain—is quite difficult to get at for
experimentation and close scrutiny. As a result, both its components and their
couplings are very difficult to study. Although it may turn out that we don’t need to
understand the human mind to create truly artificially intelligent machines, it seems
likely that at least some important parts of those machines will replicate certain
tricks of the human mind fairly directly.5

The part of the brain that really sets humans apart from other animals is the
cortex (Rakic, Ang, & Brenig, 2004). The human cortex regulates most aspects of
higher-level cognition, including perception (cf. Hackett & Kaas, 2004; Horton &
Sincich, 2004) and motor control. It is a highly modular structure, with cognitive
functions being distributed over numerous distinct cortical areas. The brain—and
thus by extension the human mind—achieves its power from these multiple inter-
acting components (cf. Bryson & Stein, 2001), some of which may have obvious
functions and others with less obvious ones, but all having identifiable roles to play in
the ‘‘theater of the mind’’. This means that integration in A.I. must by necessity
include integration of results from related disciplines, making even louder the cry for
proper integration methodologies.

Divide & Conquer versus Model & Integrate

Laying the nature of mind aside for a bit, on the theoretical side the issue also
revolves around the deeper question of whether the divide-and-conquer scientific
methodology, that has worked extremely well for some of the challenges presented
to us by nature, may not work as well—or perhaps at all—for artificial intelligence.

Modern science advanced via a methodology of isolation – by dividing the world
into ‘‘fields’’ and ‘‘topics’’ and proceeding to study each of them separately, devising
methodologies and vocabularies around them. The method grew out of necessity: It
was simply the most sensible way to proceed. The approach has in many ways
worked very well. It has given us physics, and by extension chemistry, and a handful
of fairly successful scientific theories. Logical thought and comparative experiments
have worked hand in hand to drill down on issues that were there for the taking, so
to speak.6

5 My intention is not to change the minds of those already convinced that A.I. can proceed without
any recourse or reference to naturally intelligent systems. There is, however, good reason to look to
natural intelligence for inspiration and examples. Solutions in A.I. come in many forms, as many
examples show, and one would be foolish to ignore progress made in related research fields.
6 One could argue that the fields and topics that we first succeeded in understanding were in fact (a)
well-suited to our methodological approach and (b) among the simplest of natural phenomena; after
all, it is unlikely that we would succeed in understanding highly complex natural phenomena before
we understood the simpler ones. It can be argued that humans have only understood a small per-
centage or perhaps even just a fraction of all the phenomena nature encompasses. Thus, while
physics does perhaps not address the simplest natural phenomena that humans have ever attempted
to understand, it is likely that they are among the simpler ones.
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There is, however, a serious downside to the methodology, especially when
applied to complex phenomena. The built-in, natural tendency of this approach is to
isolate fields from each other, thus disconnecting the natural phenomena being
studied, resulting in incompatible descriptions of the world. The tendency is found
both between fields and topics and between related topics within the same field.
When a field develops what it considers a good model of a particular phenomenon, it
will in all likelihood be incompatible with theories of related phenomena. When
applied to the study of systems with components that are tightly and richly coupled,
this can prove fatal.

The divide-and-conquer method works well on problems that are solved when all
sub-problems are understood. Economic systems, societies, ecologies—and
A.I.—are not such problems. We must be aware of this feature of the scientific
method within our field lest we risk making little of the progress we aspire to. Again
we come back to the main theme of this essay: We must resist the temptation to
continue splitting intelligence apart and instead try, as best we can, to study it in toto.

Inferences

What can be inferred from the above? One inference is that, for a while at least,
building A.I. systems is more like building skyscrapers than like growing a garden:
There are many engineering tricks available and things progress as long as people
are hard at work constructing ‘‘by hand’’; there are no seeds that sprout anything
as elaborate as even a single leaf of grass in the garden of A.I. We know of no
‘‘golden algorithm’’ that can make intelligent systems develop on their own—and
thus we have little hope of discovering self-constructing principles for large por-
tions of the human mind at present. Even if we did, the necessary computing
power for analyzing, studying and developing will most likely be over budget for
all for quite some time. As long as we are miles away from understanding the
myriad of abstraction levels between DNA and e.g. the urge to write poetry, the
science of mind is mostly going to advance through diligent model building using
hand-crafted components.

That said, important steps can nonetheless be taken towards solving these limi-
tations and making significant progress. First, if we could leverage the work of others
while working on our own sub-problems of cognitive functioning we could (a) save
time by not having to develop peripheral components, and (b) develop our own
systems in their proper operating context. For this to be possible we need good
solutions for hooking together software components from various developers. Net-
work communication technologies provide standards that can be leveraged for low-
level hookup; semantic integration is a more difficult problem.

We also need to get better at systematically enabling researchers to test each
other’s solutions, both in isolation and in context. Here the Internet surely is likely to
play a significant part as a means of distribution, with efforts like SourceForge7

leading the way.
Second, we need tools that are specifically built to enable development of large,

integrated systems. While this requirement is perhaps more difficult to meet than
those above, it must still be addressed. One of the main challenges of A.I. integration

7 http://www.sourceforge.org
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is complexity management. The complexity is quite different from that encountered
in, e.g., computer graphics, where a small set of basic principles applied to a
somewhat larger number of object types results in well-understood and predictable
behavior, enabling the power of graphics systems to grow at roughly the same rate as
the hardware. Not so in artificial intelligence, where the complexity stems from the
need to coordinate a large number of functions, produced by heterogeneous com-
ponents, at multiple levels of detail, to serve a compound set of high- and low-level
goals. If we had good tools for creating, testing, and managing large systems it would
be much easier for us to interconnect complex subsystems.

It may still be another 20 years until we can buy a desktop machine with com-
puting power rivaling the human brain (Moravec, 1998). In the mean time
researchers can approach that power by building clusters out of relatively cheap
hardware. This calls for tools that support distributed runtime environments and
development, and handle networks well. As developers of computer networks know
well, keeping interactions between coupled nodes as simple as possible will guar-
antee a more reliable, predictive network (Tanenbaum & van Steen, 2002). When
two simple elements interact, their interactions may be reasonably simple to derive,
even when they contain circularity. Increasing the number of elements to say 100,
with n-to-n interconnections, the whole system can become exceedingly difficult to
analyze and describe, especially if the interconnections contain a mixture of con-
nection types. The bugs encountered will include not only the standard programming
bugs but also architectural bugs of many kinds; our new construction tools must
support analysis of the performance of such systems and help us track down archi-
tectural problems.

The main unit producing focused research in universities is the individual—the
most common form of A.I. research is that of a Master’s and Ph.D. student, which
typically is limited to application-size projects (1,000–50,000 lines of original code).
This is unlikely to change because the whole educational system is built around
individuals and single-author theses. Therefore, our new tools need to empower the
individual researcher as well as provide better support for teamwork in creating
integrated systems. The tools need to come bundled with methodologies that help us
use them and to better develop our work in the context of the work of others. Again,
one needs look no further than the Internet to see the effect that good tools and
design methodologies have had on the proliferation of Web pages, intranets, Web-
based database access and Web services. Although large, integrated systems do seem
to becoming somewhat more common in A.I. labs around the world, especially
through the perceived need for integrated robot minds, allowing every researcher to
work with larger systems as a rule could give the whole field much better under-
standing of the role of the various processes within the system, and progress would
be increased by a nontrivial amount.

Third, we need to pick good building blocks. If we want to build in a modular
fashion we need to pick our modules and level(s) of abstraction. Some would offer
the neuron as the obvious building block—after all, we already have proof that
intelligent systems can be built with it. This, however, would be a mistake, for several
reasons, both practical and theoretical. There are approximately 100 billion neurons
in the human brain, each having 1 k to 10 k connections with other neurons (Pac-
kenberg & Gundersen, 1997). It took nature several billion years to evolve the genes
that automatically construct a real human mind—connecting these correctly will not
be done by hand. Could we come up with automatic mechanisms in less time than
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nature took? Possibly. Virtual, idealized versions of nature could help us explore the
principles need for the neural structures to emerge and automatically self-configure.
Computing power to support such work may well become available in the future.
Unfortunately, even if we were to significantly cut down the computing time nec-
essary to simulate the processes needed to evolve the genes to make a human mind,
through algorithmic optimization and clever use of available hardware, we’re still
looking at the equivalent of billions of years of evolutionary twists and turns that
need to be run in such a simulation. That is a lot of events to simulate—we would
have to wait at least several decades for the affordable computer before it would be
even sensible to start.

Let us for argument’s sake imagine that we reduce the time it takes to evolve
genes for making human minds to just a hundred thousand years (instead of a few
billion). The computing power needed to simulate this is still several orders of
magnitude larger than that estimated for a single human mind. It is easy to see why:
In every case we would not only need to simulate the evolution and transmission of
the genes, we would also have to simulate all of the resulting brains and their fitness
functions, because it is their fitness that determines the goodness of the genes’
expression. According to the calculations of Moravec (1998), the computing power
of a single human mind should be reached in a supercomputer in 2015 and in a
personal computer around 2025. It would foolish to sit around and wait for more
computing power so we could construct human minds from first (genetic) principles,
instead of using the available computing power over the next 2–4 decades to build
models of thought more directly (‘‘by hand’’).

Luckily, the most successful researchers in integrated A.I. are not sitting around
waiting – they are building systems with a large set of heterogeneous functionalities
in a modular fashion. Experience has shown this to be the best way for small teams
to reliably build large systems. Of course, only a small subset of the community
works on integrated systems; even within subfields of A.I., for example, computer
vision (cf. List, Bins, Fisher, Tweed, & Thórisson, 2005) and dialog systems, solutions
for creating well-working dynamic systems capable of handling a wide variety of
situations are isolated, fragmented and incompatible. In most if not all areas of A.I.,
software with functionalities necessary for constructing robust, flexible systems are
very far from being ‘‘plug-and-play’’, even at the most obvious level of network
connectivity. The problem has several practical aspects already mentioned: Use of
different programming languages, operating systems, not to mention the added
difficulty of building any distributed system, no matter which kind (Tanenbaum &
van Steen, 2002). It is typically a challenge to take software built by someone else
and use it as a subsystem in a larger architecture. Additionally, the philosophy used
to build the various (sub)systems differs widely. For example, lack of realtime design
and any-time8 functionality can render an otherwise excellent piece of software
practically unusable in a robotic system.

Solutions

I will now describe four research threads intended to address the above points.
These are by no means the only way to address them, but all explicitly target the

8 Algorithms that improve their solution linearly (or semi-linearly) over time.
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123



particular issues discussed and are offered as a possible way to make a dent in them.
The threads are data routing and APIs, tools for creating large(r) systems, design
methodologies, and code sharing at the community level.

Data routing specification for integration

One of the major factors defining efforts to address communication among modular
systems is the selection of a communication model, which traditionally has either
been of the object-oriented type or of the message-based type. Examples showing
the benefits of the message-based architecture, especially those making use of
blackboard technology (cf. Adler, 1992), are showing up in the literature (cf. Hsiao,
Gorniak & Roy, 2005; Thórisson, Benko, Arnold, Abramov, Masskey, & Vaseek-
aran, 2004; Maxwell et al., 2001). These solutions are not being proposed here as
cognitive models but rather as technologies that can support the construction of
large A.I. systems and make integration easier.

OpenAIR9 is an information exchange and routing specification that provides a
language-independent messaging format and network-independent routing protocol.
The specification10 is based on a publish-subscribe blackboard architecture that is
simple enough to be implemented in any (object-oriented) programming language,
yet it is powerful enough to scale to support complex A.I. systems.

OpenAIR is a blueprint for the ‘‘post office and mail delivery system’’ of dis-
tributed, multi-module systems. In a nutshell, it is a simple, practical solution for
allowing researchers to share code more effectively. Historically related to efforts
such as KQML11 (Knowledge Query and Markup Language; Finin, Labrou, &
Mayfield, 1995) and Open Agent Architecture (Martin, Cheyer, & Moran, 1999),
OpenAIR makes fewer requirements about the operating environment than these
prior efforts, but—more importantly—adds clear semantics for handling temporal
issues in the transmission and processing of information. Its implementation is based
around standard network routing (TCP/IP) and XML and consists of a simple but
sufficient message semantics and network protocols within which other markup
languages and semantics can be transported between processes and over networks.
For example, a gesture recognition system might represent analyzed time segments
with its own gesture-specific syntax; this content would then be exchanged with other
modules in the system through an OpenAIR message envelope.

OpenAIR has been in development for several years12 and has reached sufficient
maturity to be used in research projects at several universities in both Europe and
the U.S. Its use promotes collaboration, communication and cooperation between
software, systems, people, and institutions by moving interaction between system
components away from platform dependency and specific programming languages.
An open-source implementation of OpenAIR is available in Java.13

9 http://www.mindmakers.org/openair/
10 The full technical specification can be found at http://www.mindmakers.org/openair/airSpec-
Page.jsp
11 http://www.cs.umbc.edu/kqml/
12 The initial OpenAIR specification was done by Communicative Machines and is now managed by
the Mindmakers consortium.
13 http://www.mindmakers.org/openair/download/downloadPage.jsp
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Tools for building complex systems

Psyclone is a software platform that incorporates the OpenAIR specification and
provides additional functionality related to setting up, monitoring and maintaining
heterogeneous systems running on multiple computers. The platform supports both
streaming data and discrete message passing, an important feature for systems that
take e.g. audio and video data as input and something that other systems tend to
address only indirectly, if at all. It also implements a runtime querying interface and
realtime monitoring and management tools.14 Through modularity principles
inherited from the Constructionist Design Methodology (Thórisson et al., 2004, see
below) it simplifies the design of complex systems and their connection to input and
output systems like vision, body tracking, graphics and the like.

Psyclone handles the next level of architectural complexity above the object and
the application; it sits at the same level as component-based frameworks such as
Enterprise JavaBeans15 (Sun Microsystems, 2002), yet is fairly different in most re-
spects, especially in that it is cross-language and has a built-in load-balancing facility.
Built around the concepts of modules and ‘‘whiteboards’’ (Thórisson, List, Pennock,
& DiPirro, 2005), a version of blackboards, Psyclone takes advantage of the benefits
of a message-based, distributed publish-subscribe system. For example, discrete
messages embody an explicit representation of each module’s contextual behavior,
and can thus carry the modules’ entire state at any point in time. The whiteboards also
provide a centralized recording of all system events and control flow.

Psyclone has been used in several systems many of which have involved collab-
orations between researchers at the same institute as well as between institutes and
countries. The first system that used it enabled interaction between a human and a
virtual agent in an augmented reality room: Wearing see-through glasses a user sees
the real world, but superimposed on it is a stereoscopic image of the autonomous
humanoid whose behavior is generated by the system in real-time (Thórisson et al.,
2004). The total development time for the system, built by 5 master’s students, was
estimated at only 2 mind-months, over a period of 9 weeks—well under everyone’s
expectations. This result is comparable, relatively speaking, to that of others using
blackboard-like architectures, e.g. Maxwell et al. (2001), who constructed a highly
sophisticated robotic system with 10 full-time students over a period of 8 weeks.

More recently Psyclone was used in the construction of a large-scale market
economy simulation (Saemundsson et al., 2006) with over 40 software module in-
stances of 6 distinct types (company, bank, university, employment office, consumer
market and employee), each having a considerable complexity and being run as
separate executables on 6 networked computers. The system was constructed by 10
master’s students over a period of 4 weeks.

Psyclone is now being used by researchers and companies in various projects, all
of which have in common a high degree of architectural complexity. Academic
projects include robotics (Thórisson, List, Pennock, DiPirro, & Magnusson, 2005),
facial animation (Tanguy, Bryson, & Willis, 2005), computer vision (List et al.,
2005), market simulation (Saemundsson et al., 2006) and intelligent multimedia
(Campbell, Lunney, McCaughey, & Mc Kevitt, 2006).16

14 CMLabs (2006). The Psyclone Manual.
15 http://java.sun.com/products/ejb/
16 Psyclone can be downloaded for free from http://www.mindmakers.org/projects/Psyclone.
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Constructionist design methodology

‘‘Design methodology’’ here refers to engineering practices intended to improve the
speed, reliability and quality of implemented software. Examples include object-
oriented programming and pair programming.17 Design methodologies are more
general, and less specific, than most design approaches for systems touted in A.I.
such as inference engines, fuzzy logic, artificial neural nets and similar. In fact, few
design methodologies have been developed in A.I. One could classify Brooks’ (1986)
subsumption architecture as a kind of design methodology, although it has often
been presented as a theory of intelligence, as are other older efforts such as for
example Soar (Newell, 1990) and frames (Minsky, 1974). More recent efforts (Arbib,
1992; Albus, 1996; Bryson 2000; Bryson, 2003; Samuel & Bryson, 2005) take a similar
direction, proposing mixtures of design methodologies and architectural features.

The recent literature shows an overall approach to building complete cognitive
agents that we could call ‘‘constructionist’’, as any available and relevant technology
is brought to bear on making subsystems work together and used to construct an
integrated architecture. Good examples include the robots Grace (Simmons et al.,
2003) and Rhino (Buhmann et al., 1995). The work of Thórisson et al. (2004) for-
malizes this approach, using principles from software engineering. Termed Con-
structionist Design Methodology (CDM), the methodology presents steps needed
for going from a high-level system concept to creating an interactive (i.e. realtime)
system. The approach focuses particularly on principles that help keep a system
simple and manageable, thus providing better support for the creation of large,
hybrid architectures.18

In recognition of the fact that researchers differ widely on what kinds of com-
ponents and structures they want their systems to have, CDM explicitly abstracts
away from the particulars of the chosen structural components, be they behavior-
based, expert-systems, production systems or some hybrid. The result is a set of
highly generic yet A.I.-specific design principles that help with the task of con-
structing large, realtime architectures out of heterogeneous components with het-
erogeneous communications. While many prior software development
methodologies could be applied in the development of A.I. systems, they do not deal
with the special issues arising in this effort that is different from traditional software
development, such as the need to mix discrete and continuous data types or the
frequent need to re-architect highly complex systems. CDM is specifically created for
broad A.I. systems, directly supporting modular integration of heterogeneous
components. It is a practically-driven approach that has been shown to speed up
implementation of relatively complex, multi-functional systems.

Collaboration

There is a serious lack of incremental knowledge accumulation in A.I. Numerous
barriers are faced by any researcher wanting to reuse systems developed by others in
the creation of large integrated A.I. systems, as already discussed. Even when many

17 http://www.pairprogramming.com/
18 CDM is in active use and continues to be improved. The latest version can be found at http://
www.mindmakers.org/projects/CDM
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of the technological barriers are removed, researchers are likely to need to interact
with the original authors of software they are intending to use.

Mindmakers.org is a portal, driven by a grassroots organization and community,
providing an open forum for code exchange, documentation, discussion and storage
of A.I. projects. Mindmakers is in essence a project-exchange, but thinking about it
at the code level makes its primary aim more obvious: To facilitate increased sharing
(and hence testing) of A.I. code. The forum has a Wiki, upload capability, threaded
discussions and a code repository. We also plan on supporting simple integration
with SourceForge.

One of the forum’s main contributions to A.I. collaboration is the OpenAIR
specification. OpenAIR addresses fairly low-level issues; the next step must involve
an attack on the issue of the semantics of module APIs—a far more difficult chal-
lenge and something we hope the Mindmakers forum will help with.

By encouraging re-use of prior work, the proper exposure of APIs, better docu-
mentation and discussion about integration, we hope to fuel efforts to build
increasingly powerful systems, as core system elements do not need to be built from
scratch. The Mindmakers portal is open to all A.I. researchers.

Conclusion

I have discussed issues that I consider of utmost importance in the field of
A.I.—issues that have historically fallen by the wayside. These issues need to be
addressed head-on if we are to make the progress we are theoretically capable of
over the next few decades. The topics include the need for increased systems inte-
gration, increased collaboration, use of methodologies and better tools for creating,
managing and analyzing complex systems. Many reasons exist for the lack of inte-
grated systems and a corresponding lack of understanding of how a situated oper-
ational human mind works. One is the tendency of our academic system to move
researchers into niches (by research field, department, and research topic), thus
making it harder to do integrative and cross-disciplinary work in general. As a result,
many tend to think integration is either trivial, not important or they overlook the
issue altogether. My argument is that this is fatal for A.I.

I have presented some concrete solutions to these difficulties, including a com-
mon, open API that can help researchers transcend operating systems and pro-
gramming language barriers and become better equipped to share not only their
papers but also their executable software. I have also presented a design method-
ology that builds on modularity supporting construction of large architectures and a
website aimed at making it easier to find software, people and projects that can be
used in the construction of larger systems. I hope that these may be directly useful to
some and an inspiration to others.

Predicting a full 50 years into the future is futile. Nevertheless, I am certain that
the coming half-century of A.I. research will be very different from the preceding
one. If the field manages to increase its scope and focus more on the bigger picture,
leveraging the enormous computing power becoming available at affordable prices,
and move towards new and more powerful tools for creating complex systems, I am
convinced that the coming decades, even those immediately ahead, will be the most
exciting the field has seen.
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perception and action in the tactical language training system. workshop on embodied con-
versational agents: balanced perception & action, July 20th, 18–25. AAMAS 2004: The third
international joint conference on autonomous agents & multi agent systems, New York, July
19–23.

List, T., Bins, J., Fisher, R. B., Tweed, D., & Thórisson, K. R. (2005). Two approaches to a plug-and-
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