

Abstract—Distributed architectures for implementing tasks on
humanoid robots is a design challenge, both in theory and
practice. Although important functionality resides within the
component modules of the system, the performance of the
middleware – the software for mediating information between
modules – is critical to overall system performance. We have
designed an architecture serving various functional roles and
information exchange within a distributed system, using three
different communication subsystems: the Cognitive Map
(CogMap), Distributed Operation via Discrete Events (DiODE),
and Multimodal Communication (MC). The CogMap is
implemented in Psyclone, a framework for constructing large
AI systems, and allows sharing and transformation of
information streams dynamically between modules. DiODE
provides a direct connection between two modules while MC
implements a multi-modal server that streams raw sensory
data to requesting external (off-board) perceptual modules.
These have been implemented and tested on the Honda Motor
Corporation's ASIMO humanoid robot. To identify trade-offs
and understand performance limitations in robots with
distributed system architectures, we performed a variety of
tests on these subsystems under different network conditions,
operating systems and computational loads. The results
indicate that delays due to our middleware is negligible
compared to computational costs associated with actual
processing within the modules, provided a network with high
enough bandwidth. The Cognitive Map appears to be scalable
to an increasing number of connected modules with negligible
degradation of package delays.

I. INTRODUCTION
N the pursuit of general-purpose robots, adaptive to a
variety of environments, many technologies and software

algorithms must be integrated to create a coherent robotic
system capable of using different skills in the completion of
a task. For example, sensor measurements are used as inputs
to perceptual modules that extract useful features to
reconstruct environmental information such as object pose
and identification. This environmental state must be
accessible to other modules in the system that in turn can
create new knowledge of the environment. Modules are also
needed for planning, decision making and sending final
motor commands to the robot’s body. In the course of robot
execution of the task, frequent feedback of the

Manuscript received September 13, 2007. This work was supported in

part by the Honda Research Institute USA.

environmental state is needed to robustly complete the task
and to handle uncertainty or sudden changes in the
environment.

We have found that a single architectural design does not
support all tasks equally well. Instead, architectural
components and choice of communication protocols should
be reconfigurable at runtime, according to the demands of
the task at hand. For example, for a robot pointing and
gazing at a moving object (Figure 1), constant sensory
feedback of the object position must be provided to the
pointing command to update the robot’s end effector
position. In contrast, if a static environment is assumed,
traditional sense-plan-act [1] pipelines can be employed,
provided the sensors are sufficiently accurate for a task like
pushing objects on a table (Figure 2).

Fig. 1: ASIMO pointing and gazing at a moving hand-

held object (circled).

The computational capabilities on board a robot are

usually not as powerful as the latest modern desktop
computers due to restrictions in energy consumption and
heat management. To facilitate easy reconfiguration of the
modules and communication between them, we employ a
distributed system design where modules can reside
externally from a robot's own control and actuator hardware.
The advantage of a distributed system is that the

Design and Evaluation of Communication Middleware in a
Distributed Humanoid Robot Architecture

Victor Ng-Thow-Hing,1 Thor List,2 Kristinn R. Thórisson,3 Jongwoo Lim,1 Joel Wormer1

1Honda Research Institute, 800 California St., Suite 300, Mountain View, CA, 94041, USA,

{vng,jlim,jwormer}@honda-ri.com
2Communicative Machines Inc., 455 W22nd St., Suite 3, New York, NY 10011, list@cmlabs.com

3CADIA, Reykjavik University, Kringlunni 1, 103 Reykjavik, Iceland. thorisson@ru.is

I

computational demands of the task can be shared across
disparate and specialized hardware and performance and
functionality can be extended without significant changes to
the original robot's design.

Fig. 2: ASIMO pushing a block on a table.

The computational capabilities on board a robot are
usually not as powerful as the latest modern desktop
computers due to restrictions in energy consumption and
heat management. To facilitate easy reconfiguration of the
modules and communication between them, we employ a
distributed system design where modules can reside
externally from a robot's own control and actuator hardware.
The advantage of a distributed system is that the
computational demands of the task can be shared across
disparate and specialized hardware and performance and
functionality can be extended without significant changes to
the original robot's design. In our system each module can
also be implemented in different software environments,
operating systems and programming languages, maximizing
the flexibility of solutions for researching and creating
system components. This has the added benefit that teams
are also free to work at different geographic locations with
specialized skill sets appropriate to each subset of modules.

We have designed a distributed system architecture for
Honda Motor Corporation's ASIMO humanoid robot [2].
The system allows experimental features to be added and
expanded while incrementally modeling new tasks on the
robot in its operating environment. To facilitate
communication between modules, standardized abstraction
interfaces were created for accessing motor commands and
sensor information between modules. This approach has
allowed us to design system components for managing tasks
and environmental state that are independent of particular
robot hardware configurations.

However, the components and their interface design are
only two of many parts that shape the overall system
performance of the robot. This paper will focus on the
evaluation of a third part – the middleware: the collection of
communication software and protocols for exchanging

information between software modules and hardware
components of the system. Delays in the channels of
communication between modules can create bottlenecks in
information flow which can cause adverse effects on
performance, both in the receiving module and overall
system performance. The achievable throughput in the
various communication subsystems play an important role in
determining where modules should reside (same or different
machines) and at what rate they should operate.

In this paper we will introduce several different
communication schemes that we have developed for various
functionalities and examine the throughput performance of
data samples transferred under several situations
encountered in the operation of our robot architecture.

II. APPROACH
For ease of integration, our approach takes into account

the traditional pipeline of building components in a research
environment. Typically, robot developers and researchers
build specialized components in isolation of the main
system. They perform tests to verify the performance and
functionality of these components. Often, assumptions about
interactivity with other modules are implicit, underestimated
or overlooked – the act of integration itself is given lower
priority or is often assigned to someone other than the
original component maker. It is also often assumed that once
the component is finalized and robust, the delivery of the
component can be handed off to an integration team to
incorporate into the system. In reality substantial iteration is
required after initial integration is achieved. Unforeseen
side-effects, e.g., changes in lighting conditions, motion
blurring due to a moving camera, or incorrect assumptions
about the quality of inputs to the module, can significantly
reduce the robustness of its performance once the module is
running within the rest of the system. All such architectural
design requires frequent changes to the original (isolated)
module software to improve operational performance.

To minimize the necessary code changes and make
modules ready for integration, we employ a framework
based on the Constructionist Design Methodology
(CDM)[3]. CDM was developed to create systems capable
of a large number of functionalities that must be carefully
coordinated to achieve coherent system behavior. CDM is
based on iterative design steps that lead to the creation of a
network of named interacting modules, communicating via
explicitly typed streams and discrete messages.

Our communication middleware consists of three specific
subsystems: the Cognitive Map (CogMap), Distributed
Operation via Discrete Events (DiODE) and Multimodal
Communication (MC), each created for particular
communication needs in our system. While the Cognitive
Map is used for sharing and custom selection of information
between many modules using a centralized structure,
DiODE is used for more dedicated direct communication
and MC is designed for networked sharing of sensor

information, especially from optical cameras (Figure 3).

A. Shared, Selective Communication
We have designed a blackboard-based cognitive map for

manipulating perceptual information gathered from cameras
and other sensors for the purposes of organizing information
that represents both the robot’s internal state and its external
environment. As knowledge must be shared in the
architecture to avoid redundant information and
computation, and it must be combined from different
sources to accomplishing tasks like localization and dynamic
world state modeling, a blackboard model is an ideal
framework for integration [6]. The development of
distributed, large architectures, however, raises issues of
dynamic access to shared data of distributed processes,
transmission delays, and fluctuating resource availability
and computational load [4].

The Cognitive Map (CogMap) is a system of interacting
software elements, or modules, that together have the goal of
enabling a mobile robot to perceive objects and actions, use
them to compose plans for operating on the world and then
monitor the execution of those plans via their effects on the
environment. The CogMap itself maintains the current state
of the world, the state of the robot’s plans as well as being
the storage and access point for all non-transient data in the
system. Most of the robot’s sensor and control systems
interact via the CogMap.

To manage shared information, the CogMap is built on

the Psyclone “Whiteboard” system [5] which combines the
shared information concepts of a blackboard architecture [6]
with data streams that can be shared, have their data samples
timestamped for synchronization, and data content
transformed (e.g. coordinate conversion) or selectively
screened while being transmitted between modules

Objects within the CogMap represent physical objects
identified from sensory input or conceptual objects
generated by the modules’ algorithms (e.g., observed
actions). Physical objects can have 3-D pose and geometric
information. They can be symbolically labeled with an
object type if it can be identified. Objects of a specific type
can also have custom fields associated with them. For
example, a table object has its length and width parameters
for the tabletop in order to allow reconstruction of its
geometry from a relatively small set of parameters.

Modules of various types – Indexers, Deciders, Detectors
- can interact with the Cognitive Map in various ways:

Indexers provide different ways to access stored data
coming into the CogMap via streams. By default, samples
on a stream are accessed by timestamps and frame count.
Indexers can provide other search criteria for accessing an
object, such as proximity to a specific point in space.

Detectors are instantiated dynamically by the CogMap
upon requests from other system components, to set up tests
for world conditions and events based on data from one or
more Indexers. Typically, the creation of a Detector
automatically initiates the creation of an Indexer.

Fig. 3: Sample representation of modules and types of communication.

 A Detector implements a Boolean function that can
produce true or false answers to specific questions about the
data in a stream. One Indexer is created to facilitate this
process upon the creation of a Detector. The criteria for a
detector can originate from a module and be dynamically
specified at run-time. In our system, detectors can be
specified using pre-set Boolean operators written in C or be
entirely scripted and interpreted at run-time using the Lua
language [7]. All samples coming through a stream
monitored by the Detector are evaluated and allowed to pass
if the Boolean expression has a true value.

Deciders subscribe to information from two or more
Detectors, or other Deciders, and make decisions on how to
respond to events. Deciders can be created by the CogMap
upon request by any module in the system.

Modules can either reside externally from the CogMap,
using TCP/IP socket-based communication, or be
dynamically-loaded internal modules, communicating
directly through memory. Modules are free to dynamically
subscribe and unsubscribe to information from the CogMap,
minimizing the bandwidth of the communications channel.
Information can be in the form of discrete messages or
continuous streamed data. For example, Detectors subscribe
to data streams from the Indexers. The Detectors can then
publish information on those streams which can be read and
utilized by Deciders.

B. Direct Robust Communication
For situations where the data does not need to be stored,

shared or transformed while in transit, the DiODE
(Distributed Operation Via Discrete Events) communication
subsystem was created to provide robust open
communications to allow applications to share information
asynchronously. DiODE is used in situations where the
overhead of sharing and processing streams through a
centralized entity like the CogMap is not desired. For
example, visual servoing applications require a tight
feedback loop between the perceptual modules and the task
modules to ensure timely environment updates. The key
features of DiODE are:

1. Location independence: Modules are unaware of the
network location of peer modules. All communication is
performed via a publish/subscribe system over named
channels.
2. Location optimization: Low-level connections can be
automatically optimized to use the most efficient
transmission mechanism, based on location. (e.g., use shared
memory instead of TCP for channel peers running on the
same machine.)
3. Role based optimization: A module subscribes in a
specific role ("CLIENT", "SERVER", "PEER", etc.) to each
channel of interest. DiODE applies knowledge of
complementary subscribed roles to open the optimal number
of connections between peers. (For example, modules

subscribed to a channel in the "CLIENT" role connect to the
application in the "SERVER" role, but not to other
"CLIENTS").
4. Robustness: DiODE is tolerant of disconnection and
reconnection of subscribed modules. All modules in
complementary roles receive notification events when peers
join or leave a channel. The underlying connections are
automatically established/re-established as needed. (E.g., a
service can be shutdown on a malfunctioning host system
and restarted on another host system, and all its clients will
be automatically reconnected and notified.)
5. Quality of Service: The profile of each channel can be
pre-defined to provide some required quality-of-service.
(e.g., lossy for higher throughput, guaranteed delivery, total
ordering, etc.)

C. Multimodal Sensor Communication
Not all components of a system can be easily distributed.

Sensors are constrained to be attached to particular locations
on the robot and therefore must be physically close to the
computational module that will process the raw data. On the
other hand, this data is often further filtered and processed
by perceptual modules to obtain important features
necessary to estimate environmental state. Since many
advanced computer vision algorithms can be expensive
computationally, running several different modules on the
same computer can be prohibitive. The Multimodal
Communication (MC) system was created as a server for
sensor data so that it can be redistributed to remote clients
for distributed processing. Multiple sensors of different
modalities can have their output streamed together to
produce hybrid multimodal channels of information.

III. COMPARATIVE EVALUATION
Test modules were created and connected to each other

using the three communication subsystems described in
Section II, Various scenarios were selected to assess the
efficiency of the various data transmission patterns that can
occur in the running system. The modules used in the tests
were selected to be representative of the module setup in the
implemented architecture. In each performance test, effort
was made to isolate specific sources of delay and highlight
trade-offs that would need to be made between system
performance and flexibility of module location within the
system. We also tested the effect of different operating
systems (Windows and Linux), number of connected
modules, and different networking bandwidth.

A. Cognitive Map tests
The following tests measured the package delay of

samples as they passed through the CogMap under different
conditions. The test machines consisted of an AMD Dual
Opteron 246 with 2GB RAM (AMD) and an Intel Dual Core
2 with 2GB RAM (INTEL). Different network bandwidth
connections were also tested: direct memory with internal

CogMap modules (Direct), the local IP stack only
(Localhost), Gigabit Ethernet (1 Gbit/s), Fast Ethernet (100
Mbit/s) and WiFi 802.11g (54 Mbit/s). All tests were run
1000 times to produce the data reported.

Test 1: Media communication

Synthetic samples (data package size: 10 kbytes)
consisting of CogMap objects with position and orientation
information were sent over several types of network
connections.

Table 1: Media communication

Network
connection

Package Delay in msec

 Average Min Max STD
Direct1 0.6 0.1 5.2 3.5
Localhost1 1.5 0.9 13.21 6.24
1Gbit/s1,2 5.0 2.4 114.2 7.87
100Mbit/s1,2 9.6 9.0 110.0 15.0
WiFi
802.11g1,2

11.9 10.3 98.0 30.6

Tests were run on the following computers (see

superscripts): 1) AMD with Windows XP and 2) INTEL
with Windows XP. As expected, Table 1 indicates that
package delays clearly increase with lower bandwidth rates,
but not in a linear relationship. Knowing the average frame
rate allows the system designer to decide where to place
modules within the system topology depending on their
desired throughput needs.

Test 2: Operating System Dependency

Data packages of 10 kbytes each are streamed to modules
residing on a single AMD machine (Direct and Localhost
conditions) running different operating systems: Windows
XP (Win) and Linux.

Table 2: Operating system dependency

 Package Delay in msec
 Average Min Max STD
Direct Win 0.6 0.1 5.2 3.5
Direct Linux 0.4 0.1 9.0 0.9

Localhost
Win

1.5 0.9 13.21 6.24

Localhost
Linux

1.1 0.6 21.1 2.1

Table 2 shows there is no notable difference in average

package delays between Windows XP and Linux. However,
package delays under Windows tend to have higher standard
deviations due to extra overhead in the windowing system
and services.

Test 3: Stress Dependency
Since the CogMap can share streams among many clients,

it is important to determine how quickly performance
degrades as more clients (recipients) access the same stream.
10 kbytes data packages are used on a single AMD machine.
All clients reside on the same machine to eliminate network
uncertainty.

Table 3: Stress dependency

 Package Delay in msec
#recipients1 Average Min Max STD
1 0.6 0.1 5.2 3.5
2 0.6 0.1 5.3 3.5
3 0.6 0.1 5.1 3.2
5 0.8 0.1 8.2 4.1
10 0.8 0.1 10.3 5.8

The CogMap was able to maintain a high level of

performance with negligible degradation as the number of
connecting modules increased from 1 to 10.

Test 4: CogMap Detectors

Three different CogMap Detectors were implemented: C-
based Detector (C-based), a run-time interpreted Lua-based
Detector (Lua-based), and a local C-based Detector at the
receiving module (C-local). The last condition examines the
trade-offs of performing additional processing of all samples
at the receiving module versus receiving fewer samples due
to filtering done within the CogMap. Timings are for 5
receiving modules accessing the same stream with data
packages approximately 1 kByte in size on a single AMD
machine.

Table 4: CogMap detectors

 Package Delay in msec
 Avg. Min Max STD
C-based Direct 11.1 0.5 51.6 15.9
Lua-based Direct 14.0 1.4 52.0 15.6
C-local Direct 20.0 1.7 78.2 16.7
C-based
Localhost

13.5 2.7 46.0 11.9

Lua-based
Localhost

18.7 3.2 78.0 18.7

C-local
Localhost

22.4 3.3 88.5 22.8

The use of the more flexible, interpreted Lua-based

detectors did not result in significant degradation of
performance compared to the C-based detectors. This is due
to the byte-code compilation of Lua. Interpreting the Lua
script and converting it to byte-code only needs to be done
once when the detector script code is initially delivered to
the CogMap from a module. Subsequent function calls are
performed on the byte-code compilation of the Lua-based
detector.

Table 4 also indicates that using the detectors to filter out
samples in the CogMap reduces package delay compared to
processing all samples at the receiving module (C-local
conditions). This confirms the utility of the CogMap’s
sample selection mechanism.

B. Cognitive Map versus DiODE tests
Comparison tests were performed to evaluate the

streaming performance between the Cognitive Map and
DiODE. Since the Cognitive Map provides a centralized
intermediary for further processing of data, we expected
DiODE to outperform the CogMap. The results will later
show that this was not universally true. The CogMap
provides several flexible and dynamic features, like the use
of Detectors to filter out samples in transit. The need for
these features may outweigh the small degradation of
performance that may be experienced.

One Detector module was created to detect and report
object pose (position and orientation) while a Decider
module read the information for further processing (3-D
visualization of the environment as seen in Figure 4).
Transmission of this information was implemented with
DiODE and the CogMap. In order to isolate the potential
sources of delay, several different configurations were
tested. To isolate the delays due to front-end image
processing, the Detector module was configured to process
live video frames using the ARToolKitPlus augmented-
reality based detector [8] (FRONT) or using synthesized,
randomized object pose information (NOFRONT). For
back-end processing of received data samples, the Decider
module can have 3-D visualization of the object pose turned
on (BACK) or 3-D visualization turned off (NOBACK). To
maximize throughput of the samples, the Decider module
processed the samples in a separate thread under both the

BACK and NOBACK conditions. Finally, the CogMap and
DiODE test cases were run with both modules existing on
the same machine (SAME) and on two different machines
(DIFF) to isolate network delays. The computers used were
a IBM Thinkpad Laptop (2.13 GHz Pentium M, 787MHz
1 GB RAM) (THINKPAD) and a IBM Desktop (3.06 GHz
Intel Xeon, 3.07 GHz 2GB RAM) (DESKTOP).

Tables 5 and 6 feature two average sample processing

times for each test configuration, one for the Detector
module side and the other for the Decider module side.

Table 5: Average sample processing times for SAME on

THINKPAD
SAME
configuration

DiODE
(in msec)

CogMap
(in msec)

NOFRONT,
NOBACK

15.51/15.52 15.51/15.47

NOFRONT, BACK 15.51/15.52 15.51/15.41
FRONT, NOBACK 139.37/139.38 97.30/97.50
FRONT, BACK 172.94/172.98 103.26/113.67

Table 6: Average sample processing times for DIFF with FRONT
side on DESKTOP, BACK on THINKPAD.

DIFF
configuration

DiODE CogMap

NOFRONT,
NOBACK

15.51/15.36 15.49/15.47

NOFRONT,
BACK

15.45/15.34 15.53/15.51

FRONT,
NOBACK

93.00/92.94 99.46/99.44

FRONT, BACK 92.86/92.55 102.47/102.97

Comparing the SAME and DIFF configurations indicates
that the main processing bottleneck is the computation
required for image processing with the actual delays due to
the Cognitive Map being negligible. This is indicated by the
similar sample processing times for both modules. If there
were significant network delays, the Decider processing
times would be longer.

For the SAME configuration, we were initially puzzled by
DiODE’s significant inferior performance compared to the
CogMap, especially given that DiODE outperformed the
CogMap in the DIFF configuration tests. We hypothesized
that DiODE’s implementation may be CPU-intensive
because CPU utilization was observed to be high on the
THINKPAD. We reran the FRONT/NOBACK test on the
faster DESKTOP computer for the SAME configuration and
indeed observed that DiODE regained its performance
advantage (93.32/93.41 msec versus 101.403/100.28 msec
for the CogMap).

 In the DIFF tests with the CogMap, we also tried
running the CogMap system on a third machine, different
from those of the two modules. Our initial expectation was

Fig. 4: Visualization module recovering
environment state from augmented reality vision
module. Inset: Camera view from ASIMO of
scene.

to observe slower performance compared to DiODE due to
the extra network links to the third machine. Instead, we
were surprised to see slightly faster performance than when
the CogMap was residing on the same machine as one of the
modules (average 103.26/113.67 msec for CogMap on the
same machine versus 97.64/98.18 msec for CogMap on a
third machine). A possible explanation is that by putting the
CogMap and modules on the same machine, their combined
computational demands reduced the overall resources on the
computer. This further supports the advantages of building
a distributed system where loads can be balanced among
several machines.

C. Multimodal Communication tests
The MC subsystem was evaluated for the effectiveness of

streaming out video to multiple connected clients
(numbering 1-10). Video is captured to a local buffer and is
subsequently streamed out to connecting clients over
different network conditions. The speed of buffer capture
depends on the source of the data. We tested two conditions
where video is read from a file (RAWFILE) and from a live
firewire IEEE 1394 camera (1394). In the former RAWFILE
case, we were able to test the fastest frame rate possible,
bounded only by computational resources. For camera
hardware, frame rates are usually fixed (e.g., 30, and 60
fps). Finally, we ran tests comparing Localhost with Gigabit
Ethernet (1000 Mbits/sec) and 802.11g wireless. The latter
condition is important to consider as we typically would like
the robot to move around unencumbered by an umbilical
bundle of wired connections. The following two graphs plot
the average frame rate from a group of 6 trials under each
condition versus the number of connected clients receiving
streams from the MC subsystem from a single video server.
All tests were run on a quad-core 3GHz Intel/Xeon Mac Pro.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

Number of clients

Av
er

ag
e

fra
m

es
 p

er
 s

ec
on

d 640x480, 60 fps,
Localhost,
RAWFILE
640x480, unbound,
Localhost,
RAWFILE
640x480, 60 fps,
1000Mbits/sec,
1394
640x480, 60 fps,
802.11g, RAWFILE

Fig. 5: Comparison over different network bandwidth
conditions (logarithmic scale)

The first graph (Figure 5) shows several interesting

trends. The 1000 Mbits/s trial performance is near-identical
to the Localhost trial. The degradation of frame rate occurs
at the same time and rate after 6 clients. Looking at the
unbound versus 60 fps-bounded conditions, the computer is
able to keep up for the first 6 clients due to its excess
computational capacity (as seen by the higher frame rates for
the unbounded case).

For network conditions, using a Gigabit Ethernet
connection for a remote client produces essentially
equivalent performance to a client co-existing on the same
machine. More worrying is the very low frame rates for the
wireless 802.11g connection (4.16 fps for 1 client, and 1.96
for 2 clients). The low performance was most likely
exacerbated by the fact that the wireless access point was
being shared with regular network traffic in our lab. In any
case, using wireless for video transmission over many
clients is prohibitive for remote computer vision clients that
require fast frame rates.

The second graph (Figure 6) illustrates the decline in
frame rate for different video resolutions (640x480 versus
1024x768). Higher resolution at 1024x768 is often desirable
for many vision algorithms since features are more easily
discernible. Figure 6 allows one to determine how many
modules can share the stream before frame rate drops to an
unacceptable level of performance.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Number of clients

Av
er

ag
e

fr
am

es
/s

ec

640x480, Localhost,
RAWFILE
1024x768, Localhost,
RAWFILE

Fig. 6: Plot comparing different image sizes.

IV. CONCLUSION AND DISCUSSION
The overall conclusion of this work is that delays due to

our middleware are negligible compared to computational
costs associated with actual processing within modules,
provided we have a network with high enough bandwidth
(gigabit in our case). The Cognitive Map is likely to be
scalable to an increasing number of modules with negligible
degradation of package delays.

In the process of performing these tests, several of our
assumptions were proven incorrect. For example, we had
hypothesized that if the Cognitive Map or modules resided
on the same machine, average sample throughput would
increase. In fact, for machines that are CPU-limited,
performance can actually decrease. In several cases, early
trials produced anomalous results that upon investigation,
resulted in important code fixes that improved system
performance, highlighting another important reason to
conduct performance tests.

Current wireless technology poses a technical barrier to
streaming important video or other high bandwidth data to
remote modules. If we eventually desire to have
autonomous, untethered humanoid robots moving around an
environment, this problem will need to be addressed. One
solution is to perform as much processing of the raw sensory

data on-board the robot and stream the resulting smaller-
sized sample information produced (e.g., 6 floats = 24 bytes
for object pose versus a 640x480x3 bytes = 921600 bytes
for a frame of video). Another option is to wirelessly stream
out a single channel of video to a remote machine that in
turn can serve the video to multiple clients over a much
faster wired network.

By knowing the effective frame rates and data sample
rates one can achieve in a distributed system, robot
developers can understand the bounds of performance that
can be expected from the robot and to design the topologies
of their distributed systems accordingly to maximize the
bandwidth allocation of all modules in the system.

REFERENCES
[1] Nilsson, N. “Shakey the robot. Technical Report 323”, SRI, Menlo

Park, CA, 1984.
[2] Honda Motor Co., Ltd., “Asimo year 2000 model”,

world.honda.com/ASIMO/technology/spec.html, 2000.
[3] Thórisson, K. R., H. Benko, A. Arnold, D. Abramov, A. Vaseekaran,

“A constructionist methodology for interactive intelligences”, A.I.
Magazine, 2004, 25(4), pp. 70-90.

[4] Tanenbaum, A. S., M. van Steen,.“Distributed Systems: Principles and
Paradigms.” New York: Prentice-Hall, 2002.

[5] Thórisson, K. R., T. List, C. Pennock, J. DiPirro , “Whiteboards:
scheduling blackboards for semantic routing of messages & streams”.
In K. R. Thórisson, H. Vilhjalmsson & S. Marsela (Eds.),  AAAI-05
Workshop on Modular Construction of Human-Like Intelligence,
Pittsburgh, PA, July 10. AAAI Technical Report WS-05-08, 2005, pp.
8-15.

[6] B. Hayes-Roth, “A blackboard architecture for control.” Artificial
Intelligence, vol. 26, pp. 251-321, 1985.

[7] Ierusalimschy R, de Figueiredo LH and Celes W . “Lua 5.1 Reference
Manual”. Lua.org, publishers, 2006.

[8] D.Wagner and D.Schmalstieg,“Artoolkitplus for pose tracking on
mobile devices,”in Computer Vision Winter Workshop 2007,
February 6-8 2007, st. Lambrecht, Austria.

