
  

  

Abstract—Distributed architectures for implementing tasks on 
humanoid robots is a design challenge, both in theory and 
practice.  Although important functionality resides within the 
component modules of the system, the performance of the 
middleware – the software for mediating information between 
modules – is critical to overall system performance.  We have 
designed an architecture serving various functional roles and 
information exchange within a distributed system, using three 
different communication subsystems: the Cognitive Map 
(CogMap), Distributed Operation via Discrete Events (DiODE), 
and Multimodal Communication (MC). The CogMap is 
implemented in Psyclone, a framework for constructing large 
AI systems, and allows sharing and transformation of 
information streams dynamically between modules. DiODE 
provides a direct connection between two modules while MC 
implements a multi-modal server that streams raw sensory 
data to requesting external (off-board) perceptual modules. 
These have been implemented and tested on the Honda Motor 
Corporation's ASIMO humanoid robot. To identify trade-offs 
and understand performance limitations in robots with 
distributed system architectures, we performed a variety of 
tests on these subsystems under different network conditions, 
operating systems and computational loads. The results 
indicate that delays due to our middleware is negligible 
compared to computational costs associated with actual 
processing within the modules, provided a network with high 
enough bandwidth. The Cognitive Map appears to be scalable 
to an increasing number of connected modules with negligible 
degradation of package delays. 

I. INTRODUCTION 
N the pursuit of general-purpose robots, adaptive to a 
variety of environments, many technologies and software 

algorithms must be integrated to create a coherent robotic 
system capable of using different skills in the completion of 
a task. For example, sensor measurements are used as inputs 
to perceptual modules that extract useful features to 
reconstruct environmental information such as object pose 
and identification. This environmental state must be 
accessible to other modules in the system that in turn can 
create new knowledge of the environment. Modules are also 
needed for planning, decision making and sending final 
motor commands to the robot’s body. In the course of robot 
execution of the task, frequent feedback of the 

 
Manuscript received September 13, 2007. This work was supported in 

part by the Honda Research Institute USA.  

environmental state is needed to robustly complete the task 
and to handle uncertainty or sudden changes in the 
environment. 

We have found that a single architectural design does not 
support all tasks equally well. Instead, architectural 
components and choice of communication protocols should 
be reconfigurable at runtime, according to the demands of 
the task at hand. For example, for a robot pointing and 
gazing at a moving object (Figure 1), constant sensory 
feedback of the object position must be provided to the 
pointing command to update the robot’s end effector 
position. In contrast, if a static environment is assumed, 
traditional sense-plan-act [1] pipelines can be employed, 
provided the sensors are sufficiently accurate for a task like 
pushing objects on a table (Figure 2). 

 

 
Fig. 1: ASIMO pointing and gazing at a moving hand-

held object (circled). 

 
The computational capabilities on board a robot are 

usually not as powerful as the latest modern desktop 
computers due to restrictions in energy consumption and 
heat management. To facilitate easy reconfiguration of the 
modules and communication between them, we employ a 
distributed system design where modules can reside 
externally from a robot's own control and actuator hardware. 
The advantage of a distributed system is that the 
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computational demands of the task can be shared across 
disparate and specialized hardware and performance and 
functionality can be extended without significant changes to 
the original robot's design. 

 

 
Fig.  2: ASIMO pushing a block on a table. 

The computational capabilities on board a robot are 
usually not as powerful as the latest modern desktop 
computers due to restrictions in energy consumption and 
heat management. To facilitate easy reconfiguration of the 
modules and communication between them, we employ a 
distributed system design where modules can reside 
externally from a robot's own control and actuator hardware. 
The advantage of a distributed system is that the 
computational demands of the task can be shared across 
disparate and specialized hardware and performance and 
functionality can be extended without significant changes to 
the original robot's design.  In our system each module can 
also be implemented in different software environments, 
operating systems and programming languages, maximizing 
the flexibility of solutions for researching and creating 
system components. This has the added benefit that teams 
are also free to work at different geographic locations with 
specialized skill sets appropriate to each subset of modules. 

We have designed a distributed system architecture for 
Honda Motor Corporation's ASIMO humanoid robot [2]. 
The system allows experimental features to be added and 
expanded while incrementally modeling new tasks on the 
robot in its operating environment. To facilitate 
communication between modules, standardized abstraction 
interfaces were created for accessing motor commands and 
sensor information between modules. This approach has 
allowed us to design system components for managing tasks 
and environmental state that are independent of particular 
robot hardware configurations. 

However, the components and their interface design are 
only two of many parts that shape the overall system 
performance of the robot. This paper will focus on the 
evaluation of a third part – the middleware: the collection of 
communication software and protocols for exchanging 

information between software modules and hardware 
components of the system. Delays in the channels of 
communication between modules can create bottlenecks in 
information flow which can cause adverse effects on 
performance, both in the receiving module and overall 
system performance. The achievable throughput in the 
various communication subsystems play an important role in 
determining where modules should reside (same or different 
machines) and at what rate they should operate.  

In this paper we will introduce several different 
communication schemes that we have developed for various 
functionalities and examine the throughput performance of 
data samples transferred under several situations 
encountered in the operation of our robot architecture. 

II. APPROACH 
For ease of integration, our approach takes into account 

the traditional pipeline of building components in a research 
environment.  Typically, robot developers and researchers 
build specialized components in isolation of the main 
system. They perform tests to verify the performance and 
functionality of these components. Often, assumptions about 
interactivity with other modules are implicit, underestimated 
or overlooked – the act of integration itself is given lower 
priority or is often assigned to someone other than the 
original component maker. It is also often assumed that once 
the component is finalized and robust, the delivery of the 
component can be handed off to an integration team to 
incorporate into the system. In reality substantial iteration is 
required after initial integration is achieved. Unforeseen 
side-effects, e.g., changes in lighting conditions, motion 
blurring due to a moving camera, or incorrect assumptions 
about the quality of inputs to the module, can significantly 
reduce the robustness of its performance once the module is 
running within the rest of the system. All such architectural 
design requires frequent changes to the original (isolated) 
module software to improve operational performance. 

To minimize the necessary code changes and make 
modules ready for integration, we employ a framework 
based on the Constructionist Design Methodology 
(CDM)[3]. CDM was developed to create systems capable 
of a large number of functionalities that must be carefully 
coordinated to achieve coherent system behavior. CDM is 
based on iterative design steps that lead to the creation of a 
network of named interacting modules, communicating via 
explicitly typed streams and discrete messages. 

Our communication middleware consists of three specific 
subsystems: the Cognitive Map (CogMap), Distributed 
Operation via Discrete Events (DiODE) and Multimodal 
Communication (MC), each created for particular 
communication needs in our system.  While the Cognitive 
Map is used for sharing and custom selection of information 
between many modules using a centralized structure, 
DiODE is used for more dedicated direct communication 
and MC is designed for networked sharing of sensor 



  

information, especially from optical cameras (Figure 3). 

A. Shared, Selective Communication  
We have designed a blackboard-based cognitive map for 

manipulating perceptual information gathered from cameras 
and other sensors for the purposes of organizing information 
that represents both the robot’s internal state and its external 
environment. As knowledge must be shared in the 
architecture to avoid redundant information and 
computation, and it must be combined from different 
sources to accomplishing tasks like localization and dynamic 
world state modeling, a blackboard model is an ideal 
framework for integration [6]. The development of 
distributed, large architectures, however, raises issues of 
dynamic access to shared data of distributed processes, 
transmission delays, and fluctuating resource availability 
and computational load [4].  

The Cognitive Map (CogMap) is a system of interacting 
software elements, or modules, that together have the goal of 
enabling a mobile robot to perceive objects and actions, use 
them to compose plans for operating on the world and then 
monitor the execution of those plans via their effects on the 
environment. The CogMap itself maintains the current state 
of the world, the state of the robot’s plans as well as being 
the storage and access point for all non-transient data in the 
system. Most of the robot’s sensor and control systems 
interact via the CogMap.  

To manage shared information, the CogMap is built on 

the Psyclone “Whiteboard” system [5] which combines the 
shared information concepts of a blackboard architecture [6] 
with data streams that can be shared, have their data samples 
timestamped for synchronization, and data content 
transformed (e.g. coordinate conversion) or selectively 
screened while being transmitted between modules 

Objects within the CogMap represent physical objects 
identified from sensory input or conceptual objects 
generated by the modules’ algorithms (e.g., observed 
actions).  Physical objects can have 3-D pose and geometric 
information. They can be symbolically labeled with an 
object type if it can be identified.  Objects of a specific type 
can also have custom fields associated with them. For 
example, a table object has its length and width parameters 
for the tabletop in order to allow reconstruction of its 
geometry from a relatively small set of parameters. 

Modules of various types – Indexers, Deciders, Detectors 
- can interact with the Cognitive Map in various ways: 

Indexers provide different ways to access stored data 
coming into the CogMap via streams. By default, samples 
on a stream are accessed by timestamps and frame count. 
Indexers can provide other search criteria for accessing an 
object, such as proximity to a specific point in space. 

Detectors are instantiated dynamically by the CogMap 
upon requests from other system components, to set up tests 
for world conditions and events based on data from one or 
more Indexers. Typically, the creation of a Detector 
automatically initiates the creation of an Indexer.  

 

Fig. 3: Sample representation of modules and types of communication. 



  

 A Detector implements a Boolean function that can 
produce true or false answers to specific questions about the 
data in a stream. One Indexer is created to facilitate this 
process upon the creation of a Detector. The criteria for a 
detector can originate from a module and be dynamically 
specified at run-time. In our system, detectors can be 
specified using pre-set Boolean operators written in C or be 
entirely scripted and interpreted at run-time using the Lua 
language [7]. All samples coming through a stream 
monitored by the Detector are evaluated and allowed to pass 
if the Boolean expression has a true value. 

Deciders subscribe to information from two or more 
Detectors, or other Deciders, and make decisions on how to 
respond to events.  Deciders can be created by the CogMap 
upon request by any module in the system.   

Modules can either reside externally from the CogMap, 
using TCP/IP socket-based communication, or be 
dynamically-loaded internal modules, communicating 
directly through memory. Modules are free to dynamically 
subscribe and unsubscribe to information from the CogMap, 
minimizing the bandwidth of the communications channel. 
Information can be in the form of discrete messages or 
continuous streamed data. For example, Detectors subscribe 
to data streams from the Indexers. The Detectors can then 
publish information on those streams which can be read and 
utilized by Deciders. 

B. Direct Robust Communication  
For situations where the data does not need to be stored, 

shared or transformed while in transit, the DiODE 
(Distributed Operation Via Discrete Events) communication 
subsystem was created to provide robust open 
communications to allow applications to share information 
asynchronously.  DiODE is used in situations where the 
overhead of sharing and processing streams through a 
centralized entity like the CogMap is not desired. For 
example, visual servoing applications require a tight 
feedback loop between the perceptual modules and the task 
modules to ensure timely environment updates. The key 
features of DiODE are: 

 
1. Location independence: Modules are unaware of the 
network location of peer modules.  All communication is 
performed via a publish/subscribe system over named 
channels. 
2. Location optimization: Low-level connections can be 
automatically optimized to use the most efficient 
transmission mechanism, based on location. (e.g., use shared 
memory instead of TCP for channel peers running on the 
same machine.) 
3. Role based optimization: A module subscribes in a 
specific role ("CLIENT", "SERVER",  "PEER", etc.) to each 
channel of interest. DiODE applies knowledge of 
complementary subscribed roles to open the optimal number 
of connections between peers.  (For example, modules 

subscribed to a channel in the "CLIENT" role connect to the 
application in the "SERVER" role, but not to other 
"CLIENTS"). 
4. Robustness: DiODE is tolerant of disconnection and 
reconnection of subscribed  modules.  All modules in 
complementary roles receive  notification events when peers 
join or leave a channel.  The  underlying connections are 
automatically  established/re-established as needed. (E.g., a 
service can be  shutdown on a malfunctioning host system 
and restarted on another host system, and all its clients will 
be automatically reconnected and notified.) 
5. Quality of Service: The profile of each channel can be 
pre-defined to provide some required quality-of-service. 
(e.g., lossy for higher throughput, guaranteed delivery, total 
ordering, etc.) 

C. Multimodal  Sensor Communication  
Not all components of a system can be easily distributed. 

Sensors are constrained to be attached to particular locations 
on the robot and therefore must be physically close to the 
computational module that will process the raw data. On the 
other hand, this data is often further filtered and processed 
by perceptual modules to obtain important features 
necessary to estimate environmental state. Since many 
advanced computer vision algorithms can be expensive 
computationally, running several different modules on the 
same computer can be prohibitive. The Multimodal 
Communication (MC) system was created as a server for 
sensor data so that it can be redistributed to remote clients 
for distributed processing. Multiple sensors of different 
modalities can have their output streamed together to 
produce hybrid multimodal channels of information.  

III. COMPARATIVE EVALUATION 
Test modules were created and connected to each other 

using the three communication subsystems described in 
Section II, Various scenarios were selected to assess the 
efficiency of the various data transmission patterns that can 
occur in the running system. The modules used in the tests 
were selected to be representative of the module setup in the 
implemented architecture. In each performance test, effort 
was made to isolate specific sources of delay and highlight 
trade-offs that would need to be made between system 
performance and flexibility of module location within the 
system. We also tested the effect of different operating 
systems (Windows and Linux), number of connected 
modules, and different networking bandwidth.  

 

A. Cognitive Map tests 
The following tests measured the package delay of 

samples as they passed through the CogMap under different 
conditions. The test machines consisted of an AMD Dual 
Opteron 246 with 2GB RAM (AMD) and an Intel Dual Core 
2 with 2GB RAM (INTEL). Different network bandwidth 
connections were also tested: direct memory with internal 



  

CogMap modules (Direct), the local IP stack only 
(Localhost), Gigabit Ethernet (1 Gbit/s), Fast Ethernet (100 
Mbit/s) and WiFi 802.11g (54 Mbit/s). All tests were run 
1000 times to produce the data reported. 

 
Test 1: Media communication 

Synthetic samples (data package size: 10 kbytes) 
consisting of CogMap objects with position and orientation 
information were sent over several types of network 
connections. 

 
Table 1: Media communication 

Network 
connection 

Package Delay in msec 

 Average Min Max STD 
Direct1 0.6 0.1 5.2 3.5 
Localhost1 1.5 0.9 13.21 6.24 
1Gbit/s1,2 5.0 2.4 114.2 7.87 
100Mbit/s1,2 9.6 9.0 110.0 15.0 
WiFi 
802.11g1,2 

11.9 10.3 98.0 30.6 

 
Tests were run on the following computers  (see 

superscripts): 1) AMD with Windows XP and 2) INTEL 
with Windows XP.  As expected, Table 1 indicates that 
package delays clearly increase with lower bandwidth rates, 
but not in a linear relationship. Knowing the average frame 
rate allows the system designer to decide where to place 
modules within the system topology depending on their 
desired throughput needs. 
 
Test 2: Operating System Dependency 

Data packages of 10 kbytes each are streamed to modules 
residing on a single AMD machine (Direct and Localhost 
conditions) running different operating systems: Windows 
XP (Win) and Linux. 

 
Table 2: Operating system dependency 

 Package Delay in msec 
 Average Min Max STD 
Direct Win 0.6 0.1 5.2 3.5 
Direct Linux 0.4 0.1 9.0 0.9 

Localhost 
Win 

1.5 0.9 13.21 6.24 

Localhost 
Linux 

1.1 0.6 21.1 2.1 

 
Table 2 shows there is no notable difference in average 

package delays between Windows XP and Linux.  However,  
package delays under Windows tend to have higher standard 
deviations due to extra overhead in the windowing system 
and services. 

 

Test 3: Stress Dependency 
Since the CogMap can share streams among many clients, 

it is important to determine how quickly performance 
degrades as more clients (recipients) access the same stream. 
10 kbytes data packages are used on a single AMD machine. 
All clients reside on the same machine to eliminate network 
uncertainty. 

 
Table 3: Stress dependency 

 Package Delay in msec 
#recipients1 Average Min Max STD 
1  0.6 0.1 5.2 3.5 
2  0.6 0.1 5.3 3.5 
3  0.6 0.1 5.1 3.2 
5  0.8 0.1 8.2 4.1 
10  0.8 0.1 10.3 5.8 

 
The CogMap was able to maintain a high level of 

performance with negligible degradation as the number of 
connecting modules increased from 1 to 10. 
 
Test 4: CogMap Detectors 

Three different CogMap Detectors were implemented: C-
based Detector (C-based), a run-time interpreted  Lua-based 
Detector (Lua-based), and a local C-based Detector at the 
receiving module (C-local). The last condition examines the 
trade-offs of performing additional processing of all samples 
at the receiving module versus receiving fewer samples due 
to filtering done within the CogMap. Timings are for 5 
receiving modules accessing the same stream with data 
packages approximately 1 kByte in size on a single AMD 
machine. 

 
Table 4: CogMap detectors 

 Package Delay in msec 
 Avg. Min Max STD 
C-based Direct 11.1 0.5 51.6 15.9 
Lua-based Direct 14.0 1.4 52.0 15.6 
C-local Direct 20.0 1.7 78.2 16.7 
C-based 
Localhost 

13.5 2.7 46.0 11.9 

Lua-based 
Localhost 

18.7 3.2 78.0 18.7 

C-local  
Localhost 

22.4 3.3 88.5 22.8 

 
The use of the more flexible, interpreted Lua-based 

detectors did not result in significant degradation of 
performance compared to the C-based detectors. This is due 
to the byte-code compilation of Lua. Interpreting the Lua 
script and converting it to byte-code only needs to be done 
once when the detector script code is initially delivered to 
the CogMap from a module. Subsequent function calls are 
performed on the byte-code compilation of the Lua-based 
detector. 



  

Table 4 also indicates that using the detectors to filter out 
samples in the CogMap reduces package delay compared to 
processing all samples at the receiving module (C-local 
conditions). This confirms the utility of the CogMap’s 
sample selection mechanism. 
 

 

 

B. Cognitive Map versus DiODE tests 
Comparison tests were performed to evaluate the 

streaming performance between the Cognitive Map and 
DiODE. Since the Cognitive Map provides a centralized 
intermediary for further processing of data, we expected 
DiODE to outperform the CogMap. The results will later 
show that this was not universally true. The CogMap 
provides several flexible and dynamic features, like the use 
of Detectors to filter out samples in transit. The need for 
these features may outweigh the small degradation of 
performance that may be experienced.  

One Detector module was created to detect and report 
object pose (position and orientation) while a Decider 
module read the information for further processing (3-D 
visualization of the environment as seen in Figure 4). 
Transmission of this information was implemented with 
DiODE and the CogMap. In order to isolate the potential 
sources of delay, several different configurations were 
tested.  To isolate the delays due to front-end image 
processing, the Detector module was configured to process 
live video frames using the ARToolKitPlus augmented-
reality based detector [8] (FRONT) or using synthesized, 
randomized object pose information (NOFRONT).  For 
back-end processing of received data samples, the Decider 
module can have 3-D visualization of the object pose turned 
on (BACK) or 3-D visualization turned off (NOBACK). To 
maximize throughput of the samples, the Decider module 
processed the samples in a separate thread under both the 

BACK and NOBACK conditions. Finally, the CogMap and 
DiODE test cases were run with both modules existing on 
the same machine (SAME) and on two different machines 
(DIFF) to isolate network delays. The computers used were 
a IBM Thinkpad Laptop (2.13 GHz Pentium M, 787MHz  
1 GB RAM) (THINKPAD) and a IBM Desktop (3.06 GHz 
Intel Xeon, 3.07 GHz 2GB RAM) (DESKTOP). 

 
Tables 5 and 6 feature two average sample processing 

times for each test configuration, one for the Detector 
module side and the other for the Decider module side. 

 
Table 5: Average sample processing times for SAME on 

THINKPAD 
SAME 
configuration 

DiODE  
(in msec) 

CogMap  
(in msec) 

NOFRONT, 
NOBACK 

15.51/15.52 15.51/15.47 

NOFRONT, BACK 15.51/15.52 15.51/15.41 
FRONT, NOBACK 139.37/139.38 97.30/97.50 
FRONT,  BACK 172.94/172.98 103.26/113.67 
 

Table 6: Average sample processing times for DIFF with FRONT 
side on DESKTOP, BACK on THINKPAD. 

DIFF 
configuration 

DiODE CogMap 

NOFRONT, 
NOBACK 

15.51/15.36 15.49/15.47 

NOFRONT, 
BACK 

15.45/15.34 15.53/15.51 

FRONT, 
NOBACK 

93.00/92.94 99.46/99.44 

FRONT, BACK 92.86/92.55 102.47/102.97 
 

Comparing the SAME and DIFF configurations indicates 
that the main processing bottleneck is the computation 
required for image processing with the actual delays due to 
the Cognitive Map being negligible.  This is indicated by the 
similar sample processing times for both modules. If there 
were significant network delays, the Decider processing 
times would be longer. 

For the SAME configuration, we were initially puzzled by 
DiODE’s significant inferior performance compared to the 
CogMap, especially given that DiODE outperformed the 
CogMap in the DIFF configuration tests. We hypothesized 
that DiODE’s implementation may be CPU-intensive 
because CPU utilization was observed to be high on the 
THINKPAD. We reran the FRONT/NOBACK test on the 
faster DESKTOP computer for the SAME configuration and 
indeed observed that DiODE regained its performance 
advantage (93.32/93.41 msec versus 101.403/100.28 msec 
for the CogMap). 

  In the DIFF tests with the CogMap, we also tried 
running the CogMap system on a third machine, different 
from those of the two modules. Our initial expectation was 

Fig. 4: Visualization module recovering 
environment state from augmented reality vision 
module.  Inset: Camera view from ASIMO of 
scene. 



  

to  observe slower performance compared to DiODE due to 
the extra network links to the third machine. Instead, we 
were surprised to see slightly faster performance than when 
the CogMap was residing on the same machine as one of the 
modules (average 103.26/113.67 msec for CogMap on the 
same machine versus 97.64/98.18 msec for CogMap on a 
third machine). A possible explanation is that by putting the 
CogMap and modules on the same machine, their combined 
computational demands reduced the overall resources on the 
computer.  This further supports the advantages of building 
a distributed system where loads can be balanced among 
several machines. 

C. Multimodal Communication tests 
The MC subsystem was evaluated for the effectiveness of 

streaming out video to multiple connected clients 
(numbering 1-10).  Video is captured to a local buffer and is 
subsequently streamed out to connecting clients over 
different network conditions. The speed of buffer capture 
depends on the source of the data. We tested two conditions 
where video is read from a file (RAWFILE) and from a live 
firewire IEEE 1394 camera (1394). In the former RAWFILE 
case, we were able to test the fastest frame rate possible, 
bounded only by computational resources. For camera 
hardware, frame rates are usually fixed (e.g., 30, and 60 
fps). Finally, we ran tests comparing Localhost with Gigabit 
Ethernet (1000 Mbits/sec) and 802.11g wireless. The latter 
condition is important to consider as we typically would like 
the robot to move around unencumbered by an umbilical 
bundle of wired connections. The following two graphs plot 
the average frame rate from a group of 6 trials under each 
condition versus the number of connected clients receiving 
streams from the MC subsystem from a single video server. 
All tests were run on a quad-core 3GHz Intel/Xeon Mac Pro.  
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Fig. 5: Comparison over different network bandwidth 
conditions (logarithmic scale) 

 
The first graph (Figure 5) shows several interesting 

trends. The 1000 Mbits/s  trial performance is near-identical 
to the Localhost trial. The degradation of frame rate occurs 
at the same time and rate after 6 clients. Looking at the 
unbound versus 60 fps-bounded conditions, the computer is 
able to keep up for the first 6 clients due to its excess 
computational capacity (as seen by the higher frame rates for 
the unbounded case). 

For network conditions, using a Gigabit Ethernet 
connection for a remote client produces essentially 
equivalent performance to a client co-existing on the same 
machine. More worrying is the very low frame rates for the 
wireless 802.11g connection (4.16 fps for 1 client, and 1.96 
for 2 clients).  The low performance was most likely 
exacerbated by the fact that the wireless access point was 
being shared with regular network traffic in our lab. In any 
case, using wireless for video transmission over many 
clients is prohibitive for remote computer vision clients that 
require fast frame rates.  

The second graph (Figure 6) illustrates the decline in 
frame rate for different video resolutions (640x480 versus 
1024x768). Higher resolution at 1024x768 is often desirable 
for many vision algorithms since features are more easily 
discernible. Figure 6 allows one to determine how many 
modules can share the stream before frame rate drops to an 
unacceptable level of performance. 
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Fig. 6: Plot comparing different image sizes. 

IV. CONCLUSION AND DISCUSSION 
The overall conclusion of this work is that delays due to 

our middleware are negligible compared to computational 
costs associated with actual processing within modules, 
provided we have a network with high enough bandwidth 
(gigabit in our case). The Cognitive Map is likely to be 
scalable to an increasing number of modules with negligible 
degradation of package delays.  

In the process of performing these tests, several of our 
assumptions were proven incorrect. For example, we had 
hypothesized that if the Cognitive Map or modules resided 
on the same machine, average sample throughput would 
increase. In fact, for machines that are CPU-limited, 
performance can actually decrease. In several cases, early 
trials produced anomalous results that upon investigation, 
resulted in important code fixes that improved system 
performance, highlighting another important reason to 
conduct performance tests. 

Current wireless technology poses a technical barrier to 
streaming important video or other high bandwidth data to 
remote modules. If we eventually desire to have 
autonomous, untethered humanoid robots moving around an 
environment, this problem will need to be addressed. One 
solution is to perform as much processing of the raw sensory 



  

data on-board the robot and stream the resulting smaller-
sized sample information produced (e.g., 6 floats = 24 bytes 
for object pose versus a 640x480x3 bytes = 921600 bytes 
for a frame of video).  Another option is to wirelessly stream 
out a single channel of video to a remote machine that in 
turn can serve the video to multiple clients over a much 
faster wired network. 

By knowing the effective frame rates and data sample 
rates one can achieve in a distributed system, robot 
developers can understand the bounds of performance that 
can be expected from the robot and to design the topologies 
of their distributed systems accordingly to maximize the 
bandwidth allocation of all modules in the system. 
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