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Abstract: Much of present AI research is based on the assumption of computational systems with infinite resources, 
an assumption that is either explicitly stated or implicit in the work as researchers ignore the fact that most 
real-world tasks must be finished within certain time limits, and it is the role of intelligence to effectively 
deal with such limitations. Expecting AI systems to give equal treatment to every piece of data they 
encounter is not appropriate in most real-world cases; available resources are likely to be insufficient for 
keeping up with available data in even moderately complex environments. Even if sufficient resources are 
available, they might possibly be put to better use than blindly applying them to every possible piece of 
data. Finding inspiration for more intelligent resource management schemes is not hard, we need to look no 
further than ourselves. This paper explores what human attention has to offer in terms of ideas and concepts 
for implementing intelligent resource management and how the resulting principles can be extended to 
levels beyond human attention. We also discuss some ideas for the principles behind attention mechanisms 
for artificial (general) intelligences. 

1 INTRODUCTION 

The field of AI has a long history of targeting 
isolated, well-defined problems to demonstrate 
intelligent capabilities. While useful, many of these 
problems (and especially their task environments, as 
perceived by the system) are extremely simple 
compared to the problem of learning how to solve 
novel tasks and adapting to changes in real-world 
environments - a problem which must be addressed 
and solved in order for AI systems to approach 
human-level intelligence. Given the nature of this 
prior work, it is not surprising that limited focus has 
been given to real-time processing and resource 
management. However, the design of any AI system 
expected to learn and perform a range of tasks in 
everyday environments needs to face these realities: 
 
 The real world is highly dynamic and complex 

and can provide an abundance of information 
at any given moment. 

 Resources of any intelligent system are not 
only limited, but insufficient in light of the 

massive amount of information available from 
the environment. 

 
 A range of time constraints, many of which 

are dictated by the environment, must be 
satisfied in order to ensure safe and successful 
operation of the system. 

 
Much of existing work in the field of AI is also 
based on greatly simplified operating assumptions - 
a case in point being the practically impossible (but 
surprisingly common) assumption of infinite 
resources, often in terms of storage but particularly 
in terms of processing: A system based on this 
assumption will fail to perform and potentially crash 
in real world operation when fed with information at 
a greater rate than it is capable of processing. To 
find inspiration for implementing intelligent 
resource management we need not look far, nature 
has provided us with a prime example in human 
attention; a cognitive function that enables us to 
focus our limited resources selectively on 
information that is most important to us at any given 
moment as we perform various tasks while 



 

remaining reactive to unexpected but important 
events in the environment. Consider that while 
reading this chapter you have effectively ignored 
more than 99.9% of the numerous things that your 
mind could have spent time and resources on doing. 
Perhaps not surprisingly, it turns out that this is 
exactly the kind of resource management that is 
required to enable AI systems to approach human-
level intelligence in real-world environments. Thus, 
it makes perfect sense to investigate how AI systems 
can be endowed with this cognitive function for the 
purpose of improving their operation and making 
them applicable to more open-ended and complex 
tasks and environments. The goal need not be to 
replicate any biological function in detail, but rather 
to extract useful concepts and methods from the 
biological side while leaving undesirable limitations 
behind in order to facilitate the creation of AI 
systems that can successfully operate in real-world 
environments in realtime using limited resources.  
 While attention has been largely ignored in 
the field to-date, there are notable exceptions. These 
include cognitive architectures such as NARS 
(Wang, 1995), LIDA (Baars, 2009) and Clarion 
(Sun, 2006). However, the attentional functionality 
implemented in these systems is incomplete in 
various ways, such as focusing solely on data-
filtering (ignoring control issues, e.g. how 
prioritization affects processing of selected data) and 
external environmental information (ignoring 
internal system states). The ASMO framework 
(Novianto, 2009) is somewhat unique as it assumes a 
tight coupling between attention and self-awareness 
and includes focus on internal states. However, none 
of this work addresses realtime processing, which is 
one of the major reasons we desire attentional 
functionality, in a vigorous fashion. Attention has 
also been studied in relation to AI within the limited 
scope of working memory (c.f. Phillips 2005 and 
Skubic 2004). While attention and working memory 
are closely related, this is a restrictive context to 
study attention within as working memory can in 
most cases be modelled as a cognitive function 
rather than an architectural component. 

This paper starts with a brief overview of 
human attention and subsequently attempts to 
extract principles that may be useful for AI systems. 
This is followed by a discussion of how these 
principles might be extended to levels beyond 
human attention for meta-reasoning and 
introspection. We then present a high-level design of 
an attention mechanism intended for AI 
architectures.  

2 HUMAN ATTENTION 

Research of human attention has a long history 
dating back to the beginnings of psychology. Back 
in 1890, the American psychologist William James 
wrote the following (James 1890): 

 
“Everyone knows what attention is. It is the taking 
possession by the mind, in clear and vivid form, of 
one out of what seem several simultaneously 
possible objects or trains of thought. Focalization, 
concentration, of consciousness are of its essence. It 
implies withdrawal from some things in order to 
deal effectively with others, and is a condition which 
has a real opposite in the confused, dazed, 
scatterbrained state which in French is called 
distraction, and Zerstreutheit in German.” 
 

- William James 
 

This elegant description indicates that the 
importance of attention for the human mind was 
identified as early as the 18th century. The beginning 
of modern attention research is commonly tied to 
Colin Cherry’s work on what has been called the 
“cocktail party effect” (Cherry 1953), which 
addresses how we are able to focus on particular 
sensory data in the presence of distracting 
information and noise, such as following and 
participating in a conversation at a cocktail party in 
the presence of many other conversations and 
background noise, and still be able to catch when 
someone calls our name in the background. The 
ability to be in a focused state of attention while 
remaining reactive to unexpected events, seems to 
call for a selective filtering mechanism of some sort 
while at the same time requiring deliberate steering 
of cognitive resources. The cocktail party scenario is 
a good illustration of the dual nature of attention: 
We will refer to the deliberate, goal-driven side as 
top-down attention and the reactive, stimulus-driven 
side as bottom-up attention. 

A number of models for attention were 
subsequently proposed, some of which were 
considered early selection models as selection of 
sensory information is assumed to occur early in the 
sensory pipeline based on primitive physical features 
of the information. This implies that the 
determination of what is important and should be 
selected is based on shallow, primitive processing 
with very limited or non-existent analysis of 
meaning. The Broadbent filter model (Broadbent 
1958) is the most prominent of these. A number of 
late selection models have also been proposed, that 



 

assume further analysis of incoming sensory 
information must be performed in order to determine 
its relevance and carry out efficient selection. The 
Deutsch-Norman (Norman 1969) model is based on 
the assumption that sensory information is not 
actually filtered, but processed to the point of 
activating representations stored in memory. 
Selection then occurs at the level of representations, 
where the most active ones are selected for further 
processing. The model also assumes an attentional 
bottleneck at this point, where only one 
representation can be selected for processing at a 
time. These two classes of attention models are 
referred to as the early vs. late selection models, and 
have resulted in some debate. Shortcomings of many 
early selection models are obvious, as they fail to 
account for parts of the cocktail party effect, 
especially phenomena such as noticing your own 
name being called from across the room while 
engaged in conversation. This contradicts the model, 
as the physical characteristics of the data (our name 
being called) would not be sufficient to attract our 
attention and pass through the filter; some analysis 
of meaning must be involved. 

Some more recent theories and models of 
attention focus on the interaction between top-down 
and bottom-up attention. In (Knudsen 2007), an 
attention framework is presented based on four 
fundamental processes: working memory, top-down 
sensitivity control, competitive selection and 
bottom-up filtering for salient stimuli. The first three 
processes work in a recurrent loop to implement top-
down control attention. Working memory is 
intimately linked to attention as its contents are 
determined by attention. This framework seems to 
capture most of the essential components of 
attention and is a promising candidate for inspiration 
with regards to attention for AI. 
 

3 ATTENTION AND AI 

Let us now consider how the previous chapter can 
inspire implementation of attentional capabilities for 
AI systems. As suggested in the introduction, we 
specifically target general AI systems designed to 
operate in complex environments under real-time 
constraints with limited resources. These systems are 
expected to perform various tasks while being 
reactive to events in the environment, a requirement 
that  maps  neatly to the  top-down  and  bottom-up a 
workings  of  attention  mentioned  earlier. Both of 

 
Figure 1: The Knudsen attention framework (from 
Knudsen 2007). Data flows up from the environment, 
passes through salience filters (which detect infrequent or 
important stimuli) and activates neural representations, 
which encode various types of knowledge. The activation 
of neural representations is also influenced by working 
memory via the sensitivity control of top-down attention 
that adjusts activation thresholds of individual 
representations. Representations compete for access to 
working memory with only the most active ones being 
admitted. Gaze is controlled by working memory and the 
selection process. 

these are necessary for a complete system; those that 
implement only top-down down attention will 
continue to work on tasks without being able to react 
to unexpected or novel events in the environment – 
events that may be relevant to the current task or 
necessary triggers for generation of new ones. 
Conversely, systems implementing only bottom-up 
attention cannot perform tasks beyond those that are 
simple and reactive; tasks consisting of multiple 
steps are not possible. However, when these two 
types of attention are properly combined, the result 
is a flexible system capable of performing complex 
tasks while being faced with interruptions and 
unexpected events. Part of the role of attention 
therefore, is to manage the balance between these 
two at every point in time. 

The early vs. late selection debate mentioned in 
the previous chapter is also relevant here. It is 
possible to implement attention mechanisms for AI 
systems that perform selection early in the sensory 



 

pipeline based on primitive features of the data. This 
approach is adopted in some of the best known 
existing cognitive architectures, such as SOAR 
(Laird 2008), where attention is viewed as a 
perceptual process rather than a cognitive one. Early 
selection unavoidably means that some data is 
(partly or fully) ignored without being processed for 
meaning; ignoring data that is not understood by the 
system introduces considerable risk as its relevance 
for the system is not known. This may be acceptable 
for narrow AI systems designed for specific tasks in 
specific environments as it may be possible to create 
shortcuts to understand the nature of incoming 
information in such cases. However, for general AI 
(AGI) systems designed for tasks and environments 
not specified at implementation time, this is highly 
problematic. Early stages of the sensory pipeline can 
contribute to attention in useful ways, such as 
performing biasing as opposed to absolute selection. 
For example, such biasing might be based on 
novelty or unexpectedness of the data as these 
properties may give rough clues to the importance of 
the information without requiring the information to 
be processed for meaning. Furthermore, this is a 
reasonable way to implement bottom-up attention, as 
suggested by the Knudsen model in Figure 1. As 
shallow processing at early stages of the sensory 
pipeline seems unlikely to provide a reliable 
measure of the importance of information, the late 
selection paradigm seems more promising than early 
selection in terms of AI and attention. 

Top-down attention may be viewed as a goal-
driven process as it is intimately related to current 
goals of the system. For goals to direct top-down 
attention, their level of specification is critical. In a 
system where goals are fully specified in terms of 
operation, the goal definition will be extremely 
useful in adjusting attention to elements that are 
relevant to the goal. A top-down attention 
mechanism based on pattern matching could 
generate partially specified patterns from goal 
specifications and attempt to find matches in sensory 
information. Predictions and expectations may also 
be expected to be necessary control input for top-
down attention in systems that explicitly implement 
predictive capabilities – and there is good reason to 
believe that this is necessary in order to approach 
human-level intelligence. In terms of top-down 
attention, predictions may be treated in virtually the 
same fashion as goals (with level of specification 
being equally important as for goals). 

 

4 AI ATTENTION: BEYOND THE 
HUMAN LEVEL 

AI systems have an interesting advantage over 
human minds; they are based on software rather than 
hardware (“wetware”). While neurons of our brains 
can adaptively wire up to encode skills, knowledge 
and experiences the core mechanisms of these 
processes are fixed. For example, humans cannot 
easily acquire dramatically better ways of learning 
or remembering. This limitation does not apply to 
software AI systems; their potential for flexibility 
and reconfiguration are only limited by their 
architectural design. The same can be said for their 
level of introspection; our introspective capabilities 
are greatly limited - we only have a very vague 
sense of what is going on in our minds. On the other 
hand, there are much weaker limitations on self-
observation in software AI systems, which again are 
limited only by architectural design. 

A case for flexible architectures capable of 
autonomous self-reconfiguration is made in 
(Thórisson 2009). There are limitations on the 
complexity of manually built software systems and it 
is not unreasonable to assume that more complex 
software systems than exist today are needed in 
order to approach human-like AI. If our chances of 
manually building such systems are low, having the 
systems build themselves (in a sense) from 
experience is not an unreasonable line of research. 

In order to perform deep levels of introspection 
in complex AI systems, attention is equally useful as 
for information originating outside the system; the 
sum of activity within such a system can be 
considered to be a vast stream of information and 
system resources remain limited. Determining which 
parts of this stream are worth processing in order to 
achieve meta-cognitive goals may be considered as 
the role of attention, in much the same way as 
attention operates on environmental information. 
The main purpose of introspection is to provide 
information to direct self-reconfiguration of the 
system. For example, an observation that system 
process P fails repeatedly in certain contexts can be 
used by the system to shut down process P and 
activate a different process (which may exist or need 
to be created/learned, generating a new meta-
cognitive goal) when such contexts occur in the 
future.   

 



 

5 AN ATTENTION MECHANISM 
FOR AI SYSTEMS 

This section presents a design of one possible 
attention mechanism for AI systems which addresses 
the concepts related to attention discussed 
previously. The implementation and evaluation of 
this mechanism is upcoming future work. The 
approach taken adopts the theoretical and 
methodological framework presented in Thórisson 
(2009). 

As attention is a ubiquitous cognitive process 
that cannot be easily separated from the rest of the 
cognitive architecture, some architectural 
requirements are unavoidable when tackling the 
design of an AI attention mechanism. The attention 
mechanism proposed here rests on the requirements 
that the underlying cognitive architecture has the 
following properties: 

 
 Data-driven. All processing occurs in 

reaction to data. Processes are activated only 
when paired with compatible input data 
(fitting the input data specification of the 
process). Absence of fixed control loops allow 
for greater flexibility and operation on 
multiple time scales. 

 Fine-grained. Processing and data elements 
of the architecture are numerous and small. 
Complex tasks require collaboration of many 
such elements. Reasoning about small, simple 
components and their effects on the system is 
more practical than attempting to do so for 
larger components. 

 Predictive capabilities. Generate predictions 
with regards to expected events. Expectations 
are part of the control data of the attention 
mechanism. 

 Unified sensory pipeline. Data from the 
environment and from within the system are 
treated equally. Enables systems to sense their 
own operation and potentially allows 
cognitive functions to be applied equally to 
task performance in the environment as well 
as meta-cognitive processing (e.g. self-
reconfiguration). 
 

The proposed attention mechanism implements 
both top-down and bottom-up attention. Top-down 
attention is based on goals and predictions, which 
serve as the basis for generation of so called 
attentional templates (AT), which are patterns that 
target data to various levels of specification. An AT 
can target general data (such as all data from a single 

modality, e.g. auditory) or more specific data such as 
anything directly related to an object or location in 
the environment and everything in between. As the 
architecture implements a unified sensory pipeline, 
sensory data and internal data are targeted in an 
identical fashion by attention. When a data object 
matches an active AT, it becomes a candidate to 
serve as input to a process for which it is compatible 
as input. Data objects that do not match any active 
AT are not caught by top-down attention and cannot 
trigger processing (unless caught by bottom-up 
attention). Each AT is created with an associated 
priority value, which is used when a match occurs 
with data, where the matching data item is assigned 
the same value. This value initially comes from the 
goal or prediction used to generate the AT. The 
assignment of priority values to data upon a match 
with an AT is called biasing. Available resources of 
the system are allocated to data items in order of 
their priority; data items with high priority values 
(greatest bias) will have better chances of receiving 
processing than those with lower values. 

Bottom-up attention is implemented by primitive 
data selection principles that attempt to quantify the 
novelty and unexpectedness of input data based on 
content, temporal factors and operational experience. 
The novelty of data is based on how similar it is to 
data the system has previously seen, with higher 
novelty values being assigned to data that is 
different from previously seen data. Time also plays 
a role as data that has not been seen recently (but is 
not completely new to the system) will receive 
higher novelty values than those that have occurred 
recently. For example, if the environment has been 
silent for a while and sound is suddenly heard, 
auditory data is considered novel and would be 
caught by bottom-up attention. If the sound persists 
for some period of time, auditory data will cease to 
be novel and require top-down attention in order to 
be processed. In this way, the bottom-up part of the 
attention mechanism implements habituation. 

Finally, a special mapping process is responsible 
for ensuring processes capable of consuming data 
caught by attention will be in active states. As the 
system is expected to contain numerous processes 
and data objects at any given time, attempting to 
match every data object to every process to 
determine if an operational match exists is not 
practically feasible. The data-to-process mapping 
component can be viewed as an optimization that 
reduces the number of data/process matched 
required. 

 
 



 

 
 

Figure 2: Overview of the proposed attention mechanism. 

6 CONCLUSIONS 

As has been shown, mapping models and 
concepts from attention in cognitive psychology to 
AI systems can be useful and straightforward. 
Surprisingly limited work has been performed on 
attention in the field of AI given that it is a field with 
the ultimate goal of creating human-like intelligence 
and that attention is clearly a critical cognitive 
process for humans. The fact that the human mind 
implements this kind of sophisticated resource 
management while being orders of magnitude more 
computationally powerful than existing computer 
hardware today also hints at the importance of 
attention for AI. 

Furthermore, attention is likely to be equally 
critical for introspective systems such as those that 
can manage their own growth and adapt to 
experience at the architecture level. The internals of 
the system can be viewed dynamic and complex 
environment in the same way as the task 
environment. With a general and flexible attention 
mechanism, it may be possible to apply the same 
attention mechanism for both environments 
simultaneously; giving rise to AI systems that 
perform tasks and improve their own performance 
while being subject to real-time constraints and 
resource limitations.   
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