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Abstract. Explanation can form the basis, in any lawfully behaving en-
vironment, of plans, summaries, justifications, analysis and predictions,
and serve as a method for probing their validity. For systems with gen-
eral intelligence, an equally important reason to generate explanations is
for directing cumulative knowledge acquisition: Lest they be born know-
ing everything, a general machine intelligence must be able to handle
novelty. This can only be accomplished through a systematic logical
analysis of how, in the face of novelty, effective control is achieved and
maintained—in other words, through the systematic explanation of expe-
rience. Explanation generation is thus a requirement for more powerful
AI systems, not only for their owners (to verify proper knowledge and
operation) but for the AI itself—to leverage its existing knowledge when
learning something new. In either case, assigning the automatic genera-
tion of explanation to the system itself seems sensible, and quite possibly
unavoidable. In this paper we argue that the quality of an agent’s expla-
nation generation mechanism is based on how well it fulfils three goals –
or purposes – of explanation production: Uncovering unknown or hidden
patterns, highlighting or identifying relevant causal chains, and identify-
ing incorrect background assumptions. We present the arguments behind
this conclusion and briefly describe an implemented self-explaining sys-
tem, AERA (Autocatlytic Endogenous Reflective Architecture), capable
of goal-directed self-explanation: Autonomously explaining its own be-
havior as well as its acquired knowledge of tasks and environment.
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1 Introduction

Explainability is an important feature of any artificial intelligence (AI) systems,
for numerous reasons. Explanations can form the basis of valid plans, summaries,
justifications, predictions, etc. and serve as a method for probing their validity,
cost, and potential dangers—which, in fact, is the role of explanations in general
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in society. The more complex an AI system is, the more important it is that
its operation be transparent and understandable not only by its owners, but
also by the system itself. Being explainable implies support for direct inquiries
for why a system did what it did, what it plans to do, and why it chose some
action over another. The level of transparency offered this way will impact a
system’s trustworthiness. For any general machine intelligence, trustworthiness is
a necessity, since such systems will handle novelty by definition; how they behave
in light of novel situations and tasks must be verifiable, at some reasonable level
of abstraction, to ensure their safety. Automating explanation generation in AI
systems is therefore an important goal [17], and it might be argued that it is
necessary for a system to be worthy of being considered general [23].

It is the ability of explanations to be verified that brings them their fun-
damental value. To be verifiable means that they must be based on knowl-
edge of verifiable causal relationships in the situation, task, or circumstances
in question—in other words, they must be falsifiable. To be falsifiable they must
reference some set of causal relations whose validity is undisputed in the relevant
contexts, or easily verifiable.

An important function of explanation that is less often discussed than most
others is their use for guiding an autonomous agent’s learning; the ability to
find explanations for learning failure or success can help uncover how the world
works. In this case, to be effective and efficient, explanation generation must be
autonomous [17]. Here we examine goal-directed self-explanation: the ability of a
system to autonomously generate explanations about its own behavior, as well as
its acquired knowledge of tasks and environment, under articulated requirements,
i.e. explicit goals. A key focus of this work is the use of such explanations as a
method for learning (and meta-learning, that is, learning to learn).

The work rests on the argument that explanation generation is a funda-
mental and necessary process for general self-supervised learning [23]. We look
at how explanation generation for this purpose is achieved in the AERA sys-
tem, and discuss its approach in light of other systems aimed at general intel-
ligence. Thórisson [21] describe a theory of pragmatic understanding that we
take as the foundation for our work here. We consider their definition of under-
standing well-suited for building a theory of explanation generation because it
already presents a strong foundation for relating prediction, goal achievement,
knowledge acquisition, and explanation to causal reasoning.

The paper is structured as follows: We start with an overview of related work,
then we provide some important definitions for the subsequent discussion, which
outlines our theory of goal-driven self-explanation generation.

2 Related Work

For reasons of opaqueness, studies on explainable AI have so far primarily focused
on artificial neural networks (ANNs), being mostly based on (manually guided)
abductive methods that attempt to trace certain outputs to the identification of
relevant inputs (cf. [14]). For immediate clarification, this is not what the present
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paper is about. In the allocentric methodologies employed in the development
of these systems [19], training data, implicit goals, and hand-coded heuristics,
are all determined and provided by the developers themselves, a-priori. In this
sense, ANN-based systems are no different from standard software applications.

We envision the aims of ‘explainable AI’ research differently. First and fore-
most, we recognize that the primary practical application of AI is all sorts of
automation, and therefore autonomous explanation generation should be a pri-
mary goal for explainable AI. In short, the human effort needed to arrive at an
explanation should be minimized as far as possible, delegating the explanation
generation to the machine. Equally importantly, we see explanation – and its
extension into argumentation in general – to be a foundation for any general
machine intelligence to grow its knowledge reliably, efficiently and effectively.

We are working exclusively on systems that can generate explanations au-
tonomously, about themselves and their task-environment—i.e. systems that are
self-explaining. Generally speaking, explanations can vary in their quality. A
good explanation eliminates blind spots, clarifies, or highlights that which was
obscure before (see section below). Above all, a good explanation observes cer-
tain implicit (explicit) constraints and does not break any relevant rules. To do
so, it is not enough that an explanation refer to correlational data, it must be
based on actual and relevant causal relations. This is because a good explanation
must highlight why something – whether it be a course of events, situation, or
other outcome – must be the way it is, rather than some other way [15, 4].

Most sources agree that causal attribution, or identifying underlying causes of
a class of (or particular) events or state of affairs, is a vital part of explanation [24,
9, 10, 18, 3].4 In fact, this is often how explanation is defined. Josephson equates
finding possible explanations with finding possible causes [7], and Halper and
Pearl claim that explaining a set of events necessitates the acknowledgment of the
cause of those events [3]. Miller expands on this, arguing that explanation begins
with the cognitive process of identifying causes, followed by a social process
of conveying the knowledge acquired by the cognitive process to the intended
recipient. As he also points out, causal attribution is a twofold process of inferring
the key causes and then selecting a subset of those causes as the most relevant
for an explanation [10]. Our approach is somewhat aligned with this view.

Halpern and Pearl [4] define causal explanations using structural equations,
for the purpose of determining and conveying an actual cause of an explanandum.
To accomplish this they assume that all relevant facts are known to said model.
What is lacking is a treatment of tasks and goals rather than simply explaining.
The assumption of a complete model is also unrealistic, particularly in complex
real-world situations. Their work thus leaves much to be desired when it comes
to AI, including how such models are autonomously built. This is addressed

4 Other types of explanation than causal have been proposed. Teleological explanations
are explanations focused on utility (to explain by defining the purpose or intent of
the thing to be explained [2]). But nowhere nearly all things in need of explaining
have intent or utility behind them.
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in our AERA system by positioning explanation as the provisioning of missing
information structures, making incomplete knowledge a feature, not a bug.

Hilton [6, 5] researched explanations extensively from a psychological per-
spective. They point out the inherent fallacy in using covariational criteria for
causal attribution, as there are numerous examples of events occurring at the
same time without one being the cause of the other. Their alternative model of
explanation is based on findings in ordinary language where humans make use
of contrastives and counterfactuals as criteria for causal attribution. This is also
one of the major findings of Miller’s survey [10] on explanations: explanations
in human conversation most commonly are produced in response to contrastive
questions, for instance “Why did you do A and not B?” rather than simply “Why
did you do A?”. Halpern and Pearl [3, 4] also build on this idea, positioning
counterfactuals as a way to highlight actual causes.

Palacio et al. went with a broader definition of explanation, arguing that
causation is not necessary for all explanation: “An explanation is the process of
describing one or more facts, such that it facilitates the understanding of aspects
related to said facts (by a human consumer)” [14, p. 5]. They further argue that
understanding is unique to humans, and therefore explanation from machine to
machine is merely verification. We do not agree with either assertion—indeed,
we consider it a central task artificial general intelligence research to endow
machines with understanding [21], and we see causal relations as central in all
explanations (if not explicit, then certainly implicit), because they are the fun-
damental method for explanation verification.

In our view, all explanations of complex tasks with multiple steps and sub-
goals must be based, in one way or another, on causal relations. We therefore
treat causation and causal knowledge as a necessary element in this work.

3 Definitions

Here we give a compact description of key terms used in the following sections,
in particular Section 4.

Explainer and Explanation. A process that produces explanations is an ‘ex-
plainer.’ This can be a human, a machine, or some other process which is posi-
tioned to serve such a role. An ‘explanation’ is a compact description outlining
some subset of a modelset of the phenomenon that, for whatever reason, is mis-
understood, misrepresented, or missing from the phenomenon’s modelset. An
explanation typically references existing parts of a modelset and presents either
a missing piece or highlights errors in it (see Section 4, page 7).

Explanandum and Explainee. ‘Explanandum’ is that which is to be ex-
plained. Given a particular outcome, situation, or turn of events, this can be an
anomaly, a missing but necessary relation, or other identified inconsistency that
calls for an explanation. ‘Explainee’ is the particular recipient of an explanation—
those to whom the explanation is addressed. This can be the Explaining process
itself, a co-located interlocutor, or some future recipient of the information.
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Explicit Goal. A ‘goal’ is a (constant state or steady) state to be achieved. An
‘explicit goal’ is one which can be described in some representational language
that references a knowledge base. An ‘active goal’ is one which can be thus rep-
resented and which may already be pursued—i.e. a goal that has been accepted
by an agent of change who is actively pursuing it.

Explainable vs. Interpretable. The terms ‘explainable’ and ‘interpretable’
are often used interchangeably in AI, but we see a definitive and important
difference between the concepts behind them, based on who exactly is doing
the explaining and interpreting. For instance, in work involving artificial neural
networks, ‘interpretation’ is typically an explanation of the mechanisms of the
classifier, not of the task or environment for which the system is deployed [8]),
and it is the researchers who are doing the interpretation.5 In contrast, we define
self-explaining AI as ‘AI that is capable of generating valid explanation,’ and
interpretable AI as ‘AI that can be interpreted (or explained) by a third party.’

Phenomenon. A phenomenon Φ (process, state of affairs, occurrence) – where
W is the world, and Φ ⊂ W , – is made up of a set of elements, including
sub-structures, component processes, whole-part relations, causal relations, or
other sub-divisions of Φ {φ1 . . . φn ∈ Φ} of various kinds, including relations ℜΦ

(causal, mereological, positional, episodic, etc.) that couple elements of Φ with
each other, and with those of other phenomena.

Complex Task-Environment. We define a ‘task-environment’ as the tuple of
an assigned task and the environment in which the task is to be performed. A
‘complex’ task-environment is, for all practical purposes, a combination of an as-
signed task in a particular environment that, for accomplishing the task, requires
(a) detection and separation of patterns and sub-patterns with non-trivial causal
and part-whole relations, that must be combined with (b) assumptions about
high-level logical relations between these (e.g. objects cannot be in to places
at once), combined with (c) creation, execution, and monitoring of partial non-
linear plans with nested contingency composition, and/or (d) direct application
of ampliative6 reasoning and analogy generation.

Valid Explanation. An explanation ε(x, y), where x is the explanandum and
y is a network of known (causal) relations and patterns relevant to x, can be
validated through a process that seeks to uncover inconsistencies in it through
the generation of questions that probe y’s causal relations relevant to x. To do
so the validating process must be able to (a) represent causality, and use this to
(b) abduce arguments which “argue for” – or serve as verifiable evidence for –
the validity of the explanation. The arguments could also be verified by direct
5 Providing adequate levels of transparency modern machine learning and AI sys-

tems such as reinforcement learners and deep neural networks, with adequate levels
of transparency, requires considerable post-hoc effort and skill in interpreting algo-
rithms, and most of the time it is essentially prohibitive due to cost.

6 Traditionally, ‘ampliative reasoning’ refers to any process that relies on abduction
and induction in any combination to achieve a particular result (cf. [16]); we include
(defeasible, non-axiomatic) deduction in that list.
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measurement (but is only necessary if the background assumptions on which the
evidence rests are not well-verified).

4 Goal-Driven Explanation Generation

We base this work on a theory of pragmatic understanding proposed by Thóris-
son et al. [21] which uses the concept of a modelset (set of peewee models7)
for describing a phenomenon, and that can be manipulated through a set of
processes for performing four types of tasks, one of which is explanation gener-
ation. Given a phenomenon Φ, MΦ is the modelset intended to capture relevant
aspects of the phenomenon; the models ({m1 . . .mn} ∈ MΦ) are information
structures intended for (a) explaining Φ, (b) predicting Φ, (c) producing effec-
tive plans for achieving goals with respect to Φ, and (d) (re)creating Φ in any
medium (see Section 4, p. 6). For any modelset MΦ and phenomenon Φ, the
closer the information structures as a whole represent key elements (sub-parts)
φi ∈ Φ and their couplings ℜΦ, at any level of detail, the greater the accuracy of
M with respect to Φ. The more completely such a modelset captures all relevant
aspects of Φ for achieving any of the four tasks, for any chosen challenge related
to Φ, the more comprehensive it is. Our theory of goal-driven self-explanation
considers explanation generation itself to be a task with a particular top-level
goal—namely:

Gtop — The goal of explanation is to improve (or prove) understanding.

This statement would in itself be a rather shallow if what we mean by ‘un-
derstanding’ was left unexplained; our definition of understanding is exactly
this: The more correct – i.e. comprehensive and accurate – an intelligent agent’s
modelset MΦ of Φ is, the better will the agent be said to understand phenomenon
Φ [21]. An explanation in this view is a concrete action that is intended to verify,
evaluate, or increase either the completeness of an agent’s models and relations
(Qcompl(MΦ,ℜΦ)), its accuracy (Qacc(MΦ,ℜΦ)), or both.

As mentioned above (p. 5), the models of a phenomenon’s Φ relations ℜΦ

describe how its elements relate to each other, and to other phenomena. If we
partition ℜΦ into two disjoint sets, inward facing relations ℜin

Φ = ℜΦ∩ (2Φ×2Φ)
and outward facing relations ℜout

Φ = ℜΦ \ ℜin
Φ , an agent whose models are only

accurate and complete for ℜin
Φ understands Φ but not Φ’s relation to other phe-

nomena (i.e. its context); an agent whose models are only accurate and complete
for ℜout

Φ understands Φ’s relation to other phenomena but will have limited or
no understanding of Φ’s internals.

A good explanation is one that unequivocally demonstrates or verifies under-
standing of a phenomenon Φ [1], or improves understanding of Φ by affecting
the modelset describing the phenomenon in a way that improves the possessor
of that modelset’s ability to achieve the four tasks related to a phenomenon.
7 Small models that can be composed into larger modelsets; see e.g. [11, 13].



Explicit Goal-Driven Autonomous Self-Explanation Generation 7

The explanation generation process involves the skills of identifying (i) the
role that the explanation should fulfil, (ii) the relevant patterns and relations
that must be referenced for it to serve this role, and (iii) producing a description
that meets these requirements (for a particular set of explainees). This is com-
patible and in line with earlier work on explanation generation (cf. [15, 4]). With
the exception of the first skill, to achieve any of these in a complex environment
requires information about cause and effect, the knowledge representation capa-
ble of supporting the above must, by definition, contain information about the
causal structure of Φ.

Generating an explanation calls thus for certain necessary information and
must meet certain necessary requirements. More specifically, producing an ex-
planation involves the generation of a compact description that references or
implicates one or more causal relations that – if not present, or structured dif-
ferently – would result in a different outcome. The causal relation(s) relevant to
the phenomenon that explanation targets limit(s) the possible state space by pro-
viding constraints, thus contributing to a particular outcome or situation. The
necessary ingredients to produce explanations are, therefore:

- knowledge of causal (and other) relations,
- named entities (and appropriate grammar) for producing this description,
- a fulfillment of a (possibly hypothesized) goal that the explanation is

intended to meet.

We hypothesize three classes of purposes – or subgoals – that a generated
explanation may serve, namely, to highlight or identify the following aspects
relevant to an explanandum:

G1 — Unknown or hidden variables, patterns, or other aspects.
G2 — Unknown or hidden causal factors and chains.
G3 — Unknown or hidden errors in background assumptions.

The task of an explainer (explanation-generating process) is to meet the top-level
goal that explanation serves, that is, to prove/improve understanding, by meet-
ing one or more of these three subgoals as closely as possible. The explainee can
be co-temporal and co-spatial, (as in human realtime dialog), a future receiver
of a recorded or written explanation (e.g. instruction manuals), a group of stu-
dents (as in a classroom), or the explanation-generating process itself (like during
learning, when explaining things to oneself for verification of understanding).

Since an explanation serves a purpose, as defined by its subgoal(s), G1−3,
we can assume that it may do so on a continuum, from well to badly. The
gradient from meeting this goal perfectly, R(ε) = 1, to not meeting it at all,
R(ε) = 0, describes how well an explanation “hits the spot”—let’s call it the
explanation’s role fulfillment, R(ε,ϖ), where ϖ is its designated role. And since
an explanation could in theory highlight the relevant patterns, causal chains, or
background assumptions anywhere from perfectly to not at all, we can define a
gradient for this dimension as well, ε(Prvt) = [0, 1]; we call it the validity of an
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explanation, V = ε(Prvt). The value of a given explanation is then the product
of how well it meets its goal and how valid it is, vpur(ε) = R× V.

We call this an explanation’s “pur (pure) value” because there is a third factor
that could be considered here, that is, how well the explanation fits an explainee
agent’s A knowledge, K(A). A ‘perfect explanation’ is defined as an explanation
whose pure validity is at maximum, vpur(ε) = 1.0, and whose compactness could
not be greater. The maximum compactness of an explanation ε is in part dictated
by this factor, because the more an explainee knows, the more compact can the
explanation be made. If an explainer makes incorrect assumptions about the
explainee’s knowledge – that is, there is misalignment between the explainee’s
knowledge and the explainer’s model of that knowledge – the compactness of
the explanation will suffer. We propose to represent this relationship as a match,
or overlap, between the constructed explanation’s encoding and the explainee’s
ability to unwrap that encoding (in other words, the effort required to decode
the information it is intended to carry), that is, {εΦ − (Φ \ K(A))}, where Φ is
the explanandum, εΦ is the (encoded) explanation of a particular part of Φ that
references both known and unknown information, and K(A) is the knowledge
of the explainee.8 This, then, may be taken into account when quantifying the
value of an explanation.9

In a reflective controller, i.e. one that can reflect on its own inner opera-
tions, any explanation can become the subject of the agent’s own explanation
machinery, allowing for the generation of explanations of explanations (like we
are doing right here right now). Capacity for this kind of self-explanation can
enhance not only an AI system’s understanding of its task and environment but
also of itself. In each case the explanations coming from within the system can
be processed by the system for the purpose of further knowledge acquisition
[23]. Stated differently, given that the system is a self-explaining AI, the better
the above explanation generation functions are fulfilled and implemented in the
same system, the more trustworthy the system will be, but not only that, it could
possibly learn faster and better. Going one step further, a paper by Thórisson
argues that autonomous general learning is not possible without some form of
explanation-generating mechanisms [23].

5 Explanation Generation in AERA

This section gives a short introduction to how AERA (Autocatalytic Endogenous
Reflective Architecture) meets the above requirements for generating explana-
tions [11, 12]. Knowledge in AERA is represented using two main types of infor-
mation structures, composite states and causal-relational models (CRMs) [22, 13,
8 For convenience we include, as part of the ‘encoding’ of an explanation, any refer-

ences to related but different phenomena intended to better match an explainee’s
knowledge—that is, to explain something better to a particular explainee, due to
their particular knowledge at the time of the explanation generation.

9 This certainly is a factor in all explanations produced by one human for another. It
may not, however, be relevant for self-explanation generation since the meaning of a
low-value (or zero-value, i.e. worthless) explanation produced for oneself is undefined.



Explicit Goal-Driven Autonomous Self-Explanation Generation 9

11]. Composite states capture patterns that an AERA agent can perceive; CRMs
capture causal relations by representing causes on the left-hand side and results
on the right-hand side. Pattern matching is used to match perceived or desired
states to either side. Using these constructs, AERA learns in a self-supervised
way by constructing programs on the fly for achieving self-generated goals and
sub-goals [20]. The resulting networks of information produce both concrete and
hypothetical plans, predictions, and sequences of actions that fulfill set goals.

AERA’s capacity for self-explaining comes primarily from two key principles.
Firstly, all its knowledge is explicit and compositional in a scale-independent way.
This means that both small and large details can be captured with compara-
ble information structures, and that hierarchies of knowledge can also be con-
structed into modelsets (through combinations of smaller elements). Secondly,
because cause-effect relationships are represented directly (also in a relatively
scale-free manner), computing the implications of particular actions, and pro-
ducing appropriate plans for achieving goals, is directly supported.

Finally, the special programming language used to implement these mech-
anisms in AERA, Replicode [11], makes key parts of the system’s operational
semantics accessible to itself, allowing it to use explanation to argue to itself
about which action to take, which options may be better than others, and what
particular actions may lead to in comparison to others.

6 Conclusion

Explainability and traceability are key requirements of all mission-critical en-
gineering. With the increasing use of software-controlled systems, complexity
rises, and with complexity comes the need for smarter software systems. To be
trustworthy, AI must be explainable. With the goal of creating systems with
general intelligence, AGI-aspiring systems should not only be explainable, they
should be able to explain themselves to their users. But if general intelligence
requires the ability to explain – if not for any other reason that the sheer amount
of possibilities that the physical world presents to anyone who is learning about
it from scratch – then such systems, upon having achieved generality in the
near or distant future, will already be able to generate good explanations about
their own operation and their task-environment. We hope the work in this paper
moves us one step closer to this future.
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