
ESTIMATING DIRECTION OF GAZE
IN MULTI-MODAL CONTEXT

David B. Koons Kristinn R. Thórisson

The Media Laboratory
Massachusetts Institute of Technology

20 Ames Street, E15-411
Cambridge, MA 02139

dbk@media-lab.mit.edu
kris@media-lab.mit.edu

ABSTRACT
An eye tracking method is described that can estimate a user's absolute fixation point
in three-space, and allows for free head motion within a half-sphere with a 1.5 m
radius. The system is based on an infrared corneal-reflection eye tracker and a
magnetic field system that together provide data about the position and orientation of
the head in three-dimensional space, and the orientation of the eye within the head.
Eye movement data is reduced by isolating periods of fixations and saccades. This
data is combined to compute a three-dimensional vector in the direction of line-of-sight
that can be intersected with the plane of a computer screen, to estimate the location of
a user's fixation.

By time-stamping eye fixations, eye movements are combined with speech and gestures
to disambiguate multi-modal references in the interaction between a user and the
computer. The eye tracker described was designed as a research tool for interfaces
that model human-to-human interaction, but has application in any situation that calls
for free head motion.

KEYWORDS: Eye tracking, eye movements, line of gaze, human-
computer interaction, multi-modal communication.

1. INTRODUCTION

Eye gaze has been found to be an important factor in human-to-human interaction
[Argyle & Cook 1975]. In the past, eye tracking has predominantly been used as a
research tool in psychology and physiology. Recently, however, there has been an
increasing interest in looking at the gaze of computer users as an indication of their
interest and focus of attention—as a way to enhance interaction at the human-computer
interface. Early efforts in using eye movements at the interface include work done at
the Architecture Machine Group at M.I.T., using eye measurements to orchestrate
multiple dynamic windows [Bolt 1984]. This system used a person's eye gaze as an
indication of attention and interest, and controlled the display of information, both
visual and auditory, according to eye behavior over time. A more recent example is
described in Starker and Bolt [1990]; a gaze-responsive storytelling system that
dynamically varied its monologue based on the user's interest. In this system, interest is
a function of where a person's eye lingers at any instance and how it changes over time.
Jacob [1990] has investigated the use of gaze as a direct manipulation tool for selection
of menu items and icons on a display.

Prior research on "eyes as output"
has generally spent little effort on
integrating gaze with other
interaction techniques, and the eyes
have often been isolated from other
natural modes of interaction—such
as speech and gestures. At best,
eyes have been combined with
traditional input devices such as a
mouse or a keyboard. We are
exploring how gaze can be
integrated efficiently into an
interface that supports multiple
modes of interaction: speech,
gestures and gaze [Koons et al. in
print, Bolt & Herranz 1992,
Thorisson et al. 1992, Bolt 1985].
The eye tracking system described
is currently used with an interface
that interprets concurrent actions in
speech, hand and eye [Thorisson et

al. 1992]. The goal of this research is an interface that takes advantage of the natural
conventions of traditional human-to-human communication.

The two most important factors when studying gaze in multi-modal interaction are
unrestricted head movements and the person’s line-of-gaze. To meet the first
requirement we use a head-mounted eye tracker. However, using a head-mounted
camera to estimate a person's gaze within a three-dimensional (3-D) world in a real-
time fashion presents the problem of integrating the geometry of the 3-D environment
with the data supplied by the camera. To allow a person to turn their head and look
about, we have combined the traditional corneal-reflection eye tracker with a magnetic-
field system that can give the orientation and position of an object—in this case the
person’s head—within a specified coordinate frame. The eye tracker itself provides
data about the eye movements within the person’s head. Using the magnetic-field
system a three-dimensional vector is computed for the line of sight and can
subsequently be intersected with a graphics display or any other object of known
location in the surroundings.

2. EYE MOVEMENT ANALYSIS

2.1 Eye Position
Many technologies and methods exist to estimate a person's eye position. Among the
most commonly used is the corneal reflection method: an infrared light shines onto the
cornea; the reflected image is captured by a camera and analyzed for bright and dark
regions [Young & Sheena, 1975]. The relative two-dimensional arrangement of these

Figure 1. Configuration of the head-mounted eye
tracker camera and the infrared LED light source.

Camera

Infrared LED

Half-silvered mirror

Sensor cube

regions in the image can then be
used to estimate the orientation
of the eye. The corneal
reflection method is a simple,
non-intrusive method that is
relatively accurate.

We use the RK-426™ ISCAN®
head-mounted eye tracker to
estimate the position of the eye
within the head. (Another
recent video-based eye tracking
system is described in [Myers et
al. 1991].) The user looks
through a half-silvered mirror,
placed in front of the eye at a
slant of approximately 45
degrees (Figure 1). The mirror
reflects strongly in the infrared
range but does not significantly
affect the person’s view through
the mirror. An infrared light-
emitting diode (LED) is
mounted above that shines onto
the mirror and illuminates the

eye and causes a highlight to appear close to the iris. A miniature, infrared-sensitive
camera captures the resulting eye-image off the mirror, and sends the video signal to a
286 AT computer. The ISCAN® system includes a plug-in board for the computer that
performs image processing on the video signal, to provide data about the size and
position of the pupil and the position of the highlight in the video image of the eye. It
is the relative position of the pupil and the highlight that provide the basic data for the
corneal reflection method [Young & Sheena, 1975]. As the user's eye moves, the
difference between the center of the pupil and the center of the highlight gives a fairly
good measure of the orientation of the eye within the head (Figure 2). The relative
location of these two features is represented as the difference in both the horizontal and
vertical dimensions of the video image (denoted [δxvideo, δyvideo] hereafter) and is
available at a rate of 60 Hz in this particular system.

When corneal reflection systems are used with a chin rest or bite-bar, the two-
dimensional data provided by the eye tracker are mapped directly to the two dimensions
of a computer screen (during a calibration process). The user is asked to successively
fixate on a given number of points on the screen. Any intermediate values are then
interpolated from these sampled points. Systems based on this technique require that
the head is kept stationary (with the help of a chin rest) both during calibration and
subsequent use.

Figure 2. The relationship of the highlight, created by
the LED light source (falling on the cornea), and the
center of the pupil, as the eye moves to the maximum
δxvideo and δyvideo values. The nine eye positions
shown correspond to the nine eye samples collected in
the calibration procedure.

2.2 Head and Screen Position
Problems arise with this simple mapping when we want to free the person’s head and
allow them to look about. The position of the head is no longer in a constant relation to
screen. We must now collect data on the dynamic configuration of the head and the
screen. Magnetic devices exist that allow accurate estimation of an object’s position in
three-dimensional space. We use a 3SPACE Isotrak™ system for this purpose. This
system uses a magnetic field to determine the position, [x, y, z], and orientation,
[θ, β, γ], of a sensor in relation to a source coordinate system ("Sensor" and "Source,"
Figure 3). The sensor is placed on the head-mounted eye tracker. The source is placed
on a nearby non-metal surface. It is important that the source be kept away from the
computer screen so that its magnetic field is not distorted by the magnetic field from the
screen. The system can give the location and orientation of the head within the source-
cube space (within a 1.5 m distancei of the source cube).

Since the sensor cube cannot be mounted at the eye position, it is mounted near the eye.
The difference in location is represented by a three-dimensional vector from the sensor
cube to the eye (vector i in Figure 3). Vector i is an estimate based on an average
person and is not sampled for each new user. In order to reduce the number of
rotational transformations required, the sensor cube is mounted in an orientation that
approximates the orientation of the head. Given the data provided by the Isotrak

i As specified by the manufacturer, McDonnell Douglas Electronics Company—Polhemus Navigational Sciences Division, the
Isotrak™ system is most reliable within 75 cm of the source cube. However, distances up to 150 cm are possible with diminishing
accuracy.

Figure 3. Magnetic cubes and vectors for finding the head and the center of the eye.

system, we can locate and orient the user’s eye socket. The socket serves as a frame of
reference for computing the azimuth and elevation angles of the eye, because the origin
of the line-of-sight vector is at the center of the eye ball/eye socket system.

In addition to locating the head, the Isotrak™ system is used to locate the computer
display. However, since the screen can easily be kept stationary in relation to the
source cube, this data is not collected at each calibration session. Instead, the sensor
cube is removed from the eye-tracker and used to collect position data for three corners
of the screen. This gives three vectors from the origin to these corners of the screen
(vectors a, b, and c, Figure 4), and the plane of the screen can be defined by two
vectors, d and e :

 d = a - b
 e = b - c.

Because of magnetic interference between the screen and the sensor cube, it is
necessary to place it at a constant offset in front of the screen (we use a 12 inch long
ruler for this purpose). This constant offset can then be subtracted from each point,
along a normal to the screen plane (as defined by the two vectors d and e).

2.3 Calibration
The exact configuration of the eye tracker is different each time it is put on a person's
head: it may be tilted back or slightly turned; the pupil and highlight may appear in a
different location on the video image; etc. To account for such variations, each session
begins by calibrating the system. The goal of the calibration process is to determine the
mapping between the angles of the eye derived from the geometrical configuration of
the system and the data extracted from the eye-tracking video camera. More
specifically, we want to be able to find a mapping from [δxvideo, δyvideo] into angles
around zsocket (azimuth) and ysocket (elevation).

Figure 5. Cartoon showing the user provide one of the nine calibration points: the upper right
corner (imagine looking at the user from behind a transparent screen). The motion of the
crosshair is shown by the dotted line (2 & 3). When the crosshairs have been lined up, a dot
appears in the center of the crosshair (4) to indicate to the user that data collection is taking
place.

1 2 3 4

As mentioned earlier,
in allowing the user’s
head to move relative
to the computer screen,
the calibration process
is no longer a simple
mapping from one
two-dimensional space
to another. In order to
calibrate with a head-
mounted eye-tracker,
we must now take into
account the orientation
and three-dimensional
position of the eye
socket and the three-
dimensional position
of a target point
(displayed on the plane

of the computer screen). By knowing the geometrical relationships between the socket,
eye and target the azimuth and elevation angles of the eye can be computed (assuming
the eye is directed at the target point) and associated with the data arriving from the eye
tracker.

One approach to the calibration process is to present target points that are at some
known angle relative to the current position and orientation of the head. In other words,
if we wish to collect data when the user’s eyes are looking 15 degrees up and 20
degrees to the right, we must present the target at these angles relative to the current
position and orientation of the head. However, because people tend to turn toward the
object they are looking at, the user could end up chasing the target off the screen (since
the target maintains the same relationship to the head regardless of head movements).

A second possible approach involves moving the head instead of the target. In this case
the target point is fixed to some known three-dimensional position and the user is asked
to orient his head while looking at the target. We have implemented this second
approach in the following way: A white target crosshair is presented at a fixed location
on the computer display. A second red crosshair is displayed that moves as the user
moves his head. The user's task is now to align the two crosshairs. When they are
aligned, the head is in the goal position and data about the eye position is collected
from the eye-tracker (Figure 5). It is important to note that this, and any other eye
tracking method, is based on the assumption that the user is looking at some known
target point. We assume that at the moment the cross-hairs come together the user's
eyes are directed at the center of the aligned crosses. (The user is informed about this
beforehand.) A series of these alignment tasks are completed for different
combinations of eye angles. The product is a calibration table; an array of data points

Figure 4. Vectors defining the plane of the computer screen.

covering the range of pre-determined eye orientations. These points are later used to
interpolate from a given [δxvideo, δyvideo] into angles (see next section).

The first step in the calibration process is to compute the position of the white target
crosshair on the computer display. The user is asked to sit comfortably while facing the
screen. The head position is sampled and a vector is created that approximates a
straight and level line of sight. The white crosshair is placed at the intersection of this
vector and the plane of the computer screen. This configuration of eye socket and
target is used later as a reference for computing the eye angles. In other words, when
the user’s head is in this position and orientation relative to the target cross, the eyes are
assumed to be directed straight ahead (azimuth and elevation are set to 0.0).

For each data point in the array collected during calibration, the user moves to align the
second red crosshair with the white target cross. As an example, suppose we wish to
collect the eye-tracker data when the eye is looking 15 degrees up and 20 degrees to the
right (+15˚ elevation, +20˚ azimuth). To calculate a position for the red cross on the
screen, the current head position and orientation data are collected from the sensor
cube. A vector is defined from the center of the eye socket to the center of the white
target cross. The azimuth and elevation of this vector in the socket coordinate system
can now be computed. Within the eye socket coordinate system, the eye has two
degrees of freedom; around the zeye (azimuth) and the yeye (elevation). Rotation
around the xeye axis, the line of sight, can be ignored. These computed angles are
compared to the goal angles (+20˚ azimuth, +15˚ elevation) and the difference is used
to position the red cross relative to the white target cross on the screen.

Figure 6. Nine calibration points are obtained in the
calibration. Here, the eye is shown looking at a point of 0°
azimuth and -15° elevation.

Continuing with the example, if the current angles are found to be +5˚ elevation and
+14˚ azimuth, the red cross would be displayed above and to the right of the white
target cross. The user can align the crosses in this situation by tilting the head down
(rotating the socket vector around ysocket) and turning to the left (rotating the socket
vector around zsocket; refer to Figure 5). Keeping the eyes fixed at the crosshairs, they
will now rotate in the opposite direction, moving closer to their goal angles. Once the
crosses are aligned, several samples of [δxvideo, δyvideo] data are taken from the eye
tracker, averaged and stored with the associated goal angles. These stored values
represent known points in the mapping between the data from the video image and the
corresponding angles of the eye within its socket.

2.4 Interpolating from Calibration Points to Angles
As mentioned before, the data provided by the eye tracker represents the difference
between the center of the pupil and the center of the highlight ([δxvideo, δyvideo]),
calculated in the x, y coordinate system of the camera's video signal. A calibration
table (the product of the calibration process) consists of nine [δxvideo, δyvideo] sample

Figure 7. Calibration points collected with the eye tracker. Azimuth values range from -
20° to +20°, elevation from -15° to +15°, resulting in the general tilt observed for each axis. The
corresponding δxvideo and δyvideo datapoints collected define four quadrants in a [δxvideo and
δyvideo] plane. The points are used to split the plane into eight triangles, defining the "tiles"
used to calculate intermediate values of azimuth and elevation.

points, one for each of the elevation and azimuth angle pairs in a 3x3 grid (Figures 2
and 6). By interpolating between the sampled points, the angle values for azimuth and
elevation of the eye can be estimated. These angles, in turn, allow the construction of
the line-of-sight vector in the three-dimensional environment.

What is needed at this point is a function (applied to both azimuth and elevation) that
accepts the data from the eye-tracking hardware and returns the estimated eye angle.
The nine sample points collected during the calibration process define points on a three-
dimensional surface (Figure 7). Given a [δxvideo, δyvideo] point, the associated eye
angle is represented as the distance from that point to the surface, i.e. the vertical height
at that coordinate.

We approximate the surface by using the nine sample points to define a set of eight
triangular planes or “tiles”. Given a new data point from the eye tracker, [δxvideo,
δyvideo], we first find the triangle whose center is closest to this coordinate. This
triangular plane is then used as a local approximation of the surface. The vector ωt, the
vertical height at this coordinate, serves as the estimation of the corresponding eye
angle. The scalar ω is found by:

(2)

(p r) • q (p r)
(p r)

s
t•

•
= -

ω
×

×

×

Figure 8. Given a δxvideo and δyvideo pair, it must first be determined which trianlge
plane to use for estimating azimuth and elevation. Here the point fell close to the center of one
of the triangles (as defined by vector s). Vector t is scaled according to Equation 2. The
resulting vector determines the angle in azimuth. This is done for elevation as well, using the
same δxvideo and δyvideo values, producing a pair of angles, [γ, β], corresponding to rotation
around zsocket and ysocket, respectively.

(× = cross product, • = dot product; see Figure 8). The result of the interpolation
process is a pair of angles [γ, β] representing the rotation of the eye around the zsocket
and ysocket axes.

2.5 Line-of-Gaze, Screen Intersection
Given the estimated angles for the azimuth and elevation of the eye [γ, β], a line-of-
sight vector can be computed using the geometric information provided by the space-
sensing hardware. To do this, a vector is defined along the x-axis of the source
coordinate system. The vector is first rotated by the estimated azimuth and elevation
angles and then again by the current head orientation angles (given by the sensor cube
mounted to the eye tracker). The rotated vector is finally translated to the current eye
position. The resulting three-dimensional vector (vector k in Figure 9) can now be
treated as the user’s line-of-sight. The line-of-sight vector is intersected with the plane
of the computer screen, resulting in a two-dimensional screen coordinate. The
intersection point is computed using:

(3)

(4)

(e k)
υ

f
=

d

a• •-
•

(e k)
×

(e k)××

(d k)

(d k)

a
ω =

f

e

• •-
•×

×(d k)×

Figure 9. The intersection of line-of-gaze vector k with the plane of the computer screen.
The scalars ω and υ can be used to scale the number of pixels of the screen to find the
estimated coordinates where the user was looking.

(see Figure 9). The scalars υ and ω can be used directly to scale the number of screen
pixels in xscreen and yscreen, respectively, since these are ratios of the lengths of vectors
d and e. However, because the user’s line of sight is represented as a three-dimensional
vector, it can be intersected with any object, plane or surface in three-space as long as
the object's position is known, relative to the origin defined by the magnetic source
cube.

2.6 Fixations, Saccades and Blinks
The physiology and psychology of looking helps reduce the continuous stream of data
from the eye: the two most important features in the eye motion are fixations and
saccades.ii During fixations, the times when the eye is at rest, a person gathers
information about the environment; during saccades, when the eye is in motion, the
visual threshold is elevated and much less information can be gathered [Skavenski &
Hansen 1978]. The advantages of this for us are twofold. First, as a method for
infering a person's interest, only fixations would be of any significance. Second, the
data from the hardware is available at rates up to 60 Hz. Calculating a line of sight at
this rate could be fairly expensive. To diminish computational intensity, an efficient
method is to ignore anything but the user's fixations.

By simplification, this can be achieved by looking only at the image coming from the
eye tracker camera. Alternatively, one could include head position in the calculations
to account for biases caused by head-movement during fixations. However, this has not
proven absolutely necessary for our purposes. A running estimation of the eye's
velocity is computed by taking an average of the last n eye-position samples ([δxvideo,
δyvideo]) and comparing it to a threshold. For increased noise resistance, two thresholds
are used. One threshold determines whether the velocity is slow or fast, the other
counts how many slow or fast velocity estimations have occured in a row. The fixation
filter looks at the number of slow velocity computations that have happened in
succession:

if velocity < Fix_vel_thrsh
 then Fix_count ← Fix_count + 1

 else Fix_count ← 0

If Fix_count goes over the pre-determined Fix_count_thrsh, the state is assumed to
be a fixation: a boolean variable is set to be the current state:

if velocity < Fix_vel_thrsh
 and Fix_count > Fix_count_thrsh
 then Fix_on ← true

 else Fix_on ← false

While the boolean variable is true, the samples for eye-position are cumulated:

ii Smooth pursuit eye movements, which happen when the eyes follow a moving target, are not analyzed in the current
implementation. However, this should be possible to implement by comparing the velocity of the eye to a typical velocity range.

if Fix_on
 then Cumulated_Dx_fix_samples[count] ← Dx

 Cumulated_Dy_fix_samples[count] ← Dy

By using this filtering method for saccades and blinks as well, any data that doesn’t fit
the parameters chosen for each type of movement will automatically be discarded.

When the Fix_on variable becomes true, a fixation beginning token is sent to the host
computer and eye-position samples are collected. When the velocity of the eye goes
over the fixation threshold again (velocity > Fix_vel_thrsh), a fixation is assumed
to have ended, and a fixation ending token is sent to the host computer, along with the
(filtered) mean of the accumulated eye-position samples and a reading of the user's
head position (see Figure 10). When the velocity goes below the threshold again, a new
fixation is assumed to have started, a fixation beginning token is sent to the host
computer, and the cumulation of eye data is restarted.

Duration of saccades can be estimated by looking at the time between the end of one
fixation and the beginning of the next; spatial distribution of successive fixations shows
their path. By putting a ceiling on how long a fixation can last—around 700 ms [Card
et al. 1984]—any smooth-pursuit movement along a path will register as a sequence of
fixations along the path that the eye moved. This ceiling also helps reduce errors in
detecting fixation/saccade boundaries. Blinks, a potential source of noise in eye
tracking systems, have a higher velocity or threshold characteristic than the saccades in
this eye tracker and can thus be detected by comparing eye-velocity to a specific range.
Detecting blinks can increase the reliability of fixation estimation, but it also opens up
the possibility of using blink rate as a further indication of a user's state.

2.7 Summary of Steps
In summary, our approach to head-mounted eye tracking includes the following general
steps:

Figure 10. Schematic of system configuration and signal and information flow.

AT Computer Host Computer

Fixations
Saccades

Blinks

TV signal
Pupil Center

LED Reflection

Fixation Ending

Time-stamping

 interpolation

Screen Intersection

AGENT Code

δxvideo δyvideo
[θ, β, γ]

[],

[x, y, z]

δxvideo δyvideo,

Fixation
Beginning

(1) The fixed geometric relations are sampled using the space sensing cubes. First, the
relative positions of the head-mounted cube and the tracked eye are sampled for an
“average” user and used to compute a translation vector (i in Figure 3). This
vector is defined in the sensor cube coordinate system and thus allows us to
determine the approximate position and orientation of the eye socket for any head
orientation and position. Second, the positon of three corners of the computer
display are sampled and represented as a three-dimensional plane in the source
cube space (Figure 4).

(2) A calibration process collects and associates data from the eye tracker with

computed eye orientations. A target point, whose three-dimensional location is
known, is presented on the computer display in front of the user. Assuming the
user is looking at the target, the azimuth and elevation angles of the eye within its
socket can be computed. These angles are stored together with the data derived
from the video image of eye (Figure 3). A grid of eye orientations is sampled
during the complete calibration process and is stored in a calibration table (Figure
6).

(3) The user’s line-of-sight can now be found by using the data in the calibration table.

Incoming data from the eye-tracker is mapped to an interpolated set of eye angles.
With the current position and orientation of the head (eye socket), these angles are
then used to construct a three-dimensional vector representing the user’s line of
sight. The line of sight vector can be intersected with the computer screen (Figure
9) or any other previously defined object in the surrounding environment.

(4) In order to reduce the computational load, the data from the eye-tracker is pre-

processed for fixations, reducing the data rate from 60 hz down to 1.5-10 hz
(section 2.6).

3. EYES IN MULTI-MODAL INTERACTION

3.1 Time Stamping
When people interact with each other they have a general sense about the time at which
disjoint actions happen: she says "That one!," and at the same time gazes over to the
left. The obvious response of a spectator is to link the eye motion with what she said,
and look in the general direction her eyes are now pointed. In multi-modal interaction
with a computer many things can happen in concert, and here the same need for a
common time base arises. For this we use a general time stamping method: when the
host computer receives a fixation beginning token from the AT computer, the token is
time-stamped and stored. When the corresponding fixation ending token is received,
with eye- and head-position data (Figure 10), the time difference between the begin and
fixation tokens gives duration of the fixation. The time information is crucial for
synchronizing the incoming data from speech, eye and hand. It makes it possible to
associate an utterance ("That one!") with the speaker’s direction of glance at that
moment.

3.2 Accuracy
People can judge the gaze of others fairly accurately [Gibson & Pick 1963]. The
accuracy of our eye tracker is similar to a human estimator in a typical one-on-one
scenario. With a good calibration, it can estimate the user's point of gaze (at a distance
of about 70-100 cm) on a computer screen to about ±2 cm. That is approximately the
area covered by the 2° angle of the fovea (2.4 - 3.5 cm at this distance).

In a multi-modal context we need to deal with the input from the eyes in a more
interpretive way than if it were literally a pointer with accuracies down to a pixel. In
interactions between people, the eye is more an indication for focus of attention than a
point that should be interpreted in absolute terms. This is approximately the level of
accuracy needed in such a system. The power of eye tracking comes from integrating it
with everything else in the multi-modal environment: gestures, speech, past events,
common task, current focus of interest, etc.

3.3 Integration into the Multi-Modal Context
We use eye gaze as a "deictic gesture" in our interface system to infer missing
information in single- and multiple-reference acts. In this system, which is described in
detail elsewhere [Koons et al. in print, Thorisson et al. 1992], speech, gestures and
fixations all have common time stamps, and data in these three modes can thus be
compared in time to find concurrent actions of the user. A collection of modules,
termed the agent, receive this information and parse it in context. When information is
missing from speech—if the user said for example "remove that helicopter"—the agent
looks at the fixations around the time the utterance "that helicopter" was spoken and
compares them to the spatial layout of all helicopters on the screen. The objects
referenced by speech (a collection of helicopters) are given a score based on their
proximity to those fixations, and if any single object receives a high enough score, that
object is judged to be the referent. Coupled with pointing gestures (done by a user
wearing data gloves), reliability can increase considerably. Usually several fixations
occur over the period of a sentence, which further increases the reliability. If the data
from speech, gestures and eye are not enough to resolve a reference, the agent will ask
the user for the information needed to resolve it.

4. FUTURE DIRECTIONS

The eyes are an important information channel for gathering information; there is no
doubt that they are also important in giving feedback—as an "output" channel of
information. Yarbus' work [1967] clearly shows that the eyes' movements are highly
dependent on the context and the task that the user is performing. Evidence from
studies of human interaction indicates that the eyes play a large role in controlling the
flow of the conversation [Argyle & Cook 1975]. Among the essential issues in the
design of a multi-modal interface is giving the computer agent more expressive ways to
communicate its state and actions to the user, such as a face that can establish eye-
contact [Thórisson 1993, Britton 1991]. We will also be looking more at how patterns

of looking can indicate what we are thinking and what state the conversation is in—
with the goal of increasing the computer's sense about the role the eyes play in
interaction, thus making interaction with computers more natural.

5. SUMMARY

The eye tracking system we have described combines currently available technology
with geometric methods for calculating a user's line of sight in a three-dimensional
environment. The calculated vector can be intersected with objects of interest in the
environment; we use a computer screen for this purpose. This system allows a user to
move his head freely within a sphere of 1.5 m radius while wearing a head-mounted
miniature camera. This approach makes it easy to intersect the line of gaze with
multiple screens, screens of varying sizes, or any other three-dimensional objects with
fixed locations.

Eye movements can be considered to be one of the most ignored indicators of human
intent and behavior at the computer interface. Although the current state of eye
tracking is somewhat cumbersome, we hope that future eye tracking systems will solve
these problems. In the mean time, the eye tracking method described has enabled us to
evaluate interaction scenarios that we could not have done by using the traditional chin-
rest eye tracking methods.

ACKNOWLEDGEMENTS

This research was done in the Advanced Human Intereface Group, MIT Media Laboratory, under the
direction of Dr. Richard A. Bolt. The authors want to thank David Berger, Brent Britton, Edward
Herranz, Carlton Sparrell and Christopher Wren for their help with this work. The work was supported
by the Advanced Research Projects Agency under Rome Laboratories, contract F30602-89-C-0022.

REFRERENCES

Argyle, M. & Cook, M. Gaze and Mutual Gaze. Cambridge University Press,

Cambridge, England, 1976.

Bolt, R. A. The Human Interface. Lifetime Learning Publications, Belmont, CA, 1984.

Bolt, R. A. Conversing with Computers. Technology Review, February/March, 1985.

Britton, B. C.J. Enhancing Computer-Human Interaction With Animated Facial

Expressions. Master's Thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1991.

Card, S. K., Moran, T. P. & Newell, A. The Psychology of Human-Computer

Interaction. Erlbaum, Hillsdale, NJ, 1983.

Gibson, J. J. & Pick, A. D. Perception of another person's looking behavior. American
Journal of Psychology, 46, 1963, 386-94.

Bolt, R. A. & Herranz, E. Two-Handed Testure in Multi-Modal Natural Dialog.

Proceedings of UIST ‘92, Fifth Annual Symposium on User Interface
Software and Technology, Monterey, CA, November 15-18, 1992.

Jakob, R. J. K. What you Look at is What You Get: Eye movement-based interaction

techniques. Proceedings of ACM CHI '90 Conference on Human
Factors in Computing Systems, 1990, 11-18.

Koons, D. B., Sparrell, C. J. & Thorisson, K. R. Integrating Simultaneous Input from

Speech, Gesture and Gaze. To be published in M. T. Maybury (ed.),
Intelligent Multi-Media Interfaces. AAAI Press.

Myers, G. A., Sherman, K. R. & Stark, L. Eye Monitor: Microcomputer-Based

Instrument Uses an Internal Model to Track the Eye. IEEE Computer,
March, 1991.

Skavenski, A. A. & Hansen, R. M. Role of Eye Position Information in Visual Space

Perception. In Eye Movements and the Higher Psychological Functions,
J. W. Senders, D. F. Fisher, & R. A. Monty (eds.), Erlbaum, Hillsdale,
1978.

Starker, I. & Bolt, R. A. A Gaze-Responsive Self-Disclosing Display. Proceedings of

ACM CHI '90 Conference on Human Factors in Computing Systems,
1990, 3-9.

Thórisson, K. R. Dialogue Control in Social Interface Agents. To be published in

Proceedings of InterCHI ‘93, Amsterdam, 1993.

Thórisson, K. R., Koons, D. B. & Bolt, R. A. Multi-Modal Natural Dialogue. In

Proceedings of ACM CHI '90 Conference on Human Factors in
Computing Systems, Monterey, CA, 653-4.

Yarbus, A. L. Eye Movements and Vision. Translated by B. Haig. Plenum Press, NY,

1967.

Young, L. R. & Sheena, D. Methods & Design: Survey of Eye Movement Recording

Methods. In Behavior Research Methods & Instrumentation, 7(5), 1975,
397-428.

