
FraMoTEC: Modular Task-Environment Construction
Framework for Evaluating Adaptive Control Systems

Thröstur Thorarensen,1 Kristinn R. Thórisson,1,2 Jordi Bieger1 and Jóna S. Sigurðardóttir2

Abstract. While evaluation of specialized tools can be restricted to
the task they were designed to perform, evaluation of more general
abilities and adaptation requires testing across a large range of tasks.
To be helpful in the development of general AI systems, tests should
not just evaluate performance at a certain point in time, but also fa-
cilitate the measurement of knowledge acquisition, cognitive growth,
lifelong learning, and transfer learning. No framework as of yet of-
fers easy modular composition and scaling of task-environments for
this purpose, where a wide range of tasks with variations can quickly
be constructed, administered, and compared. In this paper we present
a new framework in development that allows modular construction
of physical task-environments for evaluating intelligent control sys-
tems. Our proto- task theory on which the framework is built aims for
a deeper understanding of tasks in general, with a future goal of pro-
viding a theoretical foundation for all resource-bounded real-world
tasks. The tasks discussed here that can currently be constructed in
the framework are rooted in physics, allowing us to analyze the per-
formance of control systems in terms of expended time and energy.

1 INTRODUCTION

To properly assess progress in scientific research, appropriate evalu-
ation methods must be used. For artificial intelligence (AI) we have
task-specific benchmarks (e.g. MNIST [21]) for specialized systems
on one end of the spectrum and—proposed yet controversial—tests
for more general human-level AI (e.g. the Turing test [40]) on the
other end. Little is available on the middle ground: for systems that
aspire towards generality, but are not quite close to human-level in-
telligence yet. A major goal of AI research is to create increasingly
powerful systems, in terms of autonomy and ability to address a
range of tasks in a variety of environments. To evaluate the general
ability and intelligence of such systems, we need to test them on a
wide range of realistic, unfamiliar task-environments [17]. To cover
the entire spectrum of AI systems, we want to be able to analyze,
compare and adapt the task-environments that we use [36].

A prerequisite to evaluating systems is the construction of task-
environments. It has been suggested that successful regulation or
control implies that a sufficiently similar model must have been built
(implicitly or explicitly) [9, 32]. It is important for AI to understand
how the construction of models of task-environment works: for eval-
uation, for the model-building (learning) and decision-making that
goes on in the “mind” of a successful controller, and for the design

1 Center for Analysis and Design of Intelligent Agents,
School of Computer Science, Reykjavik University, Iceland.
email: {throstur11,thorisson,jordi13}@ru.is

2 Icelandic Institute for Intelligent Machines, Reykjavik, Iceland.
email: jona@iiim.is

process where match between agent and task must be considered.
Tasks truly are at the core of AI, and in another paper (under re-
view) we argued for the importance of a “task theory” for AI [37].
Other (engineering) fields often have a strong understanding of the
tasks in their domains that allows them to methodically manipulate
parameters of known importance in order to systematically and com-
prehensively evaluate system designs. A task theory for AI should
provide appropriate formalization and classification of tasks, envi-
ronments, and their parameters, enabling more rigorous ways of mea-
suring, comparing, and evaluating intelligent behavior. Analysis and
(de)construction capabilities could furthermore help any controller
make more informed decisions about what (sub)tasks to pursue, and
help teachers manipulate or select environments to bring about opti-
mal learning conditions for a student [4].

Here we present an early implementation of a framework for the
construction of modular task-environments for AI evaluation, based
on the initial draft of a task theory. The modular nature of the con-
struction makes it easy to combine elementary building blocks into
composite task-environments with the desired complexity and other
properties. It allows us not only to make simple variants on existing
task-environments to test generalization ability and transfer learning,
but also to measure (learning) progress by scaling environments up
or down (e.g. by adding/removing building blocks). The framework
is aimed at general systems that aspire to perform real tasks in the
real world. Such systems have bounded resources that they must ad-
equately manage, so we take a special interest in the amount of time
and energy they use to perform assigned tasks. Since we are mainly
interested in assessing cognitive abilities, the agent’s body is defined
as part of the task-environment so that we can evaluate the perfor-
mance of the agent’s controller (i.e. its “mind”).

2 RELATED WORK

Since the inception of the field of AI, the question of how to evaluate
intelligence has puzzled researchers [40]. Since then a lot of work in
the area has been done [22, 17, 25]. Most AI systems are developed
for a specific application, and their performance is easily quantifiable
in domain-specific terms. Evaluation of more general-purpose algo-
rithms and systems has always been more difficult. A common strat-
egy is to define benchmark problems (e.g. MNIST written character
recognition [21] or ImageNet object detection challenges [10]), AI-
domain-restricted contests (e.g. the Hutter compression prize [19],
planning competitions [8] or the DARPA Grand Challenge [39]) or
iconic challenges (e.g. beating humans at chess [7] or Go [33]) in
the hope that performance on these manually selected problems will
be indicative of a more general kind of intelligence. These methods
are good at evaluating progress in narrow domains of AI, where they

encourage innovation and competition, while also—unfortunately—
encouraging specialized approaches for overfitting on the evaluation
measure.

Many methods aimed at more general intelligence exist as well.
Many researchers have turned to theories of human psychology and
psychometrics to evaluate AI systems, resulting in human-centric
tests (e.g. the Turing Test [40], the Lovelace Tests [5, 27], the
Toy Box Problem [20], the Piaget-MacGuyver Room [6] and AGI
Preschool [14, 15]; see also the latest special issue of AI Maga-
zine [25]). These tests tend to either be very subjective, very human-
centric or only provide a roughly binary judgment about whether the
system under test is or is not (close to) human-level intelligent. They
are again applicable to only a narrow slice of AI systems, which in
many cases don’t exist yet (i.e. we have no human-level AI that can
genuinely pass most of these tests).

What we need is a way of evaluating AI systems that aspire to-
wards some level of generality, but are not quite there yet [36].
Hernández-Orallo argued that in order to assess general intelligence,
that the assessment should cover the testing of a range of abilities
required for a range of tasks [17]. What is needed then is a battery of
tasks that can be used to evaluate the cognitive abilities of a system.
Ideally, this battery of tasks should be suitable to the system we want
to test, but still comparable to tasks that are used on other systems.

The importance of using a range of tasks that are unknown to
AI system designers is widely—although not nearly unanimously—
recognized. For instance, the 2013 Reinforcement Learning Compe-
tition [42, 1] included a “polyathlon” task in which learning systems
were presented with a series of abstract but related problems. We see
the same in other competitions: the General Game Playing compe-
tition [12] presents contestants with the description of a finite syn-
chronous game only moments before it needs to be played, and the
General Video Game AI competition [24] does the same with video
games. These competitions are very interesting, but their domains
are still fairly restricted, the adversarial nature makes progress evalu-
ation between years tricky, and the “tasks” each need to be carefully
constructed by hand.

To really be able to evaluate a wide range of AI systems well,
it is necessary that tasks—and variants of those tasks—can eas-
ily be constructed or preferably generated. Hernández-Orallo advo-
cates this approach, but only covers discrete and deterministic envi-
ronments [16, 18]. Legg & Veness developed an “Algorithmic IQ”
test that attempts to approximate a measure of universal intelligence
by generating random environments [23]. Unfortunately these meth-
ods cannot easily generate complex structured environments and are
opaque to analysis and human understanding. Our own prior work
on the MERLIN tool (for Multi-objective Environments for Rein-
forcement LearnINg) [11] followed in the footsteps of other Markov
Decision Process generators like PROCON [2] and GARNET [3].
While Merlin does support using continuous state and action spaces
and somewhat tunable environment generation, it fails to meet most
of the requirements below.

In [36] we listed a number of requirements for the comprehen-
sive evaluation of artificial learning systems. An ideal framework
ought to cover the complete range of AI systems—from very sim-
ple to very advanced. Performance of various systems on different
tasks should be comparable, so as to differentiate between differ-
ent systems or measure progress of a single system. Such a frame-
work would not only facilitate evaluation of the performance of cur-
rent and future AI systems, but go beyond it by allowing evalua-
tion of knowledge acquisition, cognitive growth, lifelong learning,
and transfer learning. Most importantly, it should offer easy con-

struction of task-environments and variants, the ability to procedu-
rally generate task-environments with specific features, and facili-
tation of analysis in terms of parameters of interest, including task
complexity, similarity and observability. Easy construction includes
the ability to compose, decompose, scale and tune environments in
terms of parameters like determinism, ergodicity, continuousness,
(a)synchronicity, dynamism, observability, controllability, simulta-
neous/sequential causal chains, number of agents, periodicity and re-
peatability.

The framework we present here is a prototype aimed towards the
requirements outlined above. Section 7 will elaborate on this more,
as we evaluate our success so far.

3 TASK THEORY
The concept of task is at the core of artificial intelligence (AI): tasks
are used in system evaluation, training/education and decision mak-
ing. Tasks can vary from the classification of an image, to the clus-
tering of data points, and to the control of a (physical or virtual) body
to cause change in an environment over time. It is the latter kind of
task that we are primarily concerned with here.

Most AI systems are designed to perform a specific kind of task,
and most systems require a set of concrete tasks to train on in order
to learn to later perform similar tasks in production. This requires the
collection or construction of appropriate task examples.

Systems that aspire to a more general kind of intelligence aim
to tackle a wide range of tasks that are largely unknown at design
time. Upon deployment these systems are intended to not rely on
their designer to decompose their future tasks into component parts
and elementary actions – they will need to choose among different
decompositions and (sub)tasks themselves, in terms of both priority
(benefits) and feasibility (costs). Evaluation of more general cogni-
tive abilities and intelligence can not simply be done by measuring
performance on a single target task: we could just develop a spe-
cialized system for that3. Rather, we need a battery of tasks that can
be modified to grow with the systems under test and facilitate the
measurement of knowledge acquisition, cognitive growth, lifelong
learning, and transfer learning.

While we don’t have fully general systems yet, different systems
will need to be evaluated on different task batteries, and we need
the flexibility to tailor those to the systems under test and the ability
to compare performance on various tasks in order to compare dif-
ferent AI systems. Yet in most cases tasks are selected ad hoc, on a
case-by-case basis without a deep understanding of their fundamen-
tal properties or how different tasks relate to each other. We have
argued elsewhere for the importance of a “task theory” for AI [37].
Such a theory should cover all aspects of tasks and the environments
that they must be performed in, and cover:

1. Comparison of similar and dissimilar tasks.
2. Abstraction and reification of (composite) tasks and task elements.
3. Estimation of time, energy, cost of errors, and other resource re-

quirements (and yields) for task completion.
4. Characterization of task complexity in terms of (emergent) quan-

titative measures like observability, feedback latency, form and
nature of information/instruction provided to a performer, etc.

5. Decomposition of tasks into subtasks and their atomic elements.

3 Unless the single target task is AI-complete (c.f. the Turing test and similar
tests), but these are typically only applicable to a very narrow range of
intelligence (i.e. humanlike intelligence), and no current systems can pass
these tests.

2

6. Construction of new tasks based on combination, variation and
specifications.

To accomplish all of this we need some way to formalize task-
environments. Here we only give an overview of our initial attempt;
for more detail see [37].

At the highest level, we use a tuple of task and environment—
similar to Wooldridge’s hEnv, i [43], where represents the cri-
teria by which success will be judged. As a first approximation a task
may be formulated as an assigned goal, with appropriate constraints
on time and energy. Wooldridge [43] defines two kinds of goals, what
might be called achievement goals (“Ensure X ⇡ G

X

before time
t � 10”) and maintenance goals (“Ensure X ⇡ G

X

between time
t = 0 and t = 10).4 By introducing time and energy into the success
criteria, this disparity is removed: Since any achieved goal state must
be held for some non-zero duration (at the very minimum to be mea-
sured as having been achieved) an achievement goal is simply one
where the goal state may be held for a short period of time (relative to
the time it takes to perform the task which it is part of) while a main-
tenance goal is held for relatively longer periods of time. The highest
attainable precision of a goal state is defined by the laws of physics
and the resolution of sensors and actuators. Performing a task in the
real world requires time, energy, and possibly other resources such
as money, materials, or manpower. Omitting these variables from the
task model is tantamount to making the untenable assumption that
these resources are infinite [41]. Including them results in a unified
representation of goals where temporal constraints on the goal state
are provided.

Any action, perception and deliberation in the real world takes up
at least some time and energy. Limitations on these resources are
essentially the raison d’être of intelligence [35]—unbounded hypo-
thetical systems will randomly stumble upon a solution to anything
as time approaches infinity. Estimation of time, energy and other re-
source requirements (and yields) for task completion can be used to
design effective and efficient agent bodies, judge an agent based on
comparative performance, and make a cost-benefit analysis for de-
ciding what (sub)tasks to pursue.

For the environment part of our formalization we take inspiration
from Saitta & Zucker [30]. The environment description contains
variables describing objects in the world, as well as transition func-
tions to describe the dynamics. Environments are considered per-
spectives on the world, and can be nested within each other if de-
sirable, resulting in a certain amount of modularity. Since we are
mainly interested in creating systems with advanced cognitive abili-
ties, we define sensors and actuators simply by listing observable and
controllable variables. This essentially places the agent’s body inside
the environment. From an evaluation perspective, this allows us to
focus on the agent’s controller (mind). From a task analysis point of
view this allows to make statements about physical limits and feasi-
bility without needing to consider the unknown cognitive abilities of
a controller.

4 FRAMEWORK
Our Framework for Modular Task-Environment Construction
“FraMoTEC” enables the construction and simulation of task-
environments in a modular way. An early prototype has been imple-
mented in Python in an object-oriented manner, using a layered com-

4 We use approximate rather than precise equivalence between X and its
goal value G

X

because we intend for our theory to describe real-world
task-environments, which always must come with error bounds.

position of small building blocks to describe entire environments.5 To
aid in the explanation of our framework and its various components,
we use the following running example of a task-environment:

Example 1 (Car Race). A one-dimensional race is our simplest ver-
sion. The agent must move a car across the finish line N meters
away from the starting position. The controller determines the rate
of energy expenditure, which results in higher or lower acceleration
(pressing the gas pedal more increases the flow of fuel to the engine
and through that the amount of energy that is converted in order to
move the vehicle). Naturally the race must be finished using as little
time as possible and using an amount of energy that doesn’t exceed
what is available from the gas tank.

Example 2 (Car Parking). Example 1 can straightforwardly be con-
verted to a parking task if we require the car to end up between two
points (rather than across a finish line), or extended by e.g. adding a
second dimension or adding/removing friction and air resistance.

4.1 Components
Constructing task-environments requires using the building blocks
provided by the framework. These building blocks are designed to
be as basic as possible to allow for a wide variety of behaviors to
emerge from the different combinations of organization of the blocks.
Most of the organizational complexity of the resulting tasks emerges
from the various combinations of objects with custom transitions.
The following components have been incorporated: objects, transi-
tions, systems, goals, motors and sensors. When all building blocks
come together they form what is finally called the “model”—i.e. the
complete representation of the task-environment (and by extension,
the natural system that the model represents).

Objects Objects are used to describe the “things” in a task-
environment model, such as the car in the race example. The frame-
work implements basic one-dimensional kinematics individually for
each object. Objects have a main value x (in the example corre-
sponding to the car’s position) as well as physical properties like
velocity v, massm, friction µ

k

and might even contain val-
ues for gravitational acceleration at some angle ✓. This allows the
object to naturally transition (as will be explained below): the new
velocity is computed based on the current velocity and the
input power P (and direction) from any affectors, which is then used
to update the main value, as shown by these physics equations:

F

input

=

P

v

F

gravity

= �mg · sin ✓
F

friction

= � sgn v · µ
k

mg · cos ✓
F

total

= F

input

+ F

gravity

+ F

friction

v v + �t · Ftotal

m

x x+ �t · v

where g is the gravitational constant and �t is the (theoretically
infinitesimal) time over which the framework calculates each change.

Although the framework does not currently implement other ob-
ject behavior, we envision extending the framework as experience
with it accumulates.
5 The FraMoTEC code is available at https://github.com/ThrosturX/task-env-

model.

3

Transitions Transitions or transition functions are used to change
the (values of) objects in the task-environment. Transitions come in
two forms: the natural form and the designed form. Natural transi-
tions describe the natural change of the objects and systems in the
task-environment. They are provided by the framework and executed
automatically during simulation unless this is explicitly prevented.
Transitions that are specified by the task-environment designer ex-
pand upon the natural behavior of an environment by adding custom
logic to it without requiring the framework to be extended specif-
ically. We could for example implement a transition that causes
the car in our race example to lose mass as its energy is depleted:
t mass: car.mass 1200 + car.energy / 46000.

Motors Motors can be considered “effectors” or “actuators” of the
controller, which it can directly interact with to affect the environ-
ment, to achieve goals and perform tasks. The controller sets the rate
at which energy is transferred to each such motor (we refer to this en-
ergy transfer rate as “power”). When connected to an object (as they
typically are), this energy is converted into a force that affects an
object’s current velocity. Motors can be placed in systems of ob-
jects with custom transitions to create new behavior. For instance, to
add more realistic steering controls, instead of letting the controller
use independent motors to affect the x and y position directly, we
could add motorized orientation and speed objects, plus these
transitions:

• x.velocity speed.velocity·cos (orientation.value)
• y.velocity speed.velocity ·sin (orientation.value)

Sensors Standardized access to objects’ values can be provided
via sensors. A sensor reads an object’s value, optionally applying
some distortion due to noise or limited resolution. Sensors can also
read other sensors, allowing designers to combine observations or
apply multiple layers of distortions.

Systems Systems facilitate composition immensely by acting as
a container for objects, transitions, sensors, motors and other ele-
ments. The natural transition of a system is to apply all transitions
within. Systems can be used to create a hierarchy of larger build-
ing blocks that can easily be reused and rearranged. For instance, we
could create a system to encapsulate the above object car and tran-
sition t mass so that more cars whose mass depends on the contents
of their fuel tank can easily be made. Or, when we define a car that
can move in two dimensions, we need separate objects for the posi-
tion in each dimension. We could make a system with two objects—
for x position and y position—and motors to control each
dimension separately (this would perhaps be more reminiscent of a
helicopter) or motors for controlling speed and angle of the wheels.
One kind of “car” could easily replace another kind in a larger sys-
tem, without affecting everything else, making it easy to create slight
variations. “Inaccessible” objects or other constructs can also be cre-
ated, whose value is inaccessible directly via sensors. This facilitates
the theoretical creation of systems with hidden states.

Goals Goals are used to define tasks that the controller must per-
form. A goal specifies a target object X along with a goal value G

X

,
tolerance ✏ and time restrictions. Tolerance values should be used
because all measurements are constrained by real-world resolution.
Time restrictions should allow the user to specify before and after
which (absolute and relative) times the target value needs to be in
the goal range. Goals can also depend on other goals to be satisfied

(i.e. the goal can require other goals to be met before it can con-
sider itself satisfied). This allows users to easily define composite
tasks by sequencing goals. Once a goal has been satisfied, it is for-
ever considered satisfied unless it is reset, in which case both the
goal itself and any goals it was a prerequisite will be reset recur-
sively. This allows the state of the task to be evaluated based on the
number of achieved goals without regarding the environment’s cur-
rent state. In the car race example we might define a goal that says
G

X

� ✏ car.value G

X

+ ✏ ^ t 10. Since the task is
accomplished as soon as the goal becomes satisfied for the first time,
tolerance could be set to zero. For the parking task, we might
add a goal that says 0 � ✏ car.velocity 0 + ✏ and add it
as a prerequisite to the other goal to demand that the car is stopped
at the end.

Task-Environment Model Finally, a model of an entire task-
environment is created that can be run by the framework. The task
part consists of a set of goals plus additional restrictions on time and
energy. The environment is a system that contains all relevant ob-
jects, transitions, sensors and motors.

5 Task Construction
Tasks are constructed modularly using the smallest possible con-
structs, as building blocks with peewee granularity provide the most
flexibility [38]. The simplest conceivable task-environment is essen-
tially specified in our car race example: the environment is a single
system containing one object with an associated motor and sensor,
and the task simply specifies a single goal value for the only object
along with some restrictions on time and energy. We can construct
more complicated tasks by adding more objects, sensors and mo-
tors to the environment. We can enforce systems’ behavior as desired
by implementing appropriate transitions. We can for example create
a system in which objects X and Y move independently except if
Y < 20 by implementing a transition that checks if Y < 20, lock-
ing X in place (freezes it’s state) if so, and unlocking it otherwise:
transition

lock-x

: X.locked Y.value � 20.
The framework has some built-in randomization options, allowing

designers to set ranges of options for the values of objects and goals.
This allows us to easily generate a set of different but highly similar
concrete tasks that can be used to train or evaluate a system on the
general idea of a task family, rather than just having it memorize the
specifics of a single task.

5.1 Simulation
In order to evaluate or train intelligent controllers, it is important
that the constructed task-environments can be executed or simulated.
The designers of task-environments ultimately produce formalizable
models—this is a natural implication of the framework building on
simple, simulable causal processes (the building blocks and their in-
teraction). A simulation of the model becomes a simulation of the
natural system that the model represents, transmuting Church’s thesis
into an assertion (all systems that can be modeled by the framework
are simulable) [28].

In order to simulate a task-environment, its model needs to be
connected to a controller. Since different controllers have different
requirements, this is largely left up to the user. FraMoTEC is imple-
mented in the Python programming language and provides a simple
API on the task-environment model. The typical method of usage
would be to construct and instantiate a task-environment model as

4

well as a control system—here we will use the example of a SARSA
reinforcement learner. The user is free to access all aspects of the
task-environment and should use this access to define the interac-
tion with the controller in any way that they like. For instance, some
implementations of table-based SARSA systems may need to be in-
stantiated with knowledge of the range of possible actions and obser-
vations.

The task-environment model provides a tick method that takes
delta time as an argument. Whenever this method is called, the
framework will run the simulation for delta time seconds. When
the method returns, the user can easily obtain the values from sen-
sors to pass on to the controller. At this point it is also possible to
e.g. compute a reward based on values from the sensors or other in-
formation that the user can access about the current state of task and
environment. It should be noted that the framework itself does not
yet support explicit rewards.6 Not every control system requires ex-
plicit or incremental rewards; for more powerful learners rewards for
ought to be intrinsic [34, 31, 13, 26]. Having said that, it is trivial
to implement rewards via a special kind of sensor designated as a
reward channel, and to possibly couple this with the state of goal
achievement, which is of course tracked within the system. The user
could then pass on the actions of the controller to the motors of the
task-environment before calling tick again. This fully synchronous
mode of interaction is required by most reinforcement learners, but
FraMoTEC could also run simulations asynchronously if the con-
troller supports it.

The simulation component of the framework would ideally be
truly continuous, but the nature of the Von Neumann architecture
encourages stepwise integration. delta time can be viewed as the
time resolution of the controller. The task-environment model has its
own time resolution dt. As such, every simulation step regardless of
length should optimally ensure that:

• For all systems: naturally transition for dt seconds—recall that
any system’s natural transition fires all transitions within.

• For all objects: naturally transition for dt seconds
• Goals should be asserted to evaluate whether success (or failure)

conditions have been met
• The time passed during the frame must be recorded and added to

an accumulator
• The energy used by any motor during that time frame should be

recorded and added to an accumulator
• Current time and energy usage should be compared with time and

energy limits

5.2 Analysis
In the current prototype implementation FraMoTEC offers limited
functionality for analyzing task-environments and the performance
of controllers. For a given task, the framework can produce a time-
energy tradeoff plot (Pareto curve) that shows the minimal amount of
energy that is required to finish the task in a given amount of seconds
(or alternatively: the fastest the task can be completed given a certain
amount of expended energy).

As previously established, time and energy usage are key met-
rics to consider when evaluating the performance of controllers in
a given set of task-environments. It goes without saying that a con-
troller that spends 2 minutes and 20 KJ of energy to solve a specific
6 Rewards are appropriately seen as part of the information/training materials

for a task, not as part of the task proper (although one may argue that a task
will change drastically, perhaps fundamentally, depending on what kind of
information is given about it up front and during its learning/performance).

task-environment is worse at completing the task than a controller
that spends 30 seconds and 700 J in that same task-environment.
Maybe the first controller spent more time actually learning about
the environment, in which case it might be much better suited for a
set of similar task-environments than the second controller.

Naturally, we can continuously measure the time and energy ex-
penditure of an controller to quantify the total amount of time and
energy required to come up with a solution to some task. In this sense
we are not evaluating a controller’s ability, but its ability to improve
some ability (i.e. the controller’s ability to learn). We can further ex-
tend both these evaluation methods to a set of tasks in lieu of a single
task, allowing for a more comprehensive evaluation and comparison
of all kinds of controller.

After simulation, successful attempts by the controller that re-
sulted in completing the task can be added to the graph to com-
pare time and energy usage compared to each other and the optimal
Pareto curve. Different runs are color-coded according to the time at
which they occurred (earlier attempts are lighter, while later ones are
darker), which shows a controller’s (hopefully improving) behavior
over time.

6 USE CASES
In this section we will showcase some simple use cases of the system.
Since this paper is not about advanced control systems themselves,
we will use a simple SARSA reinforcement learner [29] and some
domain-specific control systems to illustrate the capabilities of the
framework in a simple way.

6.1 Learning Agent
An agent was implemented with an underlying SARSA reinforce-
ment learning algorithm. The state exposed to the agent was an n-
tuple of all sensor readings along with the velocity of one of the ob-
jects in the model. A scoring function was implemented to determine
rewards7.

Reinforcement learners generally learn slower as the state·action
space increases, therefore the agent enumerates the available actions
as the setting of a single motor at one of three power levels: (i) 0

(ii) P
max

and (iii) �P
max

. We experimented with an agent that in-

cluded the settings (iv)
P

max

2

and (v) �P

max

2

, but we found that
these settings unnecessarily crippled the agent and removed them.
The agent implements a method perform(self, dt) that cre-
ates an experience for the agent by: (a) setting the current state (b) se-
lecting and executing the reward-maximizing action (c) ticking the
simulation by dt seconds (d) rewarding the learner based on the value
of the scoring function and the new state. This method is called re-
peatedly in the evaluation, see Section 6.2.1.

6.2 Task-Environments
The agent was introduced to two similar environments. The first
environment had the goal of moving the position object into
goal position with a tolerance of 5, with 5000J and 60 seconds
as the maximum expendable time and energy (essentially, the 1D car
race example):

7 Implemented as
⇣
�

NP
i=0

|s
objecti

� s
goali

|� ✏
i

⌘
where s represents the

position (value) of either the object or the goal associated with a Goal in
the task-environment’s solution.

5

• One object: position
• One fully reversible motor affecting position with 200W max-

imum input
• One sensor for position
• Goal: position within goal position ± goal epsilon

• Max time and energy: 60 s, 5000 J

The second environment expanded upon this environment, requir-
ing a “plotter” to be activated when the position is correct—both
goals needed to be satisfied to consider the task solved. An addi-
tional transition in the second environment locked the position while
the plotter was activated.

• Two objects: position and plot it

• One fully reversible motor affecting positionwith 200 W max-
imum input

• One non-reversible motor affecting plot itwith 5 W maximum
output8

• One sensor for each object
• New transition function: If plot it >0.5: position is

locked, otherwise it is unlocked.
• Goal prerequisite: position between goal position ±
goal epsilon

• Goal: plot it is 1± 0.1

• Max time and energy: 60 s, 10000 J

The second task-environment increases the task difficulty when
compared to 1D car racing by adding a new object (complete with
sensor and motor), changing the behavior (with the transition func-
tion that locks the position object) and by expanding on the orig-
inal goal.

6.2.1 Evaluation

First, the agent is tasked with solving some training environments
which are copies of the target environment, except with a more favor-
able starting position. The training environments gradually get more
difficult by increasing the distance between the starting position and
the goal. Once this training is complete, the agent gets 200 chances
to satisfy the goal(s) in each task-environment. The data is visual-
ized using the methods described in Section 5.2. Figure 1 shows the
results for the 1D car race task-environment. Figure 2 shows the re-
sults for the 1D locking plotter task-environment. Note that the agent
continues to learn by creating experiences during the evaluation (i.e.
learning is not “switched off”). The evaluation works as follows:

• While the task is not solved:

1. If the task has been failed, stop

2. Invoke the agent’s perform method (with dt set to 0.25s, see
Section 6.1).

• Finally, report time and energy usage (and indicate if the task
failed).

Note on reading the plots: The blue line represents the energy re-
quired to complete the task at each time. The red line represents the
maximum amount of expendable energy due to motor power limita-
tions. The dots represent data points for the evaluations, with lighter
colored (greener) data points representing earlier runs and darker
colored (redder) data points representing later runs.

8 You can think of a solenoid with an off button.

Figure 1. Resulting plot for 200 evaluations in the 1D car race
environment.

Figure 2. Resulting plot for 200 evaluations in the 1D locking plotter
environment.

6.3 Agent Comparison

In order to demonstrate how different agents can be compared just
as different environments can be compared, a custom agent imple-
mentation was compared with the SARSA implementation in the 1D
locking plotter environment. The custom agent roughly implements
the following algorithm in the perform method:

• Compute distance between position and the corresponding
goal

– If the distance is small enough, deactivate the position mo-
tor and activate the plot it motor.

– If the distance is positive, maximum power to the position
motor and deactivate the plot it motor.

– If the distance is negative, maximum negative power to the
position motor and deactivate the plot it motor.

• Tick the simulation by dt seconds

It should be obvious that the above algorithm is specifically tai-
lored to outperform the SARSA agent, as it includes domain knowl-
edge which the SARSA agent would need to come up with on its
own. Figure 3 indeed shows that this controller performs much bet-
ter and more constantly, but also that it’s not improving over time.

6

Figure 3. Resulting plot for 200 evaluations in the 1D locking plotter
environment using an agent with a domain-specific implementation.

6.4 N-Dimensional Task Comparison
6.4.1 Task-Environments

A generic N-dimensional task-environment generator is included
in the samples as sample N task. The generator returns a task-
environment with N objects and associated sensors with a default
starting position of 3± 2 and a goal of reaching 10± 0.5. There are
two systems: (i) a control system which contains two objects with
associated motors and sensors and a transition function that sets the
power level of some hidden motor to some value depending on the
values of the objects in the control system (ii) a hidden motor system
which ensures that activating the hidden motors for each of the N

variables results in that power usage being counted
The control system includes the motors that the agent should have

direct access to. The main power motor determines how much power
is input into the hidden motors while the selection motor determines
which hidden motor is activated.

6.4.2 Controller

A simple controller was created to solve the class of task-
environments described in the previous section. The algorithm is
quite simple, the below should demonstrate the agents perform
method:

• Activate the main power motor
• Determine the object that is furthest from the goal, call it min o

• Determine the direction of power required to enable min o’s af-
fector

• Activate the selection motor in the appropriate direction
• Tick the simulation by dt seconds

6.4.3 Results

Two variations of the N-dimensional task were attempted, one with
10 dimensions and one with 20 (Figures 4 and 5). It should not come
as a surprise that the task-environment with fewer dimensions was
solved in less time, with less energy. However, the difference was
not double, as one might be inclined to suspect when doubling the
size of the environment. This gives us an indication about the agent’s
ability to scale with environments (but could also give some indica-
tion of how well-formed the environment itself is). Since we know
everything there is to know about the environment, we can assert that
the agent seems to scale well from 10 to 20 dimensions.

Figure 4. Resulting plot for 100 evaluations in a generic 10-dimensional
task-environment.

Figure 5. Resulting plot for 100 evaluations in a generic 20-dimensional
task-environment.

7 CONCLUSION & FUTURE WORK

In this paper we have presented our ideas for and early prototype
implementation of a framework for modular task-environment con-
struction (FraMoTEC). FraMoTEC aims to facilitate the evaluation
of intelligent control systems across the entire spectrum of AI sophis-
tication on practical tasks. The framework is intimately intertwined
with an equally early-stage “task theory” that is intended to deepen
our understanding of fundamental properties of various types of task-
environments and how they relate to each other. Such an understand-
ing would help us compare control systems against each other and
earlier versions in order to measure progress, learning and growth.

A major goal was to lay the groundwork for an evaluation tool
that meets the requirements that we outlined in an earlier paper [36]:
facilitation of easy construction, procedural generation and in-depth
analysis. We believe that the framework does indeed make steps in
the right direction. Current analysis capabilities of the framework
are very limited, but already provide for instance some rudimentary
understanding of tradeoffs between time and energy, and measuring
a learning system’s performance increase over time. One major piece
of future work is to further develop task theory so that we can make
predictions about the effects of combining tasks and environments:
e.g. when we add a dimension or additional goal, how does that affect
minimum time and energy requirements?

Procedural generation of task-environments is precursory at this

7

point in time. The framework allows users to set ranges of accept-
able options for initial values of objects and goals instead of con-
crete values. Slightly different concrete task-environments can then
be instantiated automatically by the framework. However, the mod-
ular nature of tasks and environments should make it relatively easy
to add functionality for e.g. adding dimensions or sequencing goals.

This modularity also allows for easy construction, composition,
decomposition and scaling of task-environments. Adding or remov-
ing objects or (sub)systems, as well as combining goals and tasks in
various ways, allows us to make simple task-environments (slightly)
more complex and vice versa; thereby allowing our battery of tasks
to grow with the AI system under test. As the name suggests
FraMoTEC is primarily a framework for task-environment construc-
tion and this is where it shines, even though much work remains to
be done.

In [36] we listed a number of properties of task-environments that
a framework should 1) support and 2) ideally let the user tune:

1. Determinism Both full determinism and stochasticity must be
supported. The framework provides the option of partial stochas-
ticity out-of-the-box, such as in the creation of objects (start values
can be randomized), goals, sensor readings, and designed transi-
tions.

2. Ergodicity Ergodicity controls the degree to which the agent can
undo things and get second chances. The framework imposes no
restrictions on this other than a fundamental rule: Expended time
and energy cannot be un-expended. If the agent spends time or
energy doing the wrong thing, that time and energy will still have
been spent and the task-environment needs to be reset in order
to give the agent a second chance with regard to the energy and
time expenditure. Task-environment designers have full control
over what states are reachable.

3. Controllable Continuity This point notes that it is crucial to al-
low continuous variables, and that the degree to which continuity
is approximated should be changeable for any variable. All ob-
jects in the framework contain continuous variables, discretized
only by floating-point inaccuracies by default. It is possible use
sensors to further discretize (or distort) any accessible variables.
It is also possible to tweak the time resolution of the simulation.

4. Asynchronicity Any action in the task-environment should be
able to operate on arbitrary time scales and interact at any time.
This must currently be done manually, and we aim to provide a
more user-friendly solution in the future.

5. Dynamism The framework gives the user full control over how
static or dynamic environments are. Natural transitions of objects
can provide some limited dynamism, but controllers can be given
a static experience by clever sampling. Most dynamics will come
from designed transitions created by the framework user.

6. Observability The observability of task-environments is deter-
mined by the interface between the environment and the controller
interacting with it. Sensors are the primary control for observabil-
ity in the framework. Sensors can be tuned to tune the observabil-
ity of a task-environment by distorting the value and/or discretiz-
ing it to a user-specified resolution.

7. Controllability Controllability is the control that the agent can
exercise over the environment to achieve its goals. The controlla-
bility of the task-environment is controlled with the exposure of
motors to the controller. By modifying motor properties and in-
teractions between motors (specifically in custom transition func-
tions), the controllability of a task-environment can be tuned.

8. Multiple Parallel Causal Chains Co-dependency in objectives

can be programmed into designed task-environments without has-
sle. The framework does not place any restrictions on causal
chains with a single exception that circular-references are cur-
rently not supported (two goals may not mutually depend on each
other, one must depend on the other first).

9. Number of Agents The framework does not restrict the number
of agents nor what interactions can take place. Even if multiple
agents have access to the same motors, the framework regards the
most recent setting to be the current setting. However, interactions
are currently mostly defined by the user. We hope to provide more
user-friendly support in the future, which will go hand-in-hand
with implementing a better method for asynchronicity.

10. Periodicity The framework does not specifically handle periodic-
ity, cycles or recurrent events. The user must implement this with
designed transitions if they need this.

11. Repeatability By using the same random seed, repeatability can
be guaranteed in most circumstances. However, agents and sen-
sors must use their own random number generators (and seeds) to
avoid tampering with task-environment repeatability.

While a lot of work remains to be done, we believe that this frame-
work will be able to eventually fulfill the requirements we outlined
and significantly contribute to the field of AI evaluation, task theory,
and by proxy: AI itself.

ACKNOWLEDGEMENTS

This work was sponsored by the School of Computer Science at
Reykjavik University, and a Centers of Excellence Grant (IIIM) from
the Science & Technology Policy Council of Iceland.

REFERENCES
[1] ICML workshop on the reinforcement learning competition, 2013.
[2] T. W. Archibald, K. I. M. McKinnon, and L. C. Thomas, ‘On the gen-

eration of markov decision processes’, Journal of the Operational Re-
search Society, 354–361, (1995).

[3] Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and
Mark Lee, ‘Natural actor–critic algorithms’, Automatica, 45(11), 2471–
2482, (2009).

[4] Jordi Bieger, Kristinn R. Thórisson, and Deon Garrett, ‘Raising AI:
Tutoring Matters’, in Proceedings of AGI-14, pp. 1–10, Quebec City,
Canada, (2014). Springer.

[5] Selmer Bringsjord, Paul Bello, and David Ferrucci, ‘Creativity, the Tur-
ing test, and the (better) Lovelace test’, Minds and Machines, 11, 3–27,
(2001).

[6] Selmer Bringsjord and John Licato, ‘Psychometric Artificial General
Intelligence: The Piaget-MacGuyver Room’, in Theoretical Founda-
tions of Artificial General Intelligence, 25–48, Springer, (2012).

[7] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu, ‘Deep
Blue’, Artificial Intelligence, 134(1–2), 57–83, (2002).

[8] Amanda Coles, Andrew Coles, Angel Garcı́a Olaya, Sergio Jiménez,
Carlos Linares López, Scott Sanner, and Sungwook Yoon, ‘A survey
of the seventh international planning competition’, AI Magazine, 33(1),
83–88, (2012).

[9] Roger C. Conant and W. Ross Ashby, ‘Every good regulator of a system
must be a model of that system†’, International Journal of Systems
Science, 1(2), 89–97, (1970).

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei,
‘Imagenet: A large-scale hierarchical image database’, in Computer Vi-
sion and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pp. 248–255. IEEE, (2009).

[11] Deon Garrett, Jordi Bieger, and Kristinn R. Thórisson, ‘Tunable and
Generic Problem Instance Generation for Multi-objective Reinforce-
ment Learning’, in Proceedings of the IEEE Symposium Series on Com-
putational Intelligence 2014, Orlando, Florida, (2014). IEEE.

8

[12] Michael Genesereth and Michael Thielscher, ‘General game playing’,
Synthesis Lectures on Artificial Intelligence and Machine Learning,
8(2), 1–229, (2014).

[13] Olivier L. Georgeon, James B. Marshall, and Simon Gay, ‘Interactional
motivation in artificial systems: between extrinsic and intrinsic motiva-
tion’, in Development and Learning and Epigenetic Robotics (ICDL),
2012 IEEE International Conference on, pp. 1–2. IEEE, (2012).

[14] Ben Goertzel and Stephan Vladimir Bugaj, ‘AGI Preschool: a frame-
work for evaluating early-stage human-like AGIs’, in Proceedings of
AGI-09, pp. 31–36, (2009).

[15] Ben Goertzel, Cassio Pennachin, and Nil Geisweiller, ‘AGI Preschool’,
in Engineering General Intelligence, Part 1, number 5 in Atlantis
Thinking Machines, 337–354, Atlantis Press, (2014).

[16] José Hernández-Orallo, ‘A (hopefully) non-biased universal environ-
ment class for measuring intelligence of biological and artificial sys-
tems’, in Proceedings of AGI-10, pp. 182–183, (2010).

[17] José Hernández-Orallo, ‘AI Evaluation: past, present and future’,
CoRR, abs/1408.6908, (2014).

[18] José Hernández-Orallo and David L. Dowe, ‘Measuring universal in-
telligence: Towards an anytime intelligence test’, Artificial Intelligence,
174(18), 1508–1539, (2010).

[19] Marcus Hutter. 50’000C Prize for Compressing Human Knowledge,
2006.

[20] Benjamin Johnston, ‘The toy box problem (and a preliminary solu-
tion)’, in Proceedings of AGI-10, (2010).

[21] Yann LeCun and Corinna Cortes, The MNIST database of handwritten
digits, 1998.

[22] Shane Legg and Marcus Hutter, ‘Tests of Machine Intelligence’, CoRR,
abs/0712.3825, (2007). arXiv: 0712.3825.

[23] Shane Legg and Joel Veness, ‘An approximation of the universal intel-
ligence measure’, in Proceedings of the Ray Solomonoff 85th Memorial
Conference, volume 7070, pp. 236–249. Springer, (2011).

[24] John Levine, Clare Bates Congdon, Marc Ebner, Graham Kendall, Si-
mon M. Lucas, Risto Miikkulainen, Tom Schaul, Tommy Thompson,
Simon M. Lucas, and Michael Mateas, ‘General Video Game Playing’,
Artificial and Computational Intelligence in Games, 6, 77–83, (2013).

[25] Beyond the Turing Test, eds., Gary Marcus, Francesca Rossi, and
Manuela Veloso, volume 37 of AI Magazine, AAAI, 1 edn., 2016.

[26] Pierre-Yves Oudeyer, Adrien Baranes, and Frédéric Kaplan, ‘Intrinsi-
cally motivated learning of real-world sensorimotor skills with develop-
mental constraints’, in Intrinsically motivated learning in natural and
artificial systems, 303–365, Springer, (2013).

[27] Mark O. Riedl, ‘The Lovelace 2.0 Test of Artificial Creativity and In-
telligence’, CoRR, abs/1410.6142, (2014).

[28] Robert Rosen, ‘On models and modeling’, Applied Mathematics and
Computation, 56(2), 359–372, (1993).

[29] Gavin A. Rummery and Mahesan Niranjan, ‘On-line Q-learning using
connectionist systems’, Technical Report CUED/F-INFENG/TR 166,
Cambridge University, (1994).

[30] Lorenza Saitta and Jean-Daniel Zucker, Abstraction in Artificial Intelli-
gence and Complex Systems, Springer New York, New York, NY, 2013.

[31] Jürgen Schmidhuber, ‘Formal theory of creativity, fun, and intrin-
sic motivation (1990–2010)’, Autonomous Mental Development, IEEE
Transactions on, 2(3), 230–247, (2010).

[32] Daniel L. Scholten, ‘Every good key must be a model of the lock it
opens’. 2010.

[33] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, and others, ‘Master-
ing the game of Go with deep neural networks and tree search’, Nature,
529(7587), 484–489, (2016).

[34] Satinder Singh, Andrew G. Barto, and Nuttapong Chentanez, ‘Intrinsi-
cally Motivated Reinforcement Learning’, in Advances in Neural Infor-
mation Processing Systems 17, Vancouver, Canada, (2004).

[35] Kristinn R. Thórisson, ‘Reductio ad Absurdum: On Oversimplification
in Computer Science and its Pernicious Effect on Artificial Intelligence
Research’, in Proceedings of AGI-13, volume 7999 of Lecture Notes in
Computer Science, Beijing, China, (2013). Springer.

[36] Kristinn R. Thórisson, Jordi Bieger, Stephan Schiffel, and Deon Garrett,
‘Towards Flexible Task Environments for Comprehensive Evaluation of
Artificial Intelligent Systems & Automatic Learners’, in Proceedings of
AGI-15, pp. 187–196, Berlin, (2015). Springer-Verlag.

[37] Kristinn R. Thórisson, Jordi Bieger, Thröstur Thorarensen, Jóna S.
Sigurðardóttir, and Bas R. Steunebrink, ‘Why Artificial Intelligence

Needs a Task Theory — And What it Might Look Like’. arXiv: sub-
mit/1536181, 2016.

[38] Kristinn R. Thórisson and Eric Nivel, ‘Achieving artificial general in-
telligence through peewee granularity’, in Proceedings of AGI-09, pp.
220–221. Springer, (2009).

[39] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David
Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan
Halpenny, Gabriel Hoffmann, and others, ‘Stanley: The robot that won
the DARPA Grand Challenge’, Journal of field Robotics, 23(9), 661–
692, (2006).

[40] Alan M. Turing, ‘Computing machinery and intelligence’, Mind,
59(236), 433–460, (1950).

[41] Pei Wang, ‘The assumptions on knowledge and resources in models of
rationality’, International Journal of Machine Consciousness, 03(01),
193–218, (2011).

[42] Shimon Whiteson, Brian Tanner, Adam White, and others, ‘The rein-
forcement learning competitions’, AI Magazine, 31(2), 81–94, (2010).

[43] Michael Wooldridge, An Introduction to MultiAgent Systems, John Wi-
ley & Sons, 2009.

9

