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Abstract. A long-standing paradigmatic debate in artificial intelligence
is between the so-called symbolic and connectionist (or ‘sub-symbolic’)
approaches to knowledge representation. Both approaches aim for un-
covering the principles of how general, domain-independent knowledge is
structured, generated, and handled by autonomous intelligent agents. Yet
each seems to work only for certain kinds of information. The approaches
spring from disjoint methodological beginnings; the former is inspired
by human introspection (“top-down”), the latter by brain substrates
(“bottom-up”). Neither approach has led to a unified theory of general
intelligence. Few researchers are fluent in both methodologies, as us-
ing either approach calls for significant time and effort easily spanning
decades. As a result, progress towards theories of general intelligence
have been held hostage. We propose to brake this deadlock with a third
approach: Concept-Centered Knowledge Representation (CCKR). Based
around situated dynamic knowledge graph generation and management,
CCKR captures latent features inherent in conceptual graphs that prior
approaches do not address and adds capabilities that we argue are neces-
sary for, and offer a path to, general machine intelligence. Here we explain
CCKR and present arguments for its claims, resting in part on the re-
sults from two implemented experimental systems, the Non-Axiomatic
Reasoning System (NARS) and the Autonomous Empirical Reasoning
Architecture (AERA).

Keywords: knowledge representation · concept-centered representation
· symbolic · sub-symbolic · connectionist · cognitive architecture · artifi-
cial intelligence · general intelligence · autonomy.

1 The Topic of Representation

Knowledge representation has been a central topic of artificial intelligence (AI)
from its beginnings. The main issue at stake is the question of how a controller
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can control a body4 in a complex environment, for various purposes, where
only a fraction of the environment (and itself) – variables, outcomes, solutions,
goals, problems, etc. – can be known (observed, isolated, summarized, measured,
etc.) at any moment. No matter what type of tasks or information is involved,
an intelligent agent’s knowledge about the domain it inhabits, and the prob-
lems and goals it faces, need to be available to be processed and used to take
action. This calls for a memory and a format – a representation – for stor-
ing those memories as knowledge, that is, manipulable and editable information
structures, to use for guiding future behavior and learning.

Given an aim of matching human cognition in numerous environments, an
agent with artificial general intelligence (AGI) must ultimately be able to deal
with the physical world, with its infinite potential for variety and variation. In
contrast to engineering methods that carefully design both the environment and
the controller/agent, as a couple, to achieve predefined ends using predefined
means, here we are concerned with agents that are guaranteed to not know
everything they need to know to get things done, and must thus figure out stuff
for themselves [83] and learn on the job, to get better at setting and achieving
goals. Furthermore, situations where a learning agent can only interact with
(measure and affect) a fraction of the state space it finds itself in at any point
in time – and throughout its lifetime – and its memory and processing power is
too limited to keep all potentially relevant details in mind, even when known,
and situations where it is impossible for an AI system’s designers to provide a
complete list of what should and must be known before the agent leaves the lab,
are not just inevitable, they are the norm.

This is what defines our scope here: Autonomy, generality, and cumulative
learning [85], in worlds as complex as the one humans live in. Why we should pick
such a lofty and seemingly “impossible” scope is due simply to the fact that the
vast majority of interesting problems, environments, tasks, and situations that
we can think of – and for which we might want a very smart machine – all come
with essentially those exact constraints. For this challenge, over-simplifying the
requirements is an easy mistake to make, with the obvious risk of the research
missing its mark, or in the very least delaying progress substantially.

Complex dynamic (non-random) worlds present vast amounts of information,
and the role of learning is to systematically keep track of useful regularities5 in
a compact yet flexible format. It is the form, formation, and use of informa-
tion structures resulting from such learning that is our focus here, in particular,
with respect to attainment of increased generality and autonomy of the cog-
nitive control mechanism—i.e. improvements in adaptation through informed
4 From a control perspective, a controller’s “body” is by definition demarcated by

its sensorimotor operations and the substrate in which control processes are imple-
mented, which define what it can in principle measure, affect, and know. For all
practical purposes, the term can thus be interpreted widely – as in ‘a controller plus
its controlled plant’ – or narrowly, as in ‘a biological agent in its natural habitat.’

5 That is, any regularly recurring patterns that can be reliably measured in the world
(by the agent) and trusted for getting things done (by the agent) can be considered
useful to the agent.
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learning (as opposed to random experimentation), over a diverse set of tasks
and environments. To do so, the knowledge representation must, in our view, di-
rectly address autonomous (a) re-formulation (selective improvement, editing),
(b) strategic partial re-use, through compositionality, (e) incremental buildup
and maintenance (cumulative learning), and (d) compaction / compression (se-
lectively non-lossy and lossy), including strategic deletion (informed, selective
forgetting).

We present a theory-guided [105, 84] high-level concept-centered knowledge
representation (CCKR) methodology for how the above requirements can be
addressed. The approach aims to take even one step further, superseding prior
attempts by offering a more unified, comprehensive, consolidating theory of rep-
resentation for generally intelligent autonomous agents capable of autonomous
explainable cumulative learning. The paper rests on a conceptual analysis, gener-
alization, and discussion of representational approaches taken in two ongoing en-
gineering projects with a combined six decades of research focused on autonomy
and generality, the Autonomous Empirical Reasoning Architecture6 (AERA;7
[62, 84, 82, 90]) and the Non-Axiomatic Reasoning System (NARS8 [93, 97, 103,
106, 94]).

CCKR can be seen simultaneously as a theory of concepts and a theory of
how to implement such mechanisms in a machine [106]. The approach rejects
the top-down methodology of the symbolic stance and the draconian bottom-up
approach of neural-based approaches; CCKR can be thought of as a ‘middle-
out’9 approach that starts from the ingredients that a thinking mind uses to
create, manipulate and manage concepts, where the “upwards” direction from
this middle ground links to higher-level phenomena such as plans, goals, and
meaning, and the “downward” direction links to whichever substrate the mind is
implemented—be it neurons, silicon, or something else entirely.

This is our first systematic consolidation and presentation of a CCKR ap-
proach, and the first exposition and analysis of how it challenges, and goes
beyond, strictly symbolic and connectionist approaches to knowledge represen-
tation. While sharing some similarities with more common schools of thought,
CCKR is in many important aspects fundamentally different from most well-
known approaches to knowledge representation, as our demonstrations here of
its principles show.

Several distinct meanings of the term concept can be identified in everyday
language. A prominent one is as a synonym or placeholder for a “category” of
everyday phenomena, e.g. “the concept of a chair,” “the concept of fast.” An-
other (and closely related) role is for referencing immaterial ideas (for instance,
mathematical concepts like ‘perfect circle’ and ‘infinity’). On an intuitive level,
our use of the term can be said to be fairly compatible with many such uses,
but since our aim is to provide a more rigorous meaning to it than a standard

6 Also called the ‘Autocatalytic Endogenous Reflective Architecture’ [60].
7 http://www.openaera.org – accessed Jan. 7th, 2025.
8 http://www.opennars.org – accessed Jan. 7th, 2025.
9 Thanks to Mike Judge and his co-authors of Silicon Valley for proposing this concept.
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dictionary definition, some correspondences with the vernacular are inevitably
weakened or abandoned.

1.1 Scope & Organization

After a short overview of selected methodological approaches to knowledge repre-
sentation, we review and analyze the main features of the so-called ‘symbolic’ and
‘connectionist’ schools, and prior attempts to combine them. Then our concept-
centered approach to knowledge representation (CCKR) is presented. To show
the realizations and implications of CCKR, NARS [103] and AERA [62] are
described, compared, and contrasted. Both systems are based on a CCKR ap-
proach and rest on common foundational assumptions about intelligence and
cognition, while their differences expose some of the space in which arguments
about further details, assumptions, and specifications of the CCKR framework
must play out. To stay focused on arguments backed up by evidence, we limit
any claims, descriptions, and examples of CCKR to the existing implementations
of these two systems.

We also look at arguments for how CCKR subsumes prior approaches and
other conceptualizations of knowledge representation, and compare our approach
to existing ones, highlighting the advantages of CCKR in the development of
generally intelligent systems. Lastly, we discuss the open issues. As our focus in
this paper is squarely on representational topics, the discussion will center first
and foremost on issues considered necessary for that, rather than on how the
representation may be used in various cognitive functions of AGI systems.

2 Knowledge Representation: Early History

The numerous approaches to knowledge representation explored in artificial in-
telligence (AI) have been influenced by several other disciplines including com-
puter science, psychology, mathematics and logic, linguistics, philosophy, and
neuroscience; here we will limit our overview to the first three.

2.1 The Road to Representation

Work on knowledge representation grew out of early AI research and the study of
data structures in computer science (c.f. [53, 67]). The subject of representation
is familiar to any computer programmer, as computers cannot do any comput-
ing without representing information in some way. Going well beyond common
structures such as sets, lists, trees, and graphs,10 AI calls for representations that
support learning and reasoning. Artificial general intelligence (AGI) makes addi-
tional requirements, including that the learning extends to a wide range of topics,
10 While many information structures can be transformed into each other, here we are

not concerned with structural and implementation details but rather operational
properties relevant to the conceptual design of their use for understanding cognition.
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tasks, situations, and environments, and that the learner be capable of imbuing
this acquired knowledge with meaning (for itself, its tasks, its owner, and/or its
environment), making it increasingly autonomous. The higher one climbs up the
“ladder of intelligence,” towards increased generality and autonomy, the stricter
such requirements seem to get. While the full list of requirements for AGI is
still being debated [88], it seems likely to require representation schemes that
go far beyond the well-defined expressiveness, versatility, automated organiza-
tion and processing efficiency of traditional programming languages, implying
self-generated meaningfulness and flexible modularity in support of that self-
organization [59, 86, 89].

Early work by the pioneers of the field focused intently on representation
as a key aspect of higher-level cognition. However, progress in AI proceeded
slowly in the first few decades, made only more obvious in light of the frequent
overoptimistic predictions of imminent near-term progress. Results from research
on humans in cognitive science seemed only to confuse matters, in part due to
a misalignment of short- and intermediate-term objectives [108].

2.2 Behaviorist Approaches

In both psychology and AI, attempts were made to outlaw representation and
focus instead on the world an intelligent agent inhabits [12, 79, 109]. To this end,
Brooks proposed “intelligence without representation,” suggesting that represen-
tations were, in fact, wholly unnecessary, as “[i]t turns out to be better to use the
world as its own model” [12, p. 140]. In support of this extreme theoretical stance,
he proposed a method of networked augmented finite state machines (AFSMs)
for constructing robot control mechanisms for (semi-structured11) physical envi-
ronments [13, 11]. However, instead of being representation-free, as the intent and
claim of that research was, subsumption-based systems in fact baked in the rep-
resentations directly from the very beginning, in the AFSMs network structures
themselves: An AFSM-based controller necessarily includes hard-wired sensing,
acting, and goal structures that rely on (the designer’s) assumptions about the
agent’s environment, and the agent’s future interactions with it. (Perhaps a more
appropriate name for would have been ‘Assumption Architecture’). While the
subsumption approach does indeed assume, unlike behaviorism, the existence of
internal goal structures, these generally cannot change automatically through
learning or adaptation after the systems are deployed, due to features inherent
in the methodology, and the approach thus not only fails to meet one of the
key requirements for (general) intelligence, i.e. the ability to change one’s mind
– to re-evaluate goals, derive new goals, and to abandon them in light of new
evidence [102, 83] – it also fails to achieve what it set out to do, namely, to do
away with “internal representation.”

Like the behaviorist psychology movement [79, 109], the subsumption archi-
tecture shifted the representational discussion in AI research to the environment,
11 The methodology was thoroughly tested in household robots, most famously the

vacuum cleaners of iRobot, a company Brooks co-founded.
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in the hope of simplifying the research related to the control system at its cen-
ter, attempting – but inevitably failing – to free its very subject matter from the
theoretical basis on which it in fact depended. No behaviorist-themed approach
has succeeded, or in fact will ever succeed, in ostracizing representations from
an agent whose behavior can be considered in any way goal-oriented: The issue
will end up being a blind spot in the methodology, or the representations given
an implicit and entangled incarnation in the control system’s very design. The
cost is a theoretical handicap and cognitive inflexibility of the resulting systems.

2.3 ‘Subsymbolic’ Approaches

Early interest in engineered systems inspired by natural neural networks dates
as far back as the early cybernetics research of Wiener et al. (cf. [67]). Histor-
ical highlights of the development of ANNs (in a broad sense) include paral-
lel distributed processing (PDP) “connectionist” models [74, 80, 71], Hierarchical
Temporal Memory (HTM; [32]) and most recently, Deep Learning [44, 75, 30].12

Minsky’s Stochastic Neural Analog Reinforcement Calculator (SNARC [52]),
and Rosenblatt’s Perceptron [72], were the first demonstrators of how to im-
plement what came to be called ‘artificial neural networks’ (ANNs). Minsky,
however, soon abandoned the approach entirely, along with another founding fa-
ther of the field, John McCarthy [48], on the grounds that it wasn’t sufficiently
explicit, preferring strictly symbolic approaches (c.f. footnote 19 on page 21).

A variant of connectionist approaches is the so-called dynamical hypothesis
of cognition [24, 8] (see further discussion on its roots on page 23). Influenced by
research on chaotic systems, it borrows numerous abstract concepts from physics
such as attractors, phase-space, and limit-sets. We consider its philosophical
stance to be relevant here for at least two reasons. Firstly, on the positive side,
more than the other schools of thought, it makes time a first-class citizen of
cognition, something we consider a necessary (but not sufficient) requirement for
research on general intelligence. Secondly, and on the negative side, by borrowing
concepts invented to explain the behavior of low-level non-cognitive physical
processes, and positioning these as part of a serious proto-theory of (very) high-
level properties of intelligent systems (mental operations and cognitive control),
its conceptual underpinnings sorely lack an intermediate level of explanation and
operation. While being relegated to a descriptive, narrative or inspirational role
at best, a significant level gap nevertheless exists between its theoretical concepts
and the phenomena it purports to explain. As a result, dynamical approaches
are insufficient for guiding the construction of complex cognitive systems in
any specific way, and cannot provide a viable AGI research methodology. This
shortcoming is shared by a number of other approaches, including behaviorism
and neurology. In the case of both neuroscience and dynamical approaches, we

12 These approaches are ‘sub’-symbolic in that they generally focus on information at
smaller scales than, or schemes that are orthogonal to, concepts (in the vernacular
meaning); probably the best known of such approaches, ‘connectionist’ ones depend
on a distributed (fragmented) representation.
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estimate this spatiotemporal gap that they fail to address to span several orders
of magnitude. It is in part this gap that CCKR fills.

2.4 The need for explicit representation

Like the founders of AI research, we consider representation to be central research
topic for the field. For any research program addressing general intelligence di-
rectly, representations cannot be left out, and nowhere is the argument for this
made more clearly than in Conant and Ashby’s Good Regulator Theorem, where
the role of models is explicated on solid mathematical grounds13 [15]. Their work
makes clear that it is not only desirable but in fact impossible to create a working
controller without representation.

3 Representation: Symbolic vs. Connectionist

In this section we review the symbolic–connectionist debate from our perspective
and set the context for how our approach is an alternative to the two.

3.1 Connectionist Representation

The connectionist approach comes from the idea that intelligence can be obtained
by building a brain-like neural network – an idea dating back more than 100
years – and has been fueled by the recent success in applying artificial neural
networks (ANNs) to a wide variety of information-centric tasks. Ever since the
cyberneticists’ work on (natural) neural networks [50], the model followed has
been based on a large number of simple units connecting to each other via weights
that are tuned (during “training”) using special algorithms. Besides the obvious
(albeit negligible) inspiration from neuroscience, this approach has been heavily
influenced by mathematics research.

The typical form of connectionist AI is an ANN that is trained over numer-
ous iterations on a given dataset, during which the weights of the connections
are tuned. After an ANN is trained, the network’s input/output layers forms
a mapping for commonalities extracted from the training data, while the oper-
ation of the intermediate (hidden) layers is determined by the role needed to
support this overall input-output mapping, i.e., the function represented by the
network. Consequently, a vector that forms an input or output layer represents a
sensation pattern (input) or decision (output), while a vector from a hidden layer
of the ANN does not explicitly represent anything outside the network. Instead,
13 Models come in infinite forms for an infinite variety of purposes. In a learning con-

troller they are empirical when they are based on empirical experience (that is, in a
way that can be argued to be based in some direct or indirecty way on measurement—
i.e. ‘grounded.’). In Conant and Ashby’s theorem they could be formal ones [15], but
need not necessarily be, and in fact cannot be when the axioms are not known (in
which case they are empirical). Unless otherwise noted, it is these kinds of models
we mean when we use this term.
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it contributes to overall mapping of the model in a way that, for a particular
ANN, is difficult to explain in succinct and simple terms. For this reason, ANNs
excel as “pre-cooked” automatic classifiers; when posing as controllers, however,
their behavior is difficult to ensure and predict, especially on data at the fringes
of, and outside, their training data.

Though the various types of ANNs differ in many aspects, they share the use
of what is called a distributed knowledge representation, which is fundamentally
different from the local representation used in most symbolic AI systems. In
distributed representation, “[e]ach entity is represented by a pattern of activ-
ity distributed over many computing elements, and each computing element is
involved in representing many different entities” [34, p. 77]. In contrast, in the
symbolic tradition, each symbol can only have a single specific reference at any
time.

To make use of an ANN in a practical setting, a fully trained ANN is typi-
cally placed in a larger architecture where it performs the classifying function it
was trained for, serving as the representational component of a control system
made up of other components. While most would say that the ANN “holds” par-
ticular representations that allow it to perform a complex function that requires
“knowledge,” this representation is unchanging and unchangeable in light of new
evidence or information, until it is re-trained by its designers. Insofar as the
“knowledge”14 of the ANN references objects and phenomena outside itself, the
output layer can be seen to implement a symbol system. However, this implies
that the input-output mapping performed by an ANN – its ‘knowledge-based’
classification function – is grounded in the outside environment only at its input
and output ends (in a fixed manner), as specified by the function. The ANN
does not generate or obtain such knowledge itself, autonomously, and this in-
formation has thus no meaning to the ANN, only to its designers. Because the
representation that the ANN holds is allonomically determined, i.e. decided, de-
fined, and interpreted by the engineers during input-output training, it has been
engineered to mirror an input-output mapping in their (human) knowledge, in
light of their goals—not the ANN’s. Such knowledge cannot be re-assessed on
the job, so to speak, by the system itself—its reliable modification, no matter
how small, requires a ‘recall and full reset’ of the system as a whole.

Generally speaking, connectionist approaches favor data quantity and repre-
sentional uniformity over representational explicitness. The resulting knowledge
lacks structural compositionality (modularity), inspectability, and explainabil-
ity, to name three serious limitations in the pursuit of general intelligence. This,
along with the features described in the foregoing paragraph, is the main rea-
son why ANNs are always embedded in a larger control architecture: It does

14 We consider ‘knowledge’ to be ‘information that can be used to compose actions in
pursuit of an explicit or implicit goal’. While an ANN certainly holds information
that can be used to act upon, the ways in which an ANN can act on its knowledge is
highly limited (note that this is different from the scope of input that an ANN can
accept – which is limited in other ways, too complex and removed from the purposes
of this paper to discuss here).
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not “know what to do with its own knowledge” beyond the function for which
it has been designed, as it lacks any facility to provide meaning to its internal
information units independent of this function. Furthermore, intermediate nodes
and node groups (e.g. layers) in an ANN may or may not map to anything in
particular outside the training data and/or in other knowledge sets (such as its
human engineers’ knowledge). The intermediate outputs of sub-groups of nodes
in the ANN are therefore meaningless (and largely unpredictable) from the hu-
man users’ – as well as its own – perspectives, and one reason why the runtime
operation of an ANN is difficult to understand.15

In summary, in consideration of the topic of this paper, the connectionist ap-
proach of knowledge representation is characterized by the following properties:

1. The system’s knowledge is represented as a network of connected units
which is often considered as approximations of neurons in a brain.

2. The system implements a function that maps the status of the input units
(as a vector imposed by the environment) to that of the output units (also
a vector as the system’s response to the environment).

3. The input and output units get their meaning from their correspondence to
(sensory, verbal, or other kind of) stimuli and responses, while the other
(internal or hidden) units have no external correspondence and their roles
are revealed by their contributions to the overall function.

4. Many human concepts may correspond approximately to status
(activations) patterns of the network, which is distributed among the units
and connections, rather than local to a single unit or connection.

Compared to the alternative approaches, the connectionist approach has nev-
ertheless several major advantages:

– The function can be learned from training data in a connectionist network
with universal approximation power, and does not require detailed human
design.

– The learning process has a certain level of tolerance to uncertainty in the
training data.

– The knowledge needed to build the function does not require a precise
description.

Despite its notable achievements, the connectionist approach has met many
fundamental objections over the decades, most of which are still unanswered by
today’s ANN methodologies and implementations. We can summarize the major
criticisms on the representational aspect as such:

– The distributed representation in ANNs is very different from how human
knowledge is expressed, which is one reason why ANNs have an

15 The end-to-end usage of a neural network still has the symbol grounding problem
at its input/output layers, except when the data directly come from sensors or go to
actuators. A hidden layer has no such problem, not because it has grounded meaning,
but because it has no identifiable meaning to talk about at all.
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explainability issue and adversarial examples [57], as well as difficulty of
receiving human knowledge [68].

– Since knowledge is coded as numbers with a single kind of relation
(“strength”), inspection on particular knowledge is not supported [54],
which also leads to problems in local revision and cumulative learning [87].

– Since knowledge eventually takes the form of an end-to-end mapping, there
is no identifiable components that recursively form constructions. In
general, it means that ANNs still lack compositionality, hierarchy and
systematicity as criticized decades ago [82, 22].

– In input/output mappings, there is no distinction between correlation and
causation [65, 91].

No doubt, the listed objections differs in severity and it may be argued that
solutions to some of the above objections, which date back to 1986 or even ear-
lier, are already at hand. Indeed, some ad hoc solutions exists for special cases
of the above limitations. Every such solution, however, is only partial and comes
with severe limitations. Most scathingly for research in general intelligence, there
exists no solution that addresses all of them together, or even some notable pro-
portion, and this is by far the most serious limitation of all such work to date.

3.2 Symbolic Representation

Historically, what has been called a “symbolic approach” to representation can
be traced to a focus on human cognition. Meeting a need to constrain the discus-
sion of human cognition in some way, a narrow focus on board games centered
on the widely-articulated hypothesis that the game of chess could only be suc-
cessfully performed by a general intelligence.16 Looking at the history of AI, this
hypothesis could not have been more wrong. The hypothesis and approach comes
from the (arguably somewhat intuitively compelling) idea that AI needs human-
like knowledge representation to solve complex problems. For the most part it
meant that symbols were used to represent external objects and events, which
were then to be manipulated via rule-based symbolic processes. The approach,
also known as GOFAI (“good old-fashioned artificial intelligence”) [31], rests on
a tradition tracing back to the study of logic [40], psychology [66], linguistics
[14], and philosophy [21].

In AI, one of the best known incarnation of this view is Newell and Simon’s
physical symbol system hypothesis: “A physical symbol system has the necessary

16 The claim of Russian mathematician Alexander Kronrod in 1965, that chess ‘is the
drosophilia of AI’ [20], may have sealed this particular board game as a major mea-
suring stick on the advancement of AI, and quite possibly the focus on board games
in general. Another reason for the field’s obsession with chess was the hypothesis of
Carnegie-Mellon researchers Newell and Simon [56] that a machine capable of win-
ning a human world champion in chess would inevitably, by default, have obtained
general intelligence, because that is required for playing chess—a hypothesis that
could hardly have been more incorrect.
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and sufficient means for general intelligent action.” [56, p. 116].17 It uses the
concept of a “symbol” within a system to represent an “object” or “relation” out-
side the system, with the two connected by designation and interpretation. With
such a representation, human knowledge in a domain, such as physics or biology,
could be used by a computing system [33].

In this tradition, the symbolic representation was largely implemented in
some sort of practical programmable logic, including first-order logic and ex-
tensions thereof, and resulted in a fundamental emphasis on formal logic and
related automatic reasoning. In this camp was John McCarthy’s theory of intel-
ligence, according to which people used ‘commonsense reasoning’ to solve prob-
lems [48]. This theoretical foundation resulted in several research programs that
attempted to mechanize expert knowledge, since symbolic knowledge encoded as
logic statements, coupled with the proper (hand-coded) heuristics, should suf-
fice to mechanize thought in a particular domain, allowing a machine to take the
role of a domain expert through the systematic manipulation of symbols. The
scope this approach was then extended to all human knowledge, leading among
other things to the Cyc “common sense database” [45], which remains one of the
largest research programs in AI to date. While the work by Lenat and Cycorp18

on the Cyc system is unique in the history of AI, it had the support of Minsky,
who, like McCarthy, was a strong proponent of a symbolic AI and dismissive of
all connectionist approaches [54].19

For the current discussion, the basics of this approach can be summarized as
the following:

– A ‘symbol’ is a token, sign or pattern with no particular or intrinsic
meaning.

– A symbol is a ’stand-in’ or "pointer" to something else.
– Anything can serve as a symbol of anything else.
– A system can use a symbol to represent an arbitrary outside object or

event.
– The symbol and what it represents are related by an interpretation.
– The processing of a symbol by the system is fully determined by its shape,

independent of its interpretation.
17 The full paragraph in question states: “A physical symbol system has the necessary

and sufficient means for general intelligent action. By ‘necessary’ we mean that any
system that exhibits general intelligence will prove upon analysis to be a physical
symbol system. By ‘sufficient’ we mean that any physical symbol system of sufficient
size can be organized further to exhibit general intelligence. By ‘general intelligent
action’ we wish to indicate the same scope of intelligence as we see in human action:
that in any real situation behavior appropriate to the ends of the system and adap-
tive to the demands of the environment can occur, within some limits of speed and
complexity”.

18 http://www.cycorp.com – accessed on Apr. 12th, 2023.
19 In his keynote address at the 2005 annual conference of AAAI, attended by one of

us (KRTh), Minsky stated that “statistical approaches to AI offer nothing under the
hood to work with,” preventing, among other things, reflective cognition. This view
is echoed in his 2006 book The Emotion Machine [54].
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It is often neglected that this usage of the word “symbol” does not exclude
some binary strings in a computer system: If a binary string represents nothing
in particular, or something that is not an outside object of event, then it is
not a “symbol” in the above sense. In other words, a symbol, according to this
definition, must symbolize an external entity or phenomenon, and can be seen
as the name or label of something that exist outside of the system holding the
symbol. It is only in this sense that it could be argued that there exist “non-
symbolic” AI systems – even if they use binary strings or variable names in
their implementation that do not “represent” or “symbolize” any outside object
or event.

A major attraction of the symbolic approach to AI researchers is its similar-
ity to how human knowledge is often represented in everyday speeches and writ-
ings, as well as mathematics, etc., and its apparent closeness to the knowledge-
handling traditions of related disciplines such as psychology, linguistics, and
logic.

In view of the goal of AI to create a general learner, this approach to knowl-
edge representation has the following features:

MODULARITY:
– Relatively fine-grained knowledge representation (consisting of small

tokens).
– Any token can act as a symbol.
– Can be used to compose larger units according to a small finite set of

compositional rules.
– Allows modular construction and de-construction of knowledge.

The above makes the knowledge representation explicit:

TRANSPARENCY:
– The representation format is relatively explainable and understandable (by

a system’s human developers).
– The content is inspectable at a fine level of granularity.
– The meaning of the representation is systematic and compositional.

Although the symbolic approach dominated AI research for decades in various
forms, it has been criticized from a variety of philosophical, psychological, and
pragmatic angles, including that:

– The symbolic approach ignores the dependency of knowledge on an agent’s
body and context [4, 42, 25]. A symbol is meaningless until it is grounded in
something other than other meaningless symbols [76, 29].

– The approach is too rigid and brittle, and fails to capture the fluidity and
creativity of the human mind [37, 26, 39]. Human knowledge in many
domains cannot be fully formalized, abstracted, or symbolized [18].

– Its processing is limited to deduction on abstract knowledge, and is far
from covering practical human knowledge [51, 10], especially procedural
knowledge [110].
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– To manually code all relevant human knowledge into AI systems is
unrealistic and inefficient [82].

– The representation languages developed in the GOFAI tradition do not prop-
erly address how the knowledge could be assembled autonomously by AI
systems [84].

3.3 Variants & Hybrids

Besides typical symbolic and connectionist approaches in knowledge representa-
tion, there exist approaches that are hybrids, as well as variants, of the two. One
example that could be considered a combination of both is the above-mentioned
dynamical hypothesis of cognition [24, 8]. Dynamic-system representation sees
the system’s state as a point in a multidimensional space, and the running pro-
cess as a trajectory in that space. In this way, it is similar to a connectionist
approach. On the other hand, when each dimension is considered as a specific
measurement, it also shares properties with symbolic approaches.

Another approach that is between the two paradigms is the Slipnet of the
Copycat system [36], a network of fluid concepts that are neither symbols de-
noting external objects nor models of neurons that work as functions.

Many attempts have been made to integrate symbolic and connectionist rep-
resentations in one system [16, 9, 47]. One school combines the two approaches as
cognitive modules in an integrated architecture, such as CLARION [81], ACT-R
[1], SOAR [41], and Sigma [73]. Another school explores “how principles of sym-
bolic computation can be implemented by connectionist mechanisms and how
subsymbolic computation can be described and analysed in logical terms” [9,
p. 3] using “neurosymbolic” systems [23, 17]. Concrete ideas for how to do this
includes for instance using a neural network with dynamic external memory [27]
and combining deep learning with Cyc [47].

These attempts at reconciliation invariably present some interesting ideas and
demonstrate well-defined benefits over and above the approaches they combine,
but they are, without exception, limited to sub-problems or special cases of
general cognition. The bigger question of architectural unification and extension
up to human-level cognition remains largely unaddressed.

4 CCKR: Concept-Centered Knowledge Representation

We now introduce an approach to knowledge representation we refer to as
concept-centered knowledge representation (CCKR). While compatible with many
high-level conceptualization of concepts in cognitive science (cf. [5]), our ap-
proach is based on concretely implementable ideas for how to build machines
with a capacity for dynamic concept creation and use, cumulative learning, and
empirical reasoning—in short, autonomous cognitive operation. To make the de-
scriptions concrete, two AGI-aspiring systems we developed separately, NARS
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(Non-Axiomatic Reasoning System) [93, 97, 103] and AERA (Autonomous Em-
pirical Reasoning Architecture)20 [82, 62, 61], are used as examples of how CCKR
can be realized.

Intuitively speaking, at the highest level of abstraction, this approach takes
the knowledge repository (memory) of a knowledge-based control system to be
a conceptual (latent) network or graph, where nodes are concepts and edges are
conceptual relations. To be more specific, the core ideas are:

1. Each concept is an identifiable (but flexible) information structure
within a system that recaps (models) a portion of the system’s
experience.

2. The general meaning of a concept to the system is determined by
its (experienced or imagined) relations to other concepts. Each time
a concept is used, usually only a small part of its general meaning is
involved, forming the concept’s immediate, spatio-temporally-bound
meaning.a

3. New concepts and conceptual relations are constructed by the system
itself, to better model its experience.

a This refers to a concept’s foundational meaning to the concept’s autonomous
owner; for a theoretical definition, see Thórisson & Talevi [92].

Further unique features define our proposal, of course, but these are the most
important ones at the highest level. We can now proceed to explain each of the
three ideas one by one, each in a subsection.

4.1 The Notion of ‘Concept’ in CCKR

Like all fundamental notions, “concept” has many usages and interpretations
[43]. Our usage in CCKR is as follows:

Definition of ‘Concept’ in CCKR

We consider any data structure or information item a concept if – for
any cognitive system capable of creating new knowledge (i.e., actionable
information), that systematically relates to its goals, existing knowledge,
and situation – the information item:

1. Is a unit that can be uniquely recognized/isolated (by a cognitive
system’s processes) and

2. one that both abstractly and concretely summaries certain segments
of the system’s experience, and

3. can be accessed and manipulated (by a cognitive system’s processes)
for particular purposes and operations (overt and covert goals), and

20 Also called the ‘Autocatalytic Endogenous Reflective Architecture’ [60].
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4. can (uniquely, fully, or partially) be related to other comparable or
different units (by cognitive processes operating on them).

Data about the history of manipulation and use of the above information
structures is embedded with it, so as to help consolidate, group, associate, and
access, the information in the future. In this view, a concept can be seen as
any information on the path to becoming, or already being, a relatively stable
subset of a knowledge base that serves a practical purpose in the cognitive sys-
tem’s operations. Concepts are thus both macro- and microsymbolic21 entities
that not fixed, but rather, information sets that are coupled, to varying degrees
of strength, between themselves and other such sets; a set whose elements are
loosely-coupled holds a relatively vague concept, a tightly-coupled one is “crisp”
or “clear.” By being experience-centered and initiated, knowledge structures of
this kind are not very much like traditional semantic networks in any way but
rather an ever-changing network of dynamically-coupled augmented-symbolic in-
formation structures that are constantly being honed through experience of their
use.

Concepts are thus chiseled by interaction with an environment and a so-
cial cohort, and thus take some time to form; fleeting and contrived concepts
are possible – e.g. ‘winged miniature basketballs’ – as are strong, immutable
ones—‘mother,’ ‘cat,’ and ‘wind,’ to take some examples from human experi-
ence that would be predicted by CCKR. Concepts exist because a cognitive
mind has use for them; they become entrenched because they prove their value
and get repeated use over long periods of time, which also enables them to have
richer relations to other ones, both due to similarities and dissimilarities. Due to
their compositionality (i.e. being hierarchical compositions of smaller concepts
and knowledge elements), and the need for adaptation to a particular situation
(which often involves a number of unique elements, e.g. a new goal that an
agent has never pursued before), they are created or decomposed on-demand by
appropriate cognitive operations in situ.

According to our usage, a concept cannot be a “nameless”22 process or event
that simply runs its course within the agent, whose side effects are untraceable
after they happen (e.g. like an activation pattern in a neural network that is not
associated with a name or an identifiable trace). Nevertheless, the concrete form

21 In compositional representational approaches, we use the term ‘microsymbolic’ to
refer to items that are parts of symbols in such systems, yet can also stand on their
own and be accessible to the system through reflection; conversely, ‘macrosymbolic’
refers to concepts that rely on and/or encapsulate other concepts.

22 It cannot be ‘nameless’ in the sense that it must be recognizable, manipulable, and
operationable as a unit. here are undoubtedly many ways in which this requirement
may be achieved, so this does not mean that we must resort to GOFAI or naïvely
symbolic approaches, since in this discussion a ‘name’ is not a ‘symbol,’ but more of
a ‘pointer.’ This will become clearer in the following sections; see also Section 6.2,
page 41.
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and content of a concept can still be different in different systems, and different
at different times, under these requirements.

NARS uses a formal language, Narsese, to represent its knowledge. The basic
unit of the language is term, and each term normally refers to a concept, which
is a data structure in the system. In the simplest form, a Narsese term is a
string of characters from a given alphabet. If the term appears in the system’s
input and output communication, it corresponds to a convention followed by the
systems participating the communication, and the same term provides a way (at
least partially and temporarily) to associate the concepts in different systems.
Similarly, a term can be a word or phrase in a human language.

NARS also has concepts associated with sensorimotor devices and opera-
tions. Designed as a general-purpose system, NARS is not equipped with a spe-
cific set of sensors and actuators, but allows any hardware or software to be
registered at a sensorimotor interface of the system. Each registered device, as
well as each executable command of the device, will be taken as a concept, with a
unique term as its identifier. In this way, NARS can issue commands to a device
to carry out an action and get results and feedback.

Narsese uses a set of term constructors that each can build compound terms of
a certain type from the existing terms, recursively. A compound term, including
a compound perceptual terms and an operational terms, also refers to a concept.

AERA takes a somewhat different approach to CCKR than NARS. Among
its fundamental atomic information structures relevant here are variables, com-
posite states, and models (composite and atomic).23 Replicode, the language an
AREA agent’s knowledge is represented in [59], is late-binding throughout, and
variables work both as placeholders, pointers, values, lists, and arrays; compos-
ite states are variable combinations, and causal-relational models (CRMs) are a
kind of bi-directional copula that may represent any transformation or relation,
an important type of which is, as the name implies, causal [91, 62]. CRMs have
a left-hand side (LHS) and a right-hand side (RHS); to represent a transforma-
tion, the LHS is a prior state (typically represented with a composite state) and
the RHS is the result of a transformation. The model holds the function for the
transformation it describes (how the values on the LHS change to those on the
RHS), along with the context that the model is relevant for.

A single CRM can itself be considered as a concept according to our defi-
nition, albeit a peewee one, from which other concepts are constructed. Most
concepts in AERA are composed of a large number of models, and the complete
set of such models is not fixed, as they are in part contextually defined. Their
operational semantics emerge during the system’s experience with using them
in context, which ensures their grounding and forms the basis for the system’s
learning. For instance, the concept of a deictic gesture (pointing at something,
e.g. with your finger) would – depending on an agent’s experience – include sev-

23 We restrict our discussion here to information structures that an AERA agent uses
for autonomous learning; other information structures can be used as part of a
programmer-defined seed, but this is a more involved subject that need not be address
here.
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eral models describing the shape of the hand, the relation between the object
pointed to and the finger/hand, as well as how to time the occurrence of such a
gesture with respect to speech (see e.g. [90]). The concept would not necessarily
have any name associated with it, but rather would be summoned in part or
in whole, as needed, through relevance mechanisms, depending on its intended
usage in the current context (e.g. whether for generating a pointing gesture or
for recognizing it when performed by someone else).

The knowledge that an experienced AERA agent has learned about a com-
plex domain from the ground up will consist of a very large set of such peewee
models [58]—the size of the set being a function of how knowledgeable the agent
is.24 The largest such knowledge base created from scratch through an agent’s
experience, as demonstrated to date, was our S1 agent that learned to conduct
a spoken-language multimodal interview with a human by watching humans do
it. This agent’s knowledge started with 26 hand-coded bootstrapping models;
after learning how to perform an interview it contained 1400 models [90], which
it had created autonomously over a course of 20 hours of observing two people
in realtime dialog.

CRMs can effectively encode causal relations (“affordances”) such as “sittable-
on,” which allows them to be used effectively for plans and action. The concept
of ‘chair,’ for instance, could have dozens, hundreds, or even thousands of AERA
models—many of which would be shared with other concepts (CRMs natively
support transfer learning mechanisms in AERA), but some of which would be
unique to chairs. The couple of “sittable-on” and “single-person,” each of which
could be represented by a single CRM (but will then reference other models as
well, mostly lower-level), will together be rather unique to chairs, even though
sofas, benches and the side-walk can also be sat on (and thus considered ‘seats’
but not ‘chairs’25).

4.2 The Meaning of a Concept in CCKR

According to CCKR, the bulk of a learning agent’s memory, at a particular
point in time, consists of a (implicit or explicit) concept network that as a
whole contains the systems’ total knowledge, and which, given the set of possible
operations on them, defines the limits of everything that the systems can be said

24 Our knowledge representation method allows re-use of knowledge, considerably re-
ducing representational needs for domains rich in self-similarity (in the limit, memory
increase for learning an additional domain Da at a single level of detail, fmem↑(Da),
is close to the memory requirements for additionally storing the difference between
the new domain and the most similar one already learned, at that level of detail,
D, assuming perception/acquisition of their differences, ∆ = P(D \Da), approaches
perfection: lim∆→∞ fmem↑(Da) = Da−D+α, where α is a small fractional overhead).

25 It should be noted that here we are using these words for human concepts purely
for convenience’s sake; an AERA agent that learns concepts from scratch will be
entirely limited to its own world of experience and may thus not end up holding
such human-centric concepts at all.
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to “know” at the moment.26 In this network, the nodes are concepts, and the links
are conceptual relations. There is a number of basic link-types, each operating in
accordance with particular semantically closed operations [64], that is, what such
a link means is defined completely by what the system can do with the link, in
accordance with our definition above (see p. 24). The other (non-basic) relations
between concepts are concepts themselves, and they are related to the basic
types.27 The network changes constantly (in terms of its topological structure
as well as the attributes of the nodes and links) when the system is running.

Given a conceptual network of this kind, the meaning of a concept to the
system is determined by its relations with other concepts, and these relations
have (almost exclusively) come from the system’s experience, which consists of
spatially localized streams of input and output over time. Each such stream
consists of conceptual relations itself, including temporal and spatial relations
as special cases. This way, the meaning of a concept in CCKR is “experience-
grounded,” and is accessible to the system, rather than given by the system’s
designer through pre-conceived notions, or by an interpretation that maps it to
outside entities.

In NARS, the basic conceptual relations are the copulas that intuitively link
two terms into a statement. There are four of them:

Inheritance: S → P means that “S is a type of P .”
Similarity: S ↔ P means that “S is similar to P .”
Implication: C ⇒ R means that “C implies R.”
Equivalence: C ⇔ R means that “C is equivalent to R.”

The accurate operational semantics of these copulas are provided by the inference
rules of NAL [103]; the first two specify when a term can replace another one
by meaning, while the last two specify when a statement can replace another
one by truth-value. Since terms (including statements as a special type) name
concepts, reasoning in NARS is effectively all about the substitutability between
concepts and the propagation of such substitutability.

Using the copulas as basic built-in relations, other relations can be defined.
For instance, an arbitrary relation R among arguments A, B, and C can be
represented in NARS as (*, A, B, C) → R where the left side of the arrow is
a compound term intuitively similar to the Cartesian product defined in set
theory, and this statement literally states that the relation among A, B, and C
is a special type of the relation R. In this way, the inference rules of NARS only

26 In AERA, the network is implicit and extremely large, so should not be processed
as a graph. In NARS, the network is explicit and can also be huge, though it will
never be processed as a whole. In both systems the networks are always processed
partly and incrementally. The memory of NARS may look like a semantic network
or knowledge graph, yet there are fundamental differences (as explained below).

27 A concrete example is given latter, where relation R among arguments A, B, and C
is represented in NARS as (*, A, B, C) → R where R is a (relational) concept with
learned meaning, while ‘→’ is a basic relation with built-in meaning.
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need to directly process the copulas, as all the other relations can be converted
to them equivalently.

The knowledge structure of an AERA agent can be seen as a graph of graphs
(hypergraph)—sets of linked nodes that hold explicit patterns, and the majority
of links are latent (implicit), at any point in time, and only those considered po-
tentially relevant at any point in time are made explicit on demand, at runtime,
through active comparison and pattern matching, as mentioned above. This is
both how concepts are used and formed over time in AERA. Generally speak-
ing, each node (e.g. a CRM or part of it) may contain (small sets of) variables
or terms, some with particular values or ranges, but they mostly also reference
other nodes, forming a hierarchy. Concepts, in this approach, are thus associ-
ated (both loosely and strongly) subsets of the full network, where most of the
associations/relations are, again, latent, only to be created upon their use for a
particular purpose in particular contexts, through said active pattern matching.

Like in NARS, the knowledge in AERA is experience-grounded, and learn-
ing, reasoning, planning, and sensing, are always-on continually-running pro-
cesses. The vast majority of knowledge in an AERA-based system, including
causal-relational models (CRM), are abstraction-neutral, and datatype-neutral
and defeasible information structures that directly support deduction and abduc-
tion. Deduction in AERA is used for (empirical, defeasible) prediction; abduction
is used for producing (evidence-based) explanations and (empirical, defeasible)
plans.28 All of these participate in the overt and covert cognitive operations,
operating over concept-based knowledge graphs that are generated on demand,
as already mentioned. This then collectively defines their (operational) mean-
ing: Overt operations primarily for controlling interaction with the world in
which an AERA agent lives, covert operations for steering how its knowledge
grows and its cognition develops over time.

The experience-grounded semantics of NARS and AERA can be captured by
the following:

1. Statements and information structures are true to a degree, the truth-value
indicating the amount of positive and negative evidence collected for a state-
ment or structure via the system’s experience.

2. Whether a concept contains a particular instance (example) or property
(attribute) is a matter of circumstantial definition (in NARS it depends on
the numerical truth-value mentioned previously; in AERA, active deduction
and abduction processes).

3. A conceptual relation R can be specified using compound terms (like Carte-
sian product, as shown in the previous example in NARS on page 28).

4. A compound term and its components are related by the definition of its
compound elements, deriving its meaning from these and its active context
(relation to other compound information structures at a particular time).

28 Induction primarily enters into the picture in the creation of new concepts, although
AERA can also use it during knowledge compaction (compression). Ongoing work
involves the use of induction also in dynamic analogy-making [78].
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5. Events experienced by the system can be temporally or spatially related to
each other, and these relations also construct compound terms or information
structures.

6. The meaning of a term involved in sensorimotor operations is defined par-
tially by its operation, which is procedural by nature. Executable operations
have an associated procedural meaning that reveals what they do; these
operations can be innate or acquired.

According to CCKR, the meaning of a concept changes over time, not only
because the system usually doesn’t have the time to consider the “full meaning”
of every concept when using it, but also because most of the conceptual relations
are irrelevant to the tasks the system is working on at any point in time. For
instance, a concept C may be linked with 1000 other concepts at a particular
moment, those 1000 links (relations) is what C “means” to the system in general
at that moment. However, when processing a task (say, answering a question),
only 3 out of the 1000 may actually be used, which defines its “meaning for the
current purpose,” C ′. This C ′ is “constructed on the fly,” i.e. composed from the
current context, without a specific pointer or name (e.g. a word used to reference
it in language), though it is not really a brand new concept, but a sense (usage)
of the existing concept C.

As much of the knowledge in the memory will not be relevant at a particular
point in time, it is usually the role of resource control/attention mechanism to
select the relevant knowledge for processing at any point in time. For instance,
for the purpose of comparing a dog’s leg to a human leg, features such as “holding
up its body,” “propelling body forward by pushing,” etc. would be selected as
points of such comparison, forming a relational graph for the two legs, yielding
differences and similarities.

Since the system does not always know how to approach a new situation,
rather than rely on existing algorithms, it must use its available knowledge in
a case-by-case manner. A system usually cannot afford the resources to exhaus-
tively explore every possible solution to every new problem or situation, due to a
general limitation of time and energy, therefore, it must base its actions (mental
and physical) on what seems the most relevant relations of its most relevant con-
cepts, at any point in time [99, 84], which may necessitate relying on analogies
and generalizations.

In NARS, all the knowledge about a particular concept, i.e., all of its links to
other concepts, are stored in a probabilistic priority queue. When a concept is
used, such as in the process of answering a question, these links are considered
one by one to see if it leads to a candidate answer. Each time a link is requested,
every existing one has a chance to be chosen, depending on its quality, usefulness
in history, and relevance to the current context.

Since these contextual factors may change each time the same concept is
accessed and used, the pieces of knowledge in it may be retrieved in a different
order, and the amount of total knowledge retrieved for a given task depends on
the available time, which also changes from situation to situation. Consequently,
the “current meaning” of a concept may be more or less different from its “general
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meaning.” When a concept becomes relatively stable (after having been used
many times in similar ways), a smaller number of its relations may usually be
involved when it is used. In such a case, these relations could be considered its
“essence” or even “definition.”

Unlike traditional concept ontologies in AI, many of which draw a fully con-
nected knowledge graph by putting permanent links between shared nodes (and
most often created by humans), a knowledge base in AERA creates such node
linkage – under a particular context at a particular point in time – via match-
ing candidate shared nodes (other nodes with shared properties); if a match is
created, it becomes a temporarily-shared node of two temporary links in a tem-
porary sub-graph.29 For a particular context, some nodes may thus be considered
(temporarily) related, while under other circumstances they would not. The key
reason for this approach is to more flexibly handle novelty: A difference in how
matching, and thus linking, is done enables adaptation of existing knowledge
to an agent’s present (novel) situation and active goals, which may be differ-
ent from anything that the agent has encountered in unpredictable ways. Thus,
most “graphs” in an AERA knowledge base are not, strictly speaking, “exist-
ing” so much as latent and “emergent;” any AERA knowledge base supports
numerous graphs for numerous purposes through such dynamic node (and link)
matching, on-demand. The meaning is therefore also emergent, depending on
the current context and the results of this dynamic graph generation through
the appropriate matching processes.

4.3 The Creation of a Concept in CCKR

A major difference between CCKR and the traditional concept-level represen-
tation approaches is the assumption that concepts are created from scratch by
the system, based on its experience, using its existing knowledge and processes.
A direct result of this, and another important difference, is that rather than
being predetermined by its designer or trained to converge to a stable structure
from the outset, the conceptual network in CCKR is adaptive and constantly
changing throughout the system’s life time. As the system runs, new concepts
and conceptual relations are created constantly and old ones may be removed,
to free up resources.

How are new concepts created? The typical process of constituting concepts
proceeds by assembling (associating) small pieces of information (e.g. data com-
ing from sensors and prior knowledge related to these) to improve the system’s
performance in various cognitive purposes. For instance, the concept of “drinking
from a cup” could be assembled out of existing re-purposed knowledge as “pour-
ing liquid into a mouth,” and might include the cup’s curvature, how it may be
grasped and moved, and how it holds liquid that pours out in the direction it’s
tilted, as required by the shape of the mouth of the drinker.

29 Note that these are actually implemented through instantiation and binding of tem-
plates; thus, a trace of such events can be stored to support later processing, for
instance episodic memory.
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In particular, new concepts in NARS come into being in three ways:

1. Novel external experience. Initially, the memory of NARS only contains a
small number of concepts used in the innate operations. Since NARS is
always open to input information expressible in Narsese or perceivable by
the sensors, new information constantly enters the system’s experience,
including novel terms and patterns. If such an item can pass the initial
competition and enter the memory, a new concept will be created for it.

2. Constructions of the system. NARS has a set of inference rules to organize
the experience efficiently. For example, when the system notices a light
that is red, it will coin a “red light” concept to combine this two pieces of
information into one.

3. Meaning-drift of existing concepts. Besides the changing topological
structure of the concept network, the numerical features (such as
truth-values and priority-values) of the vertices and edges are also adjusted
from time to time. In the system’s life cycle, the state of the concept
network never repeats. Since the meaning of a concept is determined by its
relations with other concepts, all these changes will more or less change the
meaning of the concepts. When the meaning of a concept has changed
significantly, very often it is more natural to be taken as a different (new)
concept. This kind of meaning drifting is gradual and continuous, so it is
hard to decide the exact moment when one concept becomes another. Even
so, this phenomenon is inevitable in CCKR, which produce both desired
results (e.g., adaptation) and undesired ones (e.g., inconsistency).

As the future is unknown, NARS never knows for sure how much each new
concept can contribute to its future activities. Consequently, concepts compete
for the limited resources (processing time and storage space). As the system
matures, the number of concepts in the system and the number of relations in
each concept will be roughly constant, bounded by the system’s storage and
processing capacity.

In AERA, concepts are not contained in static graphs, as mentioned earlier,
but constituted on-demand through a dynamic construction process, in light
of the agent’s active goals and situation. The rules for assembling the concept
graphs use (low-level) pattern matching and reasoning. In this approach, con-
cepts are an emergent second-order phenomenon. Introspection on how concepts
are constructed – i.e. processes that regulate the second-order concept construc-
tion – are third-order processes, corresponding (roughly) to what has been called
“cognitive development.”

The mechanisms for graph creation in AERA, and thus concept formation,
include contextual association by similarity, salience, urgency, and usefulness.
The strength of association between any particular subsets of knowledge, at any
point in time, is then a product of these four dimensions. The product may
itself be context-dependent, but this puts a burden on the bootstrapping of
the learning process (unless the agent has a teacher that can help with the
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bootstrapping), which depends on an initial seed [84] (i.e. the program that
initially gets the learning going).30

In both NARS and AERA, this approach makes concepts (a) refinable over
time, as experience grows (for instance, how a particular word is used), (b)
adapted to the current situation and use, and (c) naturally combined with other
relevant concepts, for any purpose, on demand (cf. winged basketballs). This
also has the benefit that the cognitive mechanisms used for creating concepts
are the very same that use them, avoiding infinite regression of machinery for
generating meaning.31

In AERA, concept assembly may be initiated from a goal whose end state
(e.g., quenching one’s thirst) is related to an elements presence (e.g. a cup’s
presence) in the sensory field: Sensed patterns indicating the shape and size of
an object (such as a cup, and the liquid it holds), brings relevant knowledge to
bear on the goal (via association); predicted goal achievement enables the first
steps of a plan (e.g. reaching for the cup) to be produced and committed to. This
exact process is also how brand-new concepts are in fact created: By associating
patterns with other patterns. We hypothesize that the flexibility with which a
cognitive architecture can do this, and the arbitrariness to which it can be done,
determines to a significant extent its capacity for abstract thought.

But if concepts are always created on the fly, how could they reach any stabil-
ity, and the learner employ them reliably for thinking? How could polymorphic
and complex – but useful – concepts, like “water” and “living beings,” achieve
concreteness and stability in such an approach? The answer lies in the emergent
interaction between the on-line/on-demand assembly process, the agent’s (dy-
namic) task-environment, and the fine-grain constituents of the agent’s knowl-
edge (low-level representation). The persistence or solidity of a concept is de-
termined by the strength of latent associations between its constituents, which
is to an important extent determined by permanent regularities in the learner’s
world; the association can be temporally local (as, for instance, the concept of
a ‘winged basketball’) or deeply entrenched (e.g., the concept of a human face,
parts and all).

In the CCKR approach, concepts are thus not only constructed incrementally
and piece-wise by the learning system over time, based on experience, they are
also more or less re-constructed every time they are used. As the association
between a particular situational factors and particular sets of knowledge becomes
stronger, due to repeated experiential evidence of their usefulness (among other

30 The greater the uncertainty about the task-environment for an agent at “birth,”
the more general-purpose the initial bootstrapping learning programs must be, at
the cost of learning time (the larger the number of options one is open to, more
considerations are required before you can know what to pay attention to, and
thus the longer it takes to start learning). Thus, the more of the agent’s learning
machinery that is supposed to adapt to circumstances, i.e. learned, the longer it
takes to stabilize.

31 While it is tempting to go into further detail on this particular topic, it involves a
number of runtime and implementation issues that are unfortunately too involved
to be given a treatment here.
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things), the more likely it is that mostly the same elemental knowledge will be
used for creating similar graphs in similar situations. Situations with an overlap
– especially situations that differ wildly, yet associate with a small subset of the
same knowledge – will help highlight that particular subset of knowledge as
being relevant across otherwise different situations. This has the desired side-
effect of concept solidification. Furthermore, the knowledge thus created will
become increasingly useful for particular purposes in those situations over time,
because it is constantly being improved through experience, and this in turn
incrementally increases its conceptual contextualized solidification.32

Learning proceeds, in the CCKR framework, by explicitly modeling33 se-
lected subsets of ongoing experience, resulting in information structures that can
(directly or indirectly) inform a learner’s future behavior, both overt or covert.
The adequacy of any information structure thus created, in light of a particular
goal, c.f. “knowledge X can be used for achieving goal Y,” must take into con-
sideration the context in which it is to be applied, i.e. “in situation Z”.34 This
means that any learning controller that achieves autonomy through the use of
explicit information structures in a particular environment – that is, freedom
from going back to the lab for re-programming when facing novelty – must also
have adequate means for their creation, modification, continuous improvement,
and for evaluating their usefulness for various purposes in various contexts. This
last part, in our approach, should be achieved through a recursive application
of the same concept-centered mechanisms being thus evaluated, to avoid infinite
growth of the information storage.35

32 We hypothesize that this is in fact where the power of language to shape cognition
comes from: It is, among other things, a “concept solidifier” mechanism—making
certain concepts more useful than others, as evidenced through communicative ex-
perience. It may also be the source of some confusion with a hypothesized “language
of thought” [21], which in our view is most aptly thought of not as a language but
as a reasoning control system.

33 The term ‘model’ is used here in the most general sense, as “the strategically chosen
features, functions, and relationships in the learner’s (overt and covert) experience,
purposefully reformulated as information structures” that are useful for achieving an
agent’s implicit and explicit goals.

34 This matches the general definition of a model, that is, a model with a referent
(whether we assume the referent being something out in the physical world or simply
the experience of the learner). For instance, a sowing thread may not be useful as a
model for answering questions about the strength of a tree trunk, but it might work
for answering whether the tree is long enough to bridge the banks of a river).

35 One critique of this might be that we are replacing infinite growth with infinite
recursion, which would in fact be correct. Of these two evils we prefer to take on the
latter challenge rather than the former, because (a) it seems to us that humans can
apply their concept-creation abilities to virtually anything, a seemingly important
feature of human cognition, and, (b) while humans may be able to create apparently
infinite recursions of the kind “I know that you know that I know that you know that
I know...,” they seem to be quite capable of avoiding it becoming an impediment to
organized thought.
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It may be useful here to sidestep ever so quickly into human cognition with
respect to language. Explaining the role of language in concept use and thought
is still a largely unsolved question of human intelligence. In CCKR the mecha-
nisms of language creation and use are directly based on the concept creation
and use we have described here. In this view, a word is a particular pattern36

(whether written or spoken) that can be associated with a particular knowledge
subset, through the mechanisms outlined above. The result is that any useful
association between that pattern and a set of information structures will solidify
over time, upon repeated use and experiential evidence of practicality. Impor-
tantly, this solidification is local in that due to the compositionality of concepts,
only elements hypothesized to be strictly relevant to the goals and situation at
hand are consolidated, as are subsets of the concepts thus created (i.e. concepts
are not “blobs” but rather, “Lego sets”). Context plays an important role here: In
AERA the knowledge deemed relevant upon reading or hearing a word will de-
pend on the current situation (determined by input from the sensors) and the
currently active goals, controlled by the system’s resource management mech-
anisms. Due to the way its knowledge is encoded and its acquisition proceeds,
to teach AERA to use words – and language – is to use them in context. Once
learned, AERA can use not only appropriate words but also appropriate syn-
tactic patterns to describe or talk about any of its known concepts, treating the
words, e.g., “table,” as a pattern whose relationship to models of the concept
‘table’ is described by models of the use of the word “table.” As the same sym-
bol (word pattern) is subject to the same knowledge management mechanisms
as any other knowledge, procedural or otherwise, a word like “car” will naturally
result in slightly different graph construction depending on whether the context
is the 19th century or the 21st century. With training, words become useful for
thinking, because of their rich associations to other knowledge—and they recall
contextually relevant knowledge, just as the sight of a cup will recall concepts
related to holding cups, drinking from cups, etc., if your goal is to find a cup,
and only if the cup is green when you’re looking for “green things.”

4.4 CCKR: Properties & Implications

A concept-based cognitive general learner in a complex world creates (and im-
proves) its knowledge piecemeal, from small atomic (“peewee”) elements, over
time. Acquired knowledge is thus made from components (sub-parts) whose
meaning is defined by, and emerges from, their use in bridging between sen-
sation and action, prediction and plan, explanation and problem solving, ab-
straction and generalization, and so on. In the process of their application for
these purposes, the concepts and their relationship with other concepts is rein-
forced (and re-instated) through the existent relations between their constituent
components. Seen this way, a concept is a piece of segmented and compressed
multi-faceted model of experience.

36 To be more specific, a word rightfully forms a family of patterns, due to the tolerance
for a human language user to its variations in practical scenarios.
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A concept in CCKR is thus a collection of information structures that are
internally related, and describe multiple aspects of a “semi-unified whole” of
closely-related things that are relevant to a being’s cognition, including its ac-
tive goals and proximal immediate surroundings and actions. The concept of a
‘table’ includes (latent) models of its physical features, what it’s for, how it’s
constructed, etc. It includes all the invariant information that can be abstracted
from a set of (experienced and hypothesized) instances of tables (i.e. where the
label “table” is appropriate, based in part on social convention). Edge cases test
these conventions and the information structures that produce the concept, so
that’s why people typically have to think more when asked whether something
that’s made from unusual materials or is missing some standard features is a an
instance of that concept. For instance, is a waist-high flat rock in the forest a
table? That depends – in part – on the role of the rock in your activities: the
very act of deciding whether something “is a table” (and thus also whether to
call it, use it, or treat it as a table) is handled by similar mechanisms that enable
the creation of new concepts.

The knowledge contained in a CCKR database can be inspectable and manip-
ulable at a fine-grain “atomic” level37 because the relations between parts of the
knowledge are constructive—i.e. they have a decomposable structure whose parts
can be inspected – reflected on – by the system itself. In a given conceptual hier-
archy, at the lowest level of any concept are its atomic peewee elements – these
cannot be dissected because they don’t contain anything smaller-grain. Some
atomic elements may be expanded by further learning; for instance, even if the
wings of an actual airplane are no more detailed in our mind than those of a
paper airplane, we may extend it further when learning that there are flaps at
the back edge that can move and internal tanks for holding fuel. Other atomic
elements may terminate in some fundamental measurement that can be pro-
vided by a controller’s transducers, and thus usually pertain to an agent’s I/O
devices. These are key in grounding all learned concepts, as they play a funda-
mental role in bootstrapping the agent’s learning process itself.

A concept, in this conceptualization, can be a compound information struc-
ture composed of other concepts, patterns or partial concepts – that may be
manipulated as a set, all at once, while also allowing dissection and analysis, ac-
cording to needs (decided by an agent’s current situation and goals). Concepts
are thus clusters of introspectable knowledge that contains overlapping graphs
that can be dissected down to the smallest atomic pieces of knowledge.

For a large knowledge base, containing thousands or millions of low-level
concepts (e.g., how the apparent shape of objects depends on viewing angle,
to take an example), the combinatorics and potential to form sub-graphs will

37 An analogy to physical atoms – not their Platonic indivisible original version – is
somewhat useful here: Physical atoms constitute not only something of a coherent
whole, they also inherently encapsulate the rules about which they “play” with their
surroundings, which atoms they may pair with, and so on. In this sense, like atoms,
models in AERA and terms in NARS are made of parts that determine their behavior
in the context of other things.
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approach infinity. To be flexible – i.e. to be useful in as many situations for as
many purposes as possible, supporting a large variety of potential knowledge
graphs – elements of such graphs would need to be re-used across various situ-
ations (e.g., the ‘supporting’ role of a human leg is similar to the ‘supporting’
role of a table’s leg—and probably partly responsible for them both being called
‘legs.’). For a large knowledge base it is of course prohibitive to pre-compute
every possible information structure that might be needed, and in a complex
dynamic world, knowing beforehand everything might be needed in the future
is also impossible. These are three reasons why our approach relies on dynamic
contextual concept (re-)constitution: Dynamic (re-)creation means that the rel-
evant building blocks can be used for thinking, in light of any relevant purpose
and situation, making knowledge use very contextualizable. This is also why
reflection is called for: A cognitive system must be able to inspect its own oper-
ation, to the extent necessary to allow for part-wise manipulation, modification,
comparison, and evaluation of any subsets of its knowledge.

The latent concepts in a large knowledge base will be highly context-dependent,
putting into question the idea that when a concept is used it is the “same” con-
cept as when it was used last time. This is a feature, not a bug: It means that the
relevant parts of a concept are summoned for particular intended purposes. Hu-
man concepts exhibit this in well-studied edge cases, such as whether a broken
flower vase is still a vase (the answer depends in part on what you plan to do
with it—are you testing the power of a new kind of glue or do you have some
flowers that need to be put in water?). Many examples of fluid and creative
examples of usage can be found in [35].

5 CCKR: Summary of Key Features

CCKR concepts bring a computational “economy of thought” [46] – an Occam’s
Razor – that allows a learner to use bounded resources more efficiently. This
involves (1) simplification, in the form of summaries of complex experiences, (2)
identification of similarities (by grouping), and (3) steering of attention (deciding
relevance for efficient steering of resource usage).

A concept-based representation is useful for handling unbounded objects and
events, by being domain-free and scale-free, meaning that the ability of composi-
tional concepts to represent information isn’t limited to particular domains and
they aren’t bound to a particular level of spatiotemporal description.

CCKR information structures contain the necessary representational features
to be autonomously formed and managed by the learner, continuously and con-
sistently over its whole lifetime, on demand. CCKR knowledge is explicit and
new concepts can be constructed from existing concepts using clearly defined
operators and explicit relations; existing concepts can be split and re-combined,
modified, and changed in part or in whole. CCKR information structures nat-
urally represent hierarchies as well as various types of compound concept, even
target other CCKR structures in support of reflection. As a result, CCKR rep-
resentation supports naturally multiple types of reasoning (deduction, abduc-
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tion, induction, and analogy), and some of them are often considered as rules of
learning, too. This means that a CCKR learner can explicitly and systematically
compare and contrast its own experience, reason about its own knowledge and
cognitive processes, and produce arguments for its actions. This is a fundamental
method by which life-long continuous (cumulative) learning can be realised [85].

In principle, the future is different from the past, and every situation is
novel. Adaptation means treating anything novel in relation to the familiar,
through decomposition, recognizing their partial similarity and ignoring their
differences. A concept in our view provides the mechanisms to achieve Piaget’s
idea of “assimilation” [66] and Hofstadter’s “seeing as” [38], allowing for natural
decomposition of information gathered over time through experience.

The knowledge a CCKR system obtains is normally from the processing of
multiple tasks, so its meaning, usefulness, and significance to the system is not
limited to a single task, as that obtained in an end-to-end black-box learning
process that aims at the approximation or optimization of a specific function
[84, 107].

Since CCKR represents knowledge as concepts and their relations, a learn-
ing system using it will produce knowledge that is easier to align with human
concepts than most other approaches to knowledge representation, and therefore
easier for humans to understand; it also makes it simpler for a learning system
to combine its own experience-based knowledge with given human knowledge.

6 Comparison & Discussion

In the following section, CCKR is compared with other approaches of knowledge
representation, especially the symbolic and connectionist schools.

6.1 Theoretical Underpinnings & Methodology

In light of the bigger historical picture, research on representation for intelligence
is still in the early stages, which means that a large number of important back-
ground assumptions and requirements have yet to be addressed by mainstream
research, and many have in fact yet to be brought into the foreground [88]. This
includes the theoretical underpinnings of the methodologies. Indications that we
are in the early stages of research can be seen in the relatively high number
of cognitive features that are absent from most current AI systems—it is for
instance still not uncommon to see cognitive architectures that are incapable of
learning, and very few of them handle time as a first-class citizen. As there exists
no accepted broad theory of intelligence, this is perhaps not surprising. Instead
of working towards such a theory, however, which requires elucidating all main
background assumptions, the research community has addressed its subject mat-
ter largely by fragmenting along topical-methodological lines – neural, symbolic,
etc. – and researchers in each camp continue to speak to a (relatively small)
community with a limited set of shared background assumptions and terminol-
ogy, which in turn then remain generally obscure in the larger community. This
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is the current situation, and it could easily go on unchanged for decades due to
the complexity and intricacy of the topic.

To make faster progress, a concerted effort to bridge between sub-fields, with
common terminology and definitions, must be undertaken. A simple but impor-
tant step includes stating clearly in research papers the background assumptions
and methodological approach followed. It may be argued that connectionist ap-
proaches to AI are not based on any particular theory of intelligence or cognition
at all but rather, on an extensive analogy—that “brains are the machinery” of
intelligence, so by copying (or rather, taking inspiration from) a subset of its
features we can re-create intelligence in a machine. While this makes perfect
sense for studying the fine details of brain operation, such as neurons and neural
clusters, it is not very useful for understanding the higher levels of organization
necessary for cognition—and certainly not the level of human knowledge and
concepts. When studying human cognition, minds and brains are certainly two
aspects of a particular incarnation of the same phenomenon, but their relation-
ship is not such that one can be naturally and easily derived from the other. A
mapping between these two levels ought to be possible, and will undoubtedly
be achieved eventually, but it is far from straightforward. Without a theory of
intelligence, it is quite a conundrum which of the thousands – or millions –
of biological feature candidates in a working brain should go into a successful
implementation of an artificial mind.

It may further be argued that the symbolic approach in AI rests on essen-
tially the same exact theoretical basis as that commonly accepted for computer
science. This might not be surprising, considering that historically the origins of
the basic ideas on which both are based trace back to approximately the same
period in history, when practical electronics, information science, and software
development were forming, shortly before and around the middle of last cen-
tury. “The representations used in computation are symbols and the mind is a
computation—the human mind must thus also operate on symbols.” No won-
der that the founding fathers of AI should think that computers would be able
to demonstrate human-level cognition within a decade! But now we know they
didn’t—not by a long shot.

If current theories of computation suffice to describe computation fully, both
practically and theoretically, a theory of cognition cannot be the same as that
of computation, whether it be the particulars of the information architecture
upon which cognition rests – like is commonly thought – or something else,
because they are fundamentally different; the principles allowing human thought
to surpass contemporary theories of computation in fundamental ways are still
missing. But what could the principles of cognition be, beyond those which
describe computers?

Our CCKR approach rests on a theoretical basis for (artificial) intelligence
that has some overarching principles to offer that go beyond current theories. It
rests on a working definition of intelligence that assumes intelligence fundamen-
tally involves adaptation under insufficient knowledge and resources [104, 83]. It
follows from this stance that intelligence operates under relative rationality [101],
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and that intelligent agents acquire their own knowledge through active construc-
tion of information structures [82]. While the latter point certainly echoes the
work of some older psychological theories and schools of thought, our work takes
several important steps that, unlike this early work, allows the specification of
building instructions for machines that capture these essential properties.

In narrow AI, as in traditional software development, the meaning of anything
that an artificial system does can only be interpreted from the point of view of
the human creator of that system. This is one key reason why people are often
reluctant to attribute understanding or intent to, for instance, AI systems like
self-driving cars; in the words of the proverbial man-on-the-street, a self-driving
car can’t be made responsible for its actions because it doesn’t really “know
what it’s doing.” Put differently, its actions don’t have any meaning to itself —a
self-driving car doesn’t even have any handle on meaning: The context of its
actions are not part of its operation. It is a tool, plain and simple, unavoidably
resulting from the allonomic engineering approach used in its construction – as
with all traditional software development [82].

In contrast to traditional software development methodologies, our approach
requires a learning agent to create its own meaning. It does so in the way in that
it creates and uses information: The knowledge of an agent with real intelligence
is not an accurate and objective description of the world, but rather, a par-
ticular encoding of the agent’s experience, with concepts as reusable units. The
knowledge of such a learning agent is always a construct, and its learning thus
constructivist. It also means that while knowledge is constructed, it is in fact
hypothesized, because the learner can never know what is “truly out there.” This
has the important and unavoidable conclusion that knowledge is never certain
and all reasoning that such an agent does, based on this knowledge, is defeasible
[69, 70] and non-axiomatic [93].

Learning, in this view, consists of the construction of interconnected (and
partial) models of a learner’s accumulated experience, about its own actions,
including its own cognitive events (thinking about thinking), and those of the
world, in a “language of thought” that supports recursion (i.e., one that is com-
patible with other knowledge representation and mechanisms). If there is reg-
ularity in how the agent’s sensors respond to physical forces in the world, the
models will reflect features of the agent’s environment, as sampled through ex-
perience, in a compressed form (which depends in part on the agent’s cognitive
apparatus; the other part it depends on is the form of the agent’s sensors and
history of interaction with the environment). Over time this knowledge becomes
increasingly useful for meeting the agent’s numerous active goal(s). The above
considerations form a foundation that separates, in our view, intelligence found
in nature from current narrow AI, whether symbolic, sub-symbolic, or something
else. They result in a set of implications that, again in our view, makes it clear
that current approaches to AI are unlikely to lead to AGI or “real AI.” Attempt-
ing to put these in a comprehensive list is thus our next task.
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6.2 CCKR Concepts vs. Symbols

A predictable misunderstanding of what we have presented is to take CCKR as
yet another symbolic approach, since a concept may look a lot like a symbol,
which also can serve as an identifier of information structures within a system.

We insist that the concepts in CCKR are not symbols, mainly because of
the fundamental difference in how they work, and what a concept and a symbol
each mean. In the view of CCKR, symbols do exist, but not in the mind: In-
stead, they are the physically manifested representation of a concept, thought,
or relationship – or a sequence thereof – such as a word (composed of letters),
a “no-smoking” sign (composed of symbols), a particular temporal sequence of
sound waves (speech), etc. Such physical symbols are used for communication
to allow the creation of a shared set of concepts, relations, etc., through sensory
apparati—physical symbols are manifestations of thought based on concepts.38

Further, if ‘symbolic’ were to be interpreted as equivalent to “using identi-
fiers,” the notion would apply to all systems implemented in digital computers,
including the connectionist models, as the nodes and links are addressed using
internal identifiers or names. So this is clearly inadequate, and a more thorough
dissection is called for.

In their “physical symbol system hypothesis,” Newell and Simon [56] stated
that a symbol “designates” an external object or a process, and the symbol can
be “interpreted” according to this mapping. Given this relation, the system’s
manipulation of the symbol will make it behave according to the object outside
the system. This usage of “symbol” follows the referential view of semantics [63],
in accordance with traditional model-theoretic semantics [6], a well-established
theory. This semantics has played a central role in mathematics for specifying
the meaning of mathematical concepts, but its application in AI has significant
shortcomings. As a result, it has received its share of criticism such as Searle’s
“Chinese Room” thought experiment [76], which rightfully highlights a major
blind spot of all symbolic (GOFAI) AI approaches in that a system using symbols
according to model-theoretic semantics has no access to the interpretation of the
symbols in it, because according to that theory, the meaning of the symbols is
determined by an interpretation that is independent of the system’s experience,
or the way in which the symbols are processed by the system. The issue is
often expressed as the “symbol grounding problem,” i.e., the question “how can
the semantic interpretation of a formal symbol system be made intrinsic to the
system?” [29, p. 335].

CCKR is not a solution to this problem but a rejection of its presumptions
– that is, of the very foundations of model-theoretic semantics – which define
the meaning of a symbol by its denotation outside the system. In CCKR, the
meaning of a concept is determined by its role in the system’s experience, as
revealed by its relations with other concepts [95] and its use for overt and covert
action [84]. For this to be possible, the creation, manipulation, and management

38 The creation, manipulation, comparison, etc. of concepts is, however, “symbolic” in
the sense of “using identifiers;” see following paragraph.
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of concepts must be accessible to the system and automated in the system’s
operation, i.e., their meaning must be determined by the system itself at run-
time. In this view there is no designation or interpretation from an observer. As
long as a concept appears in (or can be related to) the system’s experience, it
has some (latent39) meaning to the system. Here the “experience” can be any-
thing represented as internal events—linguistic, sensorimotor, or anything else
that the system experiences, including covert operations, and the relation can
be direct or indirect, i.e., via zero or multiple abstractions from the raw input
and internal operations.

Specifying the meaning of a concept or a word by its relation to other
concepts/words is not a new idea, as proposed in conceptual role semantics
[28] and the language-game theory [111]. In computer science and AI, the ap-
proach has taken various forms, from semantic network [112] to knowledge graph
[19]. These “relation-based” approaches have mockingly been termed “Dictionary-
Go-Round” and criticized as defining a meaningless symbol using other mean-
ingless symbols. This is not the case in CCKR, because here the conceptual
relations are not definitions, but rather experienced by the system itself—we
could perhaps call it “contextuo-temporally grounded” because in this view any
experience is couched in the context of internal operations and similar experi-
ences, temporally (and spatially) demarcated.

CCKR requires the concepts to be (eventually) related by the built-in re-
lations that are directly processed by the system, and thus have an in-born
operational semantics (seed-based knowledge in AERA; copulas in NARS). The
built-in relations do not require any interpretation to become meaningful, and
neither do they allow multiple interpretations, as they are used according to the
meta-level knowledge generation processes innate to the system [97, 84]. These
(innate) concepts have fixed meaning that is not influenced by the system’s
experience, and they also contribute in determining the meaning of the other
(acquired) concepts using the system’s experience.

Another common criticism to the relation-based approaches is that a con-
cept can be related to too many other concepts for such a representation to be
practical. This issue is resolved in CCKR by its acknowledgment of resource
restrictions and dependence on an attention-allocation mechanism, which limits
selected relations at the point that each concept is used to the relevant ones for an
immediate purpose (temporally defined by the situation and active goals). This
attention mechanism decides the current meaning among the general meaning of
a concept, and therefore also explains the context-sensitivity of concept usage.
This will be controlled by various cognitive operations, many being some form
of reasoning, will determine the particulars of how this proceeds.

An important property of CCKR is its dynamic nature. As the conceptual
network comes from the system’s own experience, it will continue to change

39 The meaning is latent because one or more such meanings may not be realized for
the purposes of a particular situation at a particular time—for this reason it might
be better to say that ‘a particular concept may have many latent meanings, and
specific meaning(s) depending on its use in a particular situation.’
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as long as the system is running. In contrast, traditional symbolic AI systems
typically assume that every symbol has a fixed meaning that is given by its
(fixed) interpretation, being independent of the system’s knowledge, history,
active goals, and current status.

The claim here is not that model-theoretic semantics is completely incompat-
ible with CCKR,40 but rather, that it should not be applied to the acquired and
empirical concepts [82, 98]. The most important similarity of CCKR and sym-
bolic AI is at their level of abstraction, that is, trying to build a mind, rather
than a brain. However, they make very different assumptions about how a mind
is related to its environment and what knowledge is: CCKR models the system’s
interaction with the world, rather than the world “as it really is.”

6.3 CCKR conceptual networks vs. artificial neural networks

At a high level of abstraction, CCKR and artificial neural networks (ANNs)
share the common features of being networks (graphs) consisting of intercon-
nected units, where the knowledge is distributed in the (semi-explicit) edges,
which have “weight values” that can be learned. When the system runs, there is
a form of “activation spreading” along these edges. This is mostly where the sim-
ilarities end, however; CCKR is otherwise very different from ANNs and other
connectionist models in many important aspects.

CCKR and ANNs correspond to very different levels of description of the
brain, that is, the (psychological) conceptual level and the (biological) neural
level, respectively. A widely-used argument in favor of the ANN approach is that
the brain is a neural network, so this is proof that a network-based approach
is right for creating intelligence (cf. [77]). The statement is severely misleading,
however, in that even though the brain could be fully described as a neural
network (at one level of abstraction), this network would still be very different
from current ANNs, and it does not exhaust all aspects of the brain functions – a
brain is not merely a neural network. Furthermore, the validity of this description
level does not exclude others. In particular, human introspective experience of
our own thinking process is solely at the concept level (we say “I get this idea,” not
“I have this neural cluster activated”). This is one of the fundamental reasons why
the ANN approach to AI runs into trouble when a knowledge-level explanation
of their processes is demanded, because we do not understand neural activities
(in either their biological forms or their mathematical imitations) at the level
where our own learning, reasoning, and thinking are usually explained.

It can be argued that these two levels are related but that the neural level
is in a sense “more fundamental.” Even if this were the case (which we find a
tenuous claim), it does not mean that conceptual-level descriptions have to be
reduced to the neural level to be meaningful or useful, or even correct. On the
contrary, conceptual level descriptions have the advantage of being independent

40 There can still be symbols whose meaning is decided by an interpretation, as those
in seed-models in AERA, and those used in the axiomatic subsystems in NARS.
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to the biological or evolutionary aspects of the human brain, which are not nec-
essarily needed for intelligence in general. Few would argue that the operations
of a word processing program should be reduced to the transistor level to be
understandable or meaningful. Intelligence is an information process, and any
theory of it must address this level at a minimum [55]; bridging to lower levels
– explaining how they can be implemented – is an added bonus. A historical
reason for why many people prefer neural networks as the theoretical under-
pinnings of their work is because they see it as a promising alternative to the
symbolic representation, which historically has been rigid, fragile, and depen-
dent on human construction [34, 37, 80], and its resemblance to human brain is
secondary. Based exclusively on the symbolic AI work of the 60s and 70s, such a
view is understandable, but is an unfortunate results of incorrect induction from
limited historic events.

Some researchers may argue that there are also ‘concepts’ in an ANN. Though
in a sense the neurons at the input and output layers do share some properties
with the concepts in CCKR as “identifiable information structure,” they lack the
rich semantic, dynamic, and constructive features stressed in CCKR.

Bringing many of the good features of both symbolic AI and ANNs [96], our
CCKR approach offers the following desired features:

1. Fluid, adaptive, and flexible (“stretchable”) concepts: In CCKR, the bound-
aries of concepts are not sharp or binary, that is, whether a particular in-
stance of a phenomenon belong to a particular concept is a matter of degree,
adjusted by the system itself according to history, purpose, and context.

2. Tolerance to various types of uncertainty: CCKR allows uncertainty in knowl-
edge, so local or global inaccuracies, incompleteness, and inconsistencies will
not crush the system.

3. Parallel processing: CCKR allows multiple tasks to be processed concur-
rently, either in a time-sharing manner or in multiple processors, because
it does not require global consistency among the system’s beliefs or desires
(though the system always tries to maintain these consistencies as much as
it can).

4. Self-organization: CCKR supports the construction of new concepts in multi-
level abstractions, as feature learning in deep neural networks (DNNs). Un-
like DNNs, however, the concepts are made from parts that themselves are in-
dividually addressable, inspectable, and expandable, enabling self-organizing
compositional concept hierarchies.

These have all been demonstrated in some way in our work on NARS and
AERA. Equally importantly, these benefits do not come at a cost but rather,
CCKR avoids some major weaknesses exhibited by prior approaches, including
ANNs [96]:

– Compositionality: CCKR knowledge is explicit and new concepts can be
constructed from existing concepts using clearly defined operators and
explicit relations; existing concepts can be split and re-combined, modified,
and changed in part or in whole. CCKR information structures naturally
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represent hierarchies as well as various types of compound concept, even
target other CCKR structures in support of reflection.

– Autonomy: CCKR information structures contain the necessary
representational features to be autonomously formed and managed by the
learner, continuously and consistently over its whole lifetime, on demand.

– Generality: The knowledge a CCKR system obtains is normally from the
processing of multiple tasks, so its meaning, usefulness, and significance to
the system is not limited to a single task, as that obtained in an end-to-end
black-box learning process that aims at the approximation or optimization
of a specific function [84, 107].

– Reasoning: CCKR representation is in large part explicit, and supports
naturally many forms of reasoning, including deduction, abduction,
induction, and analogy, on any knowledge subset. This means that a
CCKR learner can explicitly and systematically compare and contrast its
own experience, reason about its own knowledge and cognitive processes,
and produce arguments for its actions. This is a fundamental method by
which life-long continuous (cumulative) learning can be realised [85].

– Explainability: Since CCKR represents knowledge as concepts and their
relations, a learning system using it will produce knowledge that is easier
to align with human concepts than most other approaches to knowledge
representation, and therefore easier for humans to understand; it also
makes it simpler for a learning system to combine its own experience-based
knowledge with given human knowledge.

6.4 Unification vs. integration

CCKR is based on the hypothesis that intelligence in general can be fully ex-
plained and reproduced at the conceptual level, largely independently of its sub-
strate and underlying lower levels, being it biological neural networks, electrical
circuits, or something else. CCKR does not aim at describing human knowledge
representation specifically, or in detail, but to abstract its fundamental principles
to a level where they are equally applicable to a wide range of computer and
natural systems.41

While sharing features with both the symbolic and the connectionist ap-
proaches, CCKR is neither a hybrid nor an integration of them, but rather a
new and broader proposal, resting on a reasoned foundation, that subsumes their
best features and overcomes their individual limitations. The resulting CCKR
theory does not contain “a symbolic part” and “a connectionist part” but rather,
breaks the walls between these two paradigms and gets at the more fundamen-
tal principles that their commonalities rest on, achieving a larger, more coherent
picture.

41 Of course, eventually it needs to be explained how such a representation is im-
plemented in the human brain, and how it differs from other animals, but that is
neither a topic we consider to be fruitful as a primary methodological principle for
AI research in its current state nor one to be addressed in this article.
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One fundamental reason for the failure of past attempts at a proper theory
of concepts is that many of the strong theoretical principles on which prior at-
tempts have rested are mostly non-existent here, or only present in a weaker
form. Without a good (or good enough) theory, attempts at unification ulti-
mately must make do with mere integration instead, where an improper combi-
nation inevitably results from incompatible assumptions about the operation of
the whole. Yet it is precisely that which is lacking that would allow a comprehen-
sive unification: NARS and AERA do not have separate “symbolic modules” and
“connectionist modules,” nor do they directly use existing logic or ANNs. Instead,
they can be considered as the traditional logical or rule-based systems completely
rebuilt according to many subsymbolic/connectionist ideas [107, 96, 37, 80].

We agree with many other researchers that a hybrid or integrated approach
may be more suitable (in terms of simplicity and efficiency, for instance) for
certain specific problems, though it will be difficult, if not impossible, to build
a general-purpose intelligent system (AGI) using such an approach. It is true
that both paradigms can find supporting evidence in human cognition, as the
same cognitive process can be described at either the conceptual level (as in
psychology) or the neural level (as in neuroscience), though neither can claim to
have captured all the information about the process.

Since connectionist and symbolic approaches correspond to different levels of
abstraction when referring to human cognition, each uses a unique vocabulary
to explain target phenomena in a somewhat incompatible way. There surely is a
correspondence between the neural-level and conceptual-level descriptions of the
same process, but it is not a one-to-one mapping; in general, there is no direct
mapping between neurons and concepts, nor is there a separate “neural part” and
“symbolic part” in the brain. CCKR is ‘unified’ also because it uses ‘concept’
in a broad sense to cover the territories which are traditionally referred to as
“subsymbolic” or “perceptual.” As described previously, since according to CCKR
a concept is an internal entity of varying size that can be explicitly identified
as a unit, there is no reason to exclude mental image, goal, operation, etc. from
forming a concept.

CCKR takes concept as a central unit of representation, but does not treat
its meaning as a constant determined by designation, definition, or third-party
interpretation, but rather, being contained in the multifaceted properties learned
by the system from experience. This position makes it fundamentally different
from other approaches in artificial intelligence and machine learning, though is
closer to many research on concepts in cognitive science [43, 35].

In our approach, the meaning of a concept is determined by the system’s
experience and context, and thus CCKR is also compatible with the view that
cognition is embodied [2], because a system’s “body” is by definition demar-
cated by sensorimotor operations, which partially constrain the system’s ex-
perience. When a learning system is implemented with different sensors and
actuators, the system’s concepts and beliefs will be different, even though the
mechanisms responsible for its intelligence (concept-centered representation, uni-
fied inference capability, resource allocation procedures, etc.) may remain the
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same. The changes in body and experience have an impact on the system’s
problem-solving skills, but not its intelligence, which is defined at the meta-level
of the skills, and is (largely) body-independent [100]. Thus, the requirement of
embodiment should neither be understood as a requirement for the meaning of
concepts to be reduced to the sensorimotor level, nor the requirement that the
system’s body (and experience) be close to that of a human [4].

By extension, CCKR also covers situated and context-sensitive cognition [3],
because its memory is dynamically structured to favor the concepts and rela-
tions that are directly related to the current situation, or the need raised by it,
as explained in [97]. However, it does not mean that the system is exclusively re-
active, with no long-term motivations and drives; quite the contrary: the CCKR
approach fully supports reasoning, widely construed, including prediction, ex-
planation, causal reasoning, and analogy making (though in this article they
cannot be described). Here the context of a concept is provided by other related
concepts and their current role in light of active goals and situations, rather than
by explicit labels, as in the traditional symbolic AI approaches [7, 49].

7 Conclusions

Our proposed concept-centered knowledge representation (CCKR) is directly
based on our understanding of intelligence, cognition, and mind. While resting
on – and echoing – many prior ideas in the field of AI and cognitive science, we
consider our formulation new in that it is more specific and offers, and contrasts
here, two implementations (NARS and AERA) that have already demonstrated
to go beyond other methods in machine learning and AI in important ways. While
both are certainly in their early stages, we consider them sufficiently mature to
compare to prior attempts at unified theories of cognition. This paper focuses on
the information content and form of our proposed concept-centered knowledge
representation demonstrated in these systems, but our work extends well beyond
these, sufficiently so to allow functionally operational software demonstrations
of its key principles.

CCKR does not assume the existence of an external world that consists of
clearly separated objects and events waiting for the system to discover, recog-
nize, or manipulate them. On the other hand, this position does not assume an
arbitrary or random environment either. We assume that an environment ex-
ists independently of the system and is complex enough that its future cannot
accurately be predicted in full detail, while containing sufficient regularity for
learning through experience, since otherwise no adaptation is possible.

CCKR proposes that in any general-purpose intelligent system, knowledge
must be represented as a dynamic conceptual network with particular proper-
ties and related operations. This network is neither a “neural” network, as each
concept has an internal identifier function that allows the network to be used
to construct more complicated concepts, to be constructed, re-constructed and
de-constructed, and is therefore not restricted to a specific task or function. Nor
is the network a “symbolic” network as classically construed, since the concepts
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do not refer to external objects and events; the network’s structure, as well as
the concepts and their relations, constantly change as the system interacts with
the environment while accomplishing its tasks through continual reasoning and
learning.

CCKR is presented as a set of principles that allow different formalization
and implementation, rather than a single model. This is the same case for the
symbolic and connectionist approaches, as both of them include various concrete
designs, while still having enough features to be distinguished from each other.
For this reason, we have not forced CCKR into a single formal model, though it
still shows enough differences from the other two.

A concept in our approach is neither a symbol, nor does it necessarily repre-
sent an external object or event, but rather, an ingredient, pattern, and model
of the system’s partial experience, that is, a record of its interaction with the
environment and a record of its own use of its knowledge. While some basic
concepts can be innate or given, most concepts are constructed by the system
itself, and all concepts are modifiable by the system according to history and
context, and with different degrees of stability and clarity.

The benefits of a concept-centered knowledge representation include:

– Treating novelty through decomposition and partial similarity to what is
already known, ignoring and/or examining the differences. This ability is
fundamental to all intelligence because the future is always different from
the past and every situation is novel.

– More efficient use of resources in representing and learning from experi-
ence, bring a ‘computational economy of thought:’ Concepts allow for (1)
simplification, in the form of summaries of detailed, complex experiences,
(2) identification of similarities (by grouping), and (3) steering of attention
(using estimates of relevance to achieve more efficient steering of resource
usage).

– Freedom from predetermined levels of spatiotemporal descriptions: A concept-
based representation is domain-free and scale-free, meaning that the compo-
sitional concepts can represent information that isn’t limited to particular
domains or bound to specific level of spatiotemporal description, allowing
them to handle unbounded objects and events.
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