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Abstract. If it looks like a duck, swims like a duck, and quacks like
a duck, then your LLM’s priors are likely to predict the next tokens to
amount to the word “duck” based on its learned data distribution—but
has it reasoned about its data to deduce the duck? Large language models
(LLMs) produce remarkably fluent text, enough to result in widespread
claims of their ability to “understand” and “reason”. However, a dissection
of the key architectural features of LLMs, and more generally ANNs, in
particular their reliance on probabilistic pattern-matching, exposes their
absence of critical structures analogous to the neuro-biological substrates
known to be involved in human reasoning, goal-directed behavior, and
cumulative learning. Furthermore, LLMs lack mechanisms to perform ex-
plicit goal-driven cause-effect guided use of deduction, induction, abduc-
tion and analogy; if a context requires an unseen and unlikely output (x∗)
not supported in the training-data manifold M (i.e. outside the convex
hull of what was seen during training), the model has no basis for produc-
ing an answer corresponding to the physical world, being instead limited
to interpolate on M, from which next-token predictions are drawn via
weighted sums over attention heads. Our formalism suggests that token-
level statistical interpolation already suffices for the observed behavior;
explicit internal reasoning modules are therefore not required to explain
output. Consequently, we argue that claims attributing human-like cog-
nition to contemporary LLMs are empirically unsupported, confusing
surface fluency with cognitive processes in what essentially are two lev-
els of the same misattribution: (i) Artificial Dualism: researchers project
hidden reasoning modules into purely statistical models; (ii) Turing Trap:
observers project agency from fluent dialogue alone.

1 Introduction

Algorithms for artificial neural networks (ANNs) have been proposed as early
as in 1943 by McCullogh and Pitts [51], with one of the first implemented ANN
systems being Minsky’s SNARC (1952) [54]. These ideas have since resulted in
a large number of variants, one of the newer ones being large language mod-
els (LLMs)—large-scale transformer ANNs, built from layers of multi-headed
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self-attention and feed-forward sub-layers, that process text and generate seem-
ingly coherent, contextually appropriate output in an autoregressive fashion [10].
More recent versions of the algorithm utilize the self-attention mechanism to
weigh the importance of different tokens in a sentence relative to each other
[93, 10]. Input text is tokenized, converted into vectors using embeddings, and
processed through transformer layers that calculate attention scores to dictate
focus on relevant tokens [93, 10, 26]. The model then selects the next token based
on learned distributions, iteratively generating a (arbitrarily) long sequence of
text [93, 10, 26]. Whether it is a single enormous model with hundreds of billions
of parameters or a mixture of experts (MoE) where many expert models coex-
ist controlled by a task manager model [40], these neural networks are capable
of modelling complex linguistic abstractions, capturing patterns in syntax, se-
mantics, pragmatics, and even elements of style and tone [10, 11, 62]. Although
some believe the architecture to be definitive and capable of increasingly com-
plex emergent properties, others believe that despite their size, these models are
simply parroting training data [99, 98, 100, 5, 72, 49, 8, 23, 35, 107].

However, large-scale generative machine learning pipelines have been extremely
useful in applied domains such as drug discovery, materials science, and chem-
istry in proposing vast libraries of candidate molecules, materials, or designs,
which are then systematically filtered by external rule-based criteria or sim-
ulations to ensure viability [15, 80]. In pharmaceutical discovery, for example,
deep generative models can enumerate new compounds, before pruning using
medicinal chemistry rules and ontologies to eliminate implausible or problem-
atic molecules [48, 4]. Similar hybrid strategies appear in materials science, where
ANNs generate candidate crystal structures or molecules that are subsequently
screened by physics-based simulations and logic constraints before experimental
consideration [80, 58]. These examples of deterministic filters and knowledge-
driven checks compensate for the fact that current algorithms lack functional
reasoning capabilities in the classical sense.

By integrating external rule sets, ontologies, and physics-based evaluations as
post-generation filters, researchers create a feedback loop that enforces domain
knowledge and logical consistency on candidates to profit from the automation
capabilities and enormous volumes of output data [39, 71]. In essence, these fil-
ters perform a kind of surrogate reasoning: they rigorously apply the deductive
rules of chemistry and physics and the inductive generalizations gleaned by hu-
man experts, thus guiding the generative model’s outputs toward feasible and
meaningful solutions that adhere to real-world constraints [29, 15].

This reliance on external filters and domain-specific heuristics underscores a
fundamental limitation: LLMs, while powerful at pattern classification and text
generation, inherently lack mechanisms to validate truth or to perform explicit
reasoning processes over causal-chains. There exist formal approaches to causal
inference, such as Pearl’s Do-calculus, that provide a rigorous framework for
representing cause–effect relations using structural causal models and directed
acyclic graphs, enabling estimation of intervention effects and counterfactuals
beyond mere correlation [67]. Similarly, in Reinforcement Learning (RL), world-
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model-based planning methods learn latent dynamics of the environment and
perform virtual roll-outs to plan actions, illustrating how explicit predictive or
causal models can guide decision-making [83].

Classically, RL as a field has focused on solving decision making by explicitly
modeling sequential decisions involving agents that interact with their environ-
ment while learning optimal policies to achieve reward-encoded goals [83]. In
modernity, the field has incorporated deep learning in what is now called Deep
Reinforcement Learning (DRL) [12]. Numerous DRL models have emerged to
tackle increasingly complex tasks that require not just planning, but learning of
deeply complex strategies in multi-agent scenarios: Deep Q-Networks (DQNs),
a classic approach of DRL, has achieved human-level control on Atari games
[55], curiosity-driven intrinsic motivation modules have fostered exploration in
sparse-reward environments [65], league-based multi-agent training has produced
Grandmaster-level play in StarCraft II with AlphaStar [94], self-play without
domain priors has taken AlphaZero to superhuman performance in chess, shogi,
and Go [79], unified learning and planning resulted in MuZero’s mastery across
Atari, board, and planning benchmarks [74], and finally, similarly to AlphaStar,
large-scale self-play systems like OpenAI Five have dominated against the best
human teams in the world in real-time play in an incredibly complex and high
dimensional state-space game called Dota 2 [60].

Despite their impressive successes, these algorithms do not generalize to out-of-
distribution (OOD) data. To do so, they must be retrained on the game they are
expected to play [12]. LLMs have also been benchmarked in non-linguistic tasks
following the OOD tradition—Liga and Pasetto used Tic-Tac-Toe in ASCII form,
pitting LLMs against the minimax algorithm to explore emergent features, pre-
viously suggested to resemble consciousness, but LLMs were much more likely to
achieve draws or to lose than to win [47]. Topsakal and Harper [91] found GPT-4
to win more often than GPT-3.5 at Tic-Tac-Toe, but still neither model played
optimally. Carvalho and Pollice extended these findings without finetuning in
a zero-shot setting through their ChildPlay benchmark, which includes three
simple classic board games and three novel games encoded in previously unseen
ASCII formats. They observed that win rate did not necessarily improve with
more recent models even for simple games, and overall performance, evaluated
by optimal play criteria such as avoiding illegal moves, blocking opponents’ win-
ning moves, or executing winning moves, remained mediocre [13]. Most recently,
Apple’s study The Illusion of Thinking corroborates these findings, showing
model collapse once puzzle complexity crosses a modest threshold; reasoning
effort declines precisely when it is needed most. They believe to have shown
the inadequacy of today’s static test sets: they reward surface heuristics and
data leakage, not causal inference [77]. Other dynamic OOD evaluation frame-
works exist—such as ThinkBench [37], DeepSeek-R1 [21], and the Information
Bottleneck LM objective [106]—and further reveal that LLMs remain brittle un-
der novel distributional shifts, often requiring explicit retraining or architectural
modifications to maintain performance.
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Recent AGI-oriented surveys reach similar high-level conclusions. Goertzel
et al. argues that today’s LLMs lack the architectural components needed for
grounded problem-solving [27]; Bennett highlights that syntax-only training falls
short of genuine meaning representation [6]. Schneider and Bołtuć warn that such
systems may look “natural-like” yet remain alien in motivation [73]. In practice,
AI researchers and users often fall prey to anthropomorphism: one recent survey
found that nearly half of LLM-focused articles use anthropomorphic language
[5]. In present work, we show these intuitions to be misguided. By treating to-
ken prediction as probabilistic inference over a training manifold M, we try to
demonstrate mathematically why any claim of emergent cognition is unfounded
and further analyze three attribution fallacies—the Black Box fallacy, the Arti-
ficial Dualism Problem (ADP), and the Turing Trap. With these, we attempt to
show why people seem so quick to attribute higher-order cognitive characteristics
to these algorithms.

2 Key Proposition

Human reasoning, in its various forms, underpins our ability to understand the
world, solve novel problems, and generate new knowledge [88]. Key modes of
reasoning include:

2 Deduction: Inferring specific conclusions that are logically guaranteed if
the premises are true (e.g., from “All A are B” and “x is A”, deduce “x is
B”). This often involves the application of established rules of inference to
given information.

2 Induction: Generalizing from specific observations to broader hypotheses
or rules whose truth is probable but not guaranteed (e.g., observing many
white swans and inferring “All swans are white”). This is fundamental to
learning from experience and forming new concepts.

2 Abduction (“inference to the best explanation”): Formulating the most
plausible hypothesis to explain a given set of observations (e.g., observing
wet ground, and given the knowledge that rain makes the ground wet,
abducing that it likely rained). This involves generating and evaluating
potential explanations.

2 Analogy: Goal-directed systematic comparison where two or more things
are compared, to highlight or uncover attributes of interest; useful for
comparing that which is known, and can help a learning agent deal with
unfamiliar tasks and environments.

The central question we are concerned with regarding LLMs is whether sophis-
ticated linguistic outputs are evidence of their capacity to explicitly apply such
logical processes systematically or if such cases are merely a shadow of the tex-
tual patterns of reasoning already found in their training data.

Valid human reasoning in the physical world3 has, as its primary requirement,
knowledge of what is and is not possible. In any particular given situation, what
3 By ‘valid reasoning’ we mean reasoning whose outcome can, at least in theory, be

verified by observation or experiment.
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is possible, and not possible, is in turn based on how the brain models how the
physical world works. Since the set of possible real-world situations is often un-
tractable, pragmatic considerations prevent such knowledge to be directly stored
and indexed, and thus the necessary knowledge for reasoning in any situation
must be produced by applying the above methods to derive usable knowledge.
The most efficient representation of physical events is as cause-effect relations
[33]; these enable not only the prediction of what may happen but also the
production of plans for making things happen [86, 87].

In humans, language emerges as a by-product of reasoning over causal dia-
grams and learned world models rather than as the primary driver of thought
[81]. It provides the representational medium and cognitive scaffold for reasoning:
inner speech regulates and manipulates thoughts via left inferior frontal gyrus
circuits [95, 56]. Human reasoning combines fast, intuitive judgments (System
1) driven by unconscious heuristics and pattern recognition, and slow, deliber-
ate analysis (System 2) that consciously manipulates mental representations via
working memory and executive control [41, 25]. It spans a diversity of inference
types, each recruiting overlapping but task-specific neural circuits, notably the
fronto-parietal network [70]. Metacognitive oversight, implemented by prefrontal
inhibitory control mechanisms, monitors, justifies, and sometimes inhibits auto-
matic responses to maintain logical coherence [9]. Together, these processes let us
draw new conclusions, form general rules, generate explanations, and map struc-
tures across domains. In contrast, LLMs produce output directly from language.
Statistical patterns are encoded during training as high-dimensional probability
distributions over token sequences, mapping input tokens to output tokens. No
reasoning is happening from first principles. This is not to say that if enough
strings of text representing the use of an inference rule have been seen during
training, some of these probability distributions will not have encoded it - but we
are missing important mechanisms that would enable any reliable generalization
to OOD data. Overfitting the largest possible model to all available data (in
essence, the standard practice in developing commercial LLMs) does not mag-
ically solve this issue. The fact is that architecturally, transformer LLMs have
the causal arrow reversed: textual correlations drive token prediction, and any
appearance of reasoning is then a by-product of statistical pattern completion.
This makes LLMs bad, if not invalid, reasoners.

An LLM defines a conditional probability distribution
pθ(xt+1 ∣ c) = jatsoftmax(sθ(c, xt+1)), where sθ(c, x) is the model’s score for
token x following context c = (x1, . . . , xt). The parameters θ are optimized on a
vast training datasetMdata = {(c

′, x′) ∶ ptrain(x
′ ∣ c′) > 0}, essentially learning to

predict probable continuations based on statistical co-occurrences.
The transformer architecture, with its layers of multi-head self-attention and
feed-forward networks (FFNs), computes these scores. While attention heads
o
(l)
h (c) produce convex combinations of value vectors {WV,(l)

h z
(l−1)
j }, subsequent

operations (linear projections WO,(l), FFNs, residual connections, and layer nor-
malizations) transform these representations through a complex, non-linear func-
tion Fθ ∶ c↦ zt+1 = z

(L)
t . This final hidden state zt+1 determines sθ(c, x).
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Critically, Fθ is trained to map input text patterns to output text patterns.
It is, in essence, an extremely high-dimensional conditional probability table re-
fined by billions of parameters. There is no explicit mechanism or module within
this architecture designed to implement logical rules for deduction, formulate
and test general hypotheses for induction, or generate and evaluate causal ex-
planations for abduction. Instead, any semblance of such reasoning in the output
is a reflection of patterns absorbed fromMdata, where text generated by humans
using these reasoning processes, be it correctly or spuriously, is abundant.

Let Z(L)train = {z
(L)
t (c

′) ∶ (c′, ⋅) is consistent with Mdata} be the set of all final
hidden states generated by Fθ from training-representative contexts. We posit
the model primarily interpolates the convex hull of these observed training states,
meaning for any context c, zt+1(c) effectively lies within Conv(Z

(L)
train). This

operational constraint, shaped entirely by Mdata, limits the model’s ability to
reliably reach for OOD data. A fitted convex-manifold is then insufficient for
reasoning beyond “blind” extrapolation—granted, aided by the extremely large
learned distributions. Asking such an ANN to solve a novel problem or generate
novel reasoning forces it into an undefined space, making the output unlikely
to be relevant or meaningful if not deployed at massive scales (i.e., outputting
millions of candidate completions).

A. Learned Function and Operational Space: The transformer Fθ ∶ c ↦ zt+1 has
its parameters θ optimized such that for contexts c′ representative of Mdata,
Fθ(c

′) yields z(L)t (c
′) ∈ Z(L)train which, via the softmax layer, correctly predicts x′

from Mdata. As a function learned from examples, Fθ typically acts as an in-
terpolator. Thus, for any input c, the resulting zt+1(c) is expected to be a point
within (or near) Conv(Z(L)train). This acknowledges that while Fθ is complex and
involves operations like FFNs and residual connections that break simple convex-
ity propagation from initial value vectors, its final output states are constrained
by the manifold of such states seen during training.

B. OOD Reasoning vs. Interpolation: Consider a task requiring genuine OOD
reasoning (deductive, inductive, abductive, or by analogy) to arrive at a conclu-
sion x∗ from context c∗, e.g. to solve the millenium problem of P vs NP. Such
reasoning implies understanding the problem, constructing a novel understand-
ing, and applying a rule in a new way, which would correspond to an ideal final
hidden state z∗ideal. If z∗ideal ∉ Conv(Z

(L)
train), the model, being confined to this

interpolative space, is unlikely to produce z∗ideal without interaction or inductive
bias [6]. Instead, it generates zt+1(c∗) ∈ Conv(Z

(L)
train). This zt+1(c∗) will reflect

familiar patterns from Mdata rather than the specific novel inference required
for x∗. Consequently, pθ(x∗ ∣ c∗) will be low.

C. Implications for Emergence in Long Sequences: Autoregressive generation
of a sequence X = (x1, . . . , xK) involves a trajectory of states zt+k+1(ck), where
each zt+k+1(ck) ∈ Conv(Z

(L)
train). The claim that robust, OOD reasoning might
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“emerge” over long sequences implies that this trajectory could spontaneously im-
plement a globally coherent novel logical argument. However, if each step is lim-
ited to Conv(Z

(L)
train) and selected based on learned statistical likelihoods rather

than logical validity or explanatory power for novel situations, the sequence re-
mains an elaborate form of pattern completion bound toMdata. The model lacks
the internal mechanisms to discover or apply novel abstract rules of deduction,
induction, abduction, or analogy in a thoughtful manner, and to generate goals
explicitly—properties that would allow it to navigate to a z∗ideal ∉ Conv(Z

(L)
train)

in a principled way. Thus, any “emergent” properties must be explained as recom-
binations of learned patterns as lucky “shoots in the dark” rather than genuine
OOD reasoning. ∎

Black Boxes are Not Pitch-Black: A rapidly growing body of mechanistic
interpretability work demonstrates how individual attention heads implement
induction, copy-and-paste, or simple arithmetic [57, 59, 28, 105, 36]. To the au-
thor’s knowledge, no study has revealed circuitry for goal formation or complex
causal simulation.

Missing biological counterparts: The brain is our only ground truth for what
we know to be possible in terms of cognition, and thus should not be ignored.
Regions such as the prefrontal cortex (executive control) [53, 43], thalamus (mul-
timodal integration) [97, 31, 32] and hippocampus (memory consolidation) [82,
75] form dense, recurrent, neuromodulated loops long suspected to underpin con-
sciousness and abstract reasoning [90, 17, 22]. A transformer stack, by contrast,
is a strictly feed-forward computation [93, 24]. It performs conditional proba-
bility lookup, not the continuous iterative, self-modifying processes required for
cumulative learning [89]. A normal adult cortex contains ∼ 8.6 × 109 neurons
[3] and ∼3 × 1014 synapses [84, 63]. Chemical signalling exploits dozens of trans-
mitters, yielding rich temporal codes and plasticity cascades [42], while ANNs
have only abstracted firing rates of neurons or action potentials in the case of
spiking neural networks [66]. GPT-3.5 stores 1.75 × 1011 static weights [10]; all
adaptation ends once gradient descent stops [30]. Even speech-critical Broca’s
area contains O(108) neurons in recurrent microcolumns [1, 78], whereas a sin-
gle 96-head attention block uses only ∼ 104 learned parameters and no internal
state [93]. Detailed reconstructions of cortical microcircuits show dendritic non-
linearities and state-dependent reconfiguration far beyond present transformers
[50]. Mere parameter count, then, is a poor proxy for the qualitative machinery
that supports genuine brain function, and subsequently, reasoning.

Scale & compute are not substitutes for understanding: Wei et al. and Yao et
al. have shown that LLMs can be coaxed into levels of abstraction without ex-
ternal methods through techniques such as chain-of-thought and tree-of-thought
prompting (i.e. having an LLM prompting itself or branching off into multiple
scenarios and then picking the most likely one) [101, 104], but this abstraction
may be illusory, because the underlying process is still next-token prediction by
the same model.
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Regardless, reasoning-specific scaling in LLMs exhibits severe plateaus. Chen
et al.’s survey finds that simply increasing context length, chain-of-thought
depth, or the number of collaborating agents often yields no improvement, show-
ing instead degraded performance once a critical threshold is passed, due to re-
dundancy and error compounding [14]. Wang et al. formalize this test-time scal-
ing plateau with their TTSPM model, deriving saturation budgets beyond which
additional candidate generations or reasoning rounds afford negligible gains, and
empirically validate these bounds on AIME, MATH-500, and GPQA benchmarks
[96].

Shojaee et al. conclude in a similar vein that frontier reasoning models un-
dergo a complete accuracy collapse beyond moderate task complexity and that
their reasoning effort paradoxically declines even when token budgets remain
adequate—evidence that scale alone cannot sustain structured, robust inference
[77].

In practice, these limits impose steep costs for marginal benefits. This seems
to indicate that textual data alone cannot provide the inductive biases required
for general, correctly applied causal abstraction, hierarchical memory, or explicit
goal-directed planning. We believe that breaking through these plateaus will re-
quire new architectural primitives, and for that we must not ignore the brain and
what it has to teach us about information processing, namely that language and
the patterns of thought found therein are an outcome of structured, embodied
neural computations—dynamic causal inference, hierarchical working memory,
and goal-directed control — language is not the source of reasoning, but the
outcome of underlying brain mechanics.

The Artificial Dualism Problem: We believe that interpreting LLMs’ out-
puts as an expression of reasoning, rather than as the output of an arbitrary
probability function, is a mistake. We call this topic the artificial dualism prob-
lem (ADP): when experts reify latent vectors as if they were explicit rules, goals,
or beliefs. Unlike computational dualism in embedded-agency work—which stud-
ies how a policy is embedded in, or separated from, its physical substrate [61,
45, 7]—ADP is purely observer-side: it is a misattribution error. Nor is ADP
related to classical mind–body dualism; we make no claim about non-reductive
physicalism or immaterial minds. ADP is an ontological category mistake: it
projects mechanisms capable of rule learning, goal creation, or beliefs into the
model’s latent vectors. By contrast, the Turing Trap is an evidential inference er-
ror: it projects those same mental states from surface behaviour. Our approach
addresses the bulk of statements and propositions that attribute higher-order
cognitive functions to LLMs.

When the internal mechanics of a generative model are opaque to a user, the
simplest folk-psychology move is to insert an imagined reasoner behind its out-
put. The move is bolstered by surface features—grammar, coherence, apparent
insight—that humans evolved to interpret as markers of agency. This is a fallacy
in that mechanisms for which there is no evidence, apart from the fluency of
text, are necessarily posited. The Blake Lemoine/LaMDA episode [46, 85] is an
example of this: the engineer filled explanatory gaps with talk of sentience de-
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spite a complete lack of supporting evidence. Mechanistic-interpretability studies
repeatedly reveal specialized pattern-matching circuits, not world-model-driven
reasoning. ADP thus resembles a “God-of-the-gaps” fallacy: explanatory voids
are patched with an unwarranted cognitive capacity. Crucially, ADP is falsifi-
able through the research efforts of mechanistic-interpretability—through exper-
iment, the effects of different circuity and nodes may be understood.

The Turing Trap: In 1950 Alan Turing [92] proposed a working definition of
intelligence that he called the “imitation game”, wherein a machine would chat
with a human judge through a text terminal; if the machine could converse in
a manner indistinguishable from a human, it should be considered intelligent.
Later, this idea, which Turing originally proposed as a temporary stop-gap for
a proper definition of intelligence, was turned on its head and made into a goal
that the field of AI should strive for. Labeled the ‘Turing Test’, this idea has
been thoroughly criticized for failing to account for the underlying mechanisms
that produce such responses both in machines and in humans [76, 34]. We use
the name ‘Turing trap’ to describe this fallacy of anthropomorphizing cognitive
capacities in ANNs simply because they can generate human-like responses to
“pass the Turing Test”. The Turing Trap then, we argue, occurs when observers
mistake surface-level performance of ANNs for genuine cognitive capacities. This
mistake seems to us to be driven by anthropomorphism, the human tendency
to attribute human-like qualities to non-human entities [2]. We think that one
of the primary factors is the high level of fluency and apparent coherence in
the text generated by LLMs which can create a powerful illusion of depth and
intentionality.

3 Discussion & Conclusion

The central thesis of this paper challenges the narrative endorsed by figures such
as Nobel Laureate Geoffrey Hinton [44], namely that Large Language Models
(LLMs), and more generally ANN-based architectures, exhibit emergent reason-
ing or understanding in a cognitive sense. While LLMs often produce coherent
chains of text, these arise from large-scale interpolation over familiar data rather
than genuine reasoning or goal pursuit; without integration of explicit causal
or world-model components, ‘reasoning’ remains effectively in-domain and fal-
ters under rigorous OOD evaluations [13, 77, 47, 91]. Other AGI proponents have
echoed this theory, like Goertzel et al. who argued that today’s LLMs “lack the
basic cognitive architectures” needed for genuine problem–solving and therefore
should not be viewed as incremental steps toward human-level AGI [27]. Ben-
nett et al. likewise believes that, absent grounded interaction, a language model’s
facility with syntax is insufficient for the computation of meaning [6].

The reader might be interested to produce the following experiment by them-
selves which highlights our main thesis: Try to convince an LLM to solve an
unsolved scientific problem, such as a Millennium problem, like P vs NP. This is
the question of whether every problem for which a solution can be verified quickly
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(in polynomial time, denoted as P) can also be solved quickly [16]. If we begin
by asking an LLM to list known strides and advances in the theory and then
work from those, we will see that the model quickly hits a ceiling. We argue here
that that’s because the manifold space that concerns information related to the
P vs NP problem “ran out”, leaving the model with a brute-forced extrapolation,
without the ability to generate well-justified or truly novel insights, given the
lack of mechanisms to effectively make use of well-supported cause-effect rela-
tions. One can picture producing a trillion trees of hundreds of chains-of-thought
each and then checking if any solves the problem, but this is not what anyone
means by reasoning. This limitation shows the fundamental difference between
data-driven models and human creativity and intelligent logical reasoning, which
can, even if slowly and constrained by limited experience, enable exploration of
uncharted territory regardless of existing data. Neuroscience is yet to discover all
the ingredients for building general intelligence, but it does offer many detailed,
mechanistic accounts of brain circuits often overlooked in AI (see Damasio et al.
[19, 18, 64, 20]).

The inability of LLMs to internally validate truths and reason might stem not
only from data constraints but also from fundamental theoretical limits inher-
ent in their design. Many of these limitations reflect known epistemological and
computational boundaries of formal systems. Russell’s theory of types, which
stratified language to avoid self-referential paradoxes, emphasized that certain
truths necessitate stepping outside a given system for proper resolution [102].
Wittgenstein’s picture theory posited that while language can represent facts
through a shared logical form, it cannot explicitly articulate or verify its own
logical foundations — such foundations can only be “shown”, not stated [103].
Roger Penrose has expanded these ideas, suggesting that aspects of human in-
sight and understanding might be a prerequisite for meaning, regardless of algo-
rithmic capabilities [68, 69]. Although we do not necessarily agree with Penrose’s
computational incompleteness, the parallel is notable: without a human observer,
the symbols manipulated by LLMs remain inert and without meaning.

In conclusion, we believe the field should aim to end where we begin—by re-
grounding AI in the human mind, our only true model of real-time, embodied
reasoning. Studying neural circuits for working memory, hierarchical control,
embodied interaction, and neuromodulation should be inspiring architectures
that sustain goals, continuously model the world, and reason within the flow
of time—capabilities that current transformers fundamentally lack but other
technologies are pursuing, such as neuromorphic computing [52, 38]. With these
functional gaps, claims of LLM sentience are mistaking scale for substrate. A
larger model is still executing the same next-token training objective. Combined
with the stochastic-parrot insight that LLMs do not understand the meaning of
the language they process [5], our analysis underscores that any appearance of
reasoning is a statistical mirage. LLMs are a sophisticated and dynamic mirror
of human knowledge, reflecting, not transcending, the ingested data. This is not
to say that LLMs are incapable of interpolating truly novel data—the quality
and meaning of this data is what leaves a lot to be desired.
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