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Introduction
The ultimate embodiment of artificial intelli-
gence (AI) has traditionally been seen as
physical robots. However, hardware is expen-
sive to construct and difficult to modify. The
connection between graphics and AI is
becoming increasingly strong, and, on the one
hand, it is now clear that AI research can
benefit tremendously from embodiment in
virtual worlds [1, 4, 5]. On the other hand,
computer games, a highly visible area of
computer graphics development, could
benefit from the use of more advanced AI
[11]. But a synergistic marriage of the two
fields has yet to occur.

A substantial impediment to introducing
more intelligent characters into games is the
lack of practitioners who understand both
the realms of graphics and of AI, and who can
drive their integration. Another is the diver-
sity in programming languages and environ-
ments that people from both camps use.

We are working to address these problems
using a multi-prong approach. Here we
present two of these, which are interrelated.
First, we present a new design methodology
aimed at making the construction of AI
systems easier for novices and experts alike.
Second, we present network-based software
designed to take advantage of this method-
ology, allowing general-purpose systems-level
integration of AI programs with other
systems, including graphics. The software is
available free of charge to researchers.

An underlying assumption for this work is
the theory that the mind can be modeled
through the adequate combination of inter-
acting, functional machines, or modules. In his
seminal book, Unified Theories of Cognition, the
late Allen Newell (1990) [16] called on
researchers to start working on unified theo-
ries of mind, rather than continuing working
with micro-theories about isolated compo-
nents. We agree strongly with Newell in his
quest for integration, and we do not interpret
his call to mean a corollary to the search for
the unified field theory in physics. Rather, we
subscribe to the implications of Minsky’s
(1986) Society-of-Mind theory [8] that the
mind is a multitude of diverse, interacting
components. Our methodology and software
foundation directly supports the construction
of such systems.

The motivations for this work are
numerous. Large systems such as virtual
worlds with simulated inhabitants cannot be
built from scratch without bringing together a
large team of experts in each field that such a
system naturally encompasses. Our method-

ology aims to help coordinate the effort.
There is also a lack of incremental accumula-
tion of knowledge in AI and related computer
graphics. By supporting reuse of prior work
we enable the building of increasingly
powerful systems, as core system elements
do not need to be built from scratch.
Background and Motivation
The creation of believable, interactive charac-
ters is a challenge familiar to many game
developers. Systems that have to respond to
asynchronous inputs in real time, where the
inputs’ timing is largely unpredictable, can
pose a serious challenge to the system design.
An even bigger challenge is presented by the
complexity explosion in systems where the
inputs include a high-bandwidth mixture of
spatial and symbolic information, covering a
wide range of meaning. This is the case for
developers building communicative humanoids
that interact with real people through state-
of-the-art tracking technologies.

One of the main challenges of AI is, there-
fore, complexity management.This complexity
is quite different from that encountered in
computer graphics, where a small set of basic
principles applied to a somewhat larger
number of object types results in well-under-
stood and predictable behavior, enabling the
power of graphics systems to grow at roughly
the same rate as the hardware. Not so in arti-
ficial intelligence.

Typically spanning from perception to
action, AI systems necessarily touch on many
capabilities of the mind that are not well
understood. For a humanoid, those that are
necessary to create a compelling simulation
include, at a minimum, vision, hearing, planning
and animation control. To be sure, much soft-
ware has been written in the last two decades
for handling cognitive, sensory and motor
tasks, but these are typically implemented in
isolation, in various programming languages
and with a wide range of background assump-
tions about the operating environment.There
is thus a pragmatic kind of complexity with
which the AI practitioner must cope: The
broad set of skills required to create and/or
configure the necessary systems for
processing input and output in these areas.

Another diff iculty here involves the
common research setting under which such
AI projects are undertaken. Most research on
humanoids today is done in small teams.
Assuming the right team of researchers has
been formed, it can still be a challenge to
achieve effective collaboration between
people with different backgrounds, such as
computer graphics, hardware and artificial
intelligence [2, 13].

Constructionist Artificial Intelligence 
Constructionist AI is a practically driven

approach to building AI systems. The
Constructionist AI Methodology (CAIM) is an
emerging set of principles for designing and
implementing interactive intell igences,
speeding up implementation of relatively
complex, multi-functional systems with full,
real-time perception-action loop capabilities.
It helps novices as well as experts with the
creation of embodied, virtual agents that can
perceive and act in real time and interact with
virtual as well as real environments. The
embodiment of such humanoids can come in
various levels of completeness, from just a
face to a full body. Of special interest to us is
human communication, including speech,
gesture, facial expressions and gaze, in both
the input and the output.

The Constructionist AI Methodology - so
called because it advocates the use of
modular building blocks and emphasizes
incorporation of earlier work - addresses
systems endowed with the full scope of
human interactivity, from decisecond eye
movement control to fully-planned, long-term
strategic thinking over minutes, hours and
days (the input is typically, purely for practical
reasons, somewhat less comprehensive).
CAIM is a highly modular approach; with a
strong separation of functional elements and
their interaction, the gross anatomy of archi-
tectures resulting from its use can in fact be
faithfully replicated using physical LEGO
blocks [Figure 1]. Here we give a short
overview of the methodology for non-AI
experts; those interested in the full details are
referred to [12].

When beginning the construction of a
mind for an interactive graphical character,
the high-level goals of the system are first
defined, along with the system’s scope.This is
done by writing scenarios with narratives that
cover the various parts of the system. Then
follows a period of modularization where
division of labor is used to come up with
functional modules and message types. The
role of each module is determined in part by
specifying the message types and content that
needs to flow between the various functional
parts of the system to support the system’s
operational goals. Thus the boundaries
between modules are first delineated by spec-
ifying their inputs and outputs in the form of
messages. Messages, and their content, are
continuously refined as design progresses.

The principle of divisible modularity [12]
prescribes iterative revision of modules
through repeated division of their functionality
into a set of ever-smaller interacting modules.
CAIM provides several heuristics for how
best to modularize. Among these are: Classi-
fying modules into the three roles of percep-
tion, decision and action; avoiding duplication
of information in various parts of the system;
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and following the natural breaks along low-
bandwidth information flow in the system.
Modularization through explicit messages
means that system designers can build out
several parts of the system in parallel.

Constructionists take a breadth-first
approach; every module starts out relatively
simple, reading one type of message and
posting another. This way, a full end-to-end
chain of the whole system can be built for a
single interaction case. Every element in the
path should be tested on paper, along with the
routing mechanisms, timing assumptions, etc.,
very early in the design process, and continu-
ously over the course of development.

The relatively easy reconstruction of Ymir
[13] as a physical LEGO model [Figure 1]
demonstrates the Constructionist method’s
power to represent complex systems of
multiple, interacting processes in a tangible
way. The LEGO model of Ymir in turn
exposes several features of the approach.The
model represents the distribution of modules
into perception, decision and action, as well as
blackboards [10], motor scheduling and
knowledge bases (decision support). Signal
paths are shown via antennas of different
colors: Modules with yellow antennas
communicate with the blackboard that has
the same-colored antenna. The star-shaped
antenna allows knowledge bases to talk to
each other (directly or via a separate black-
board). The model also demonstrates the
concept of a three-layer priority scheme, indi-
cated here by the three stories: Modules on
the “ground floor” have the highest priority,
as these service high-speed actions such as
gaze, turn-taking and other communicative
movements. Modules on the “top-floor” take
lowest priority, as these are assumed to be
the slowest processes in the system (it takes
longer to formulate an answer to a question
than it takes to glance in the direction of a
loud noise). Several decision modules, as well
as the knowledge bases, communicate with
the animation scheduling and rendering
system, which sits on top of a library of
behavior modules, which inherit from each
other and represent a hierarchy of increas-
ingly complex motor plans [14]. With layers
of modules in place, a small number of addi-
tional modules results in an exponential
increase of the system’s sophistication. Ymir
was implemented in LISP and C/C++ [15],
using an early version of CAIM, and used to
control the massively interactive character
Gandalf [Figure 2].

Psyclone
Unlike closed virtual worlds with predictable
frame rates, interactive humanoids are best
modeled as asynchronous, real-time, open
loop systems, with unpredictable input
streaming in real time. Psyclone™ is a
message-based middleware that simplifies the
design of such systems and their connection
to input and output systems like vision, body

tracking and graphics. Built around the
concepts of modules and blackboards, it takes
full advantage of the benefits of a message-
based, publish-subscribe system. In publish-
subscribe systems a module can register for a

message type, and any time a message of that
type is posted (by anyone in the system), the
message will be delivered to the subscribed
module. Among the most obvious benefits of
this system is that the messages embody an
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Figure 1: The Ymir architecture underlying the Gandalf system has been reconstructed in physical LEGO blocks
to demonstrate the power of functional modularity and modular divisibility.
Figure 1 Legend

1. Blackboard for receiving/dispatching messages
containing simple data

2. Blackboard for receiving/dispatching messages
containing complex, semantic data

3. Yellow antenna tuned to simple data
4. Red antenna tuned to complex data
5. A message containing simple data
6. A message containing complex data
7. A unimodal perceptual processor
8. A decider module
9. A multimodal perceptual processor
10. Meta-knowledge module
11. Dialog knowledge module

12. Domain knowledge module
13. Star-shaped antenna tuned to communication

between knowledge modules (knowledge data
blackboard, not shown)

14. Layer containing relatively high-speed processes
15. Layer containing medium-speed processes
16. Layer containing relatively slow processes
17. Orange antenna tuned to motor requests 
18. Motor scheduler
19. Motor action library
20.Atomic motor instructions
21. Compound, complex motor instructions



explicit representation of each module’s
contextual behavior, and carry with it their
state, so the blackboard provides a localized
recording of all system events and system
flow. Messages effectively implement APIs
between the system’s modules, specifying
their interactions at the content level,
through a unified protocol. Combined with
blackboards, a publish-subscribe architecture
is thus a powerful tool for incremental building
and debugging of interactive systems. We take
advantage of this fact with a web-based system
inspector, which can display the state of
modules while Psyclone is running. This facility
has turned out to be invaluable for debugging,
since the path of decisions, embodied in the
message flow, can be inspected directly.Also, this
tool works from a remote location, which can
be very useful on systems where the machines
are geographically disparate.The architecture of
Psyclone is shown in Figure 3.

Comparing Psyclone to the well-known
architecture CORBA, which shares some of
its goals and features, Psyclone is created
specifically for use in designing interactive AI
systems, and thus has many features specific
to systems requiring soft real time. In
CORBA, an object makes a request for a
service or for information, and this request is
brokered by a central server, simulating an
extended function call. By contrast, Psyclone
uses blackboards: Modules post data to a
central server, and that data is delivered to
subscribed modules. Additionally, modules in

Psyclone can retrieve old messages from the
blackboards, through a simple query language.
At a high level, then, CORBA is “pull”
whereas Psyclone is both “pull” and “push.”
Psyclone also offers message time stamping
and quality of service via prioritized sched-
uling, functionalities still missing in CORBA.

When a Psyclone module receives a
message type to which it has subscribed, it
may in turn post zero or more messages.
Modules can also post messages at any time,
independent of other message flow. To
simplify development in Psyclone, the full set
of modules and their attributes can be speci-
fied in an XML file called a psySpec. Modules
that run on machines other than the Psyclone
server can also be configured via this file.

At run-time, all data in the system travels in
messages, via blackboards. A message is a
convenient metadata wrapper around the
message’s content.The metadata includes the
message’s type, a globally unique ID (GUID),
the language that the content is represented
in, name of sender and time of posting, along
with other timestamps. This metadata can be
useful in making queries about the system’s
past behavior.

All messages in Psyclone have a type (most
often assigned by the system designer and
specified in the psySpec). For example, a face
detector may post a piece of data of the type
“Vision.Face,” containing detailed facial data.
There may be any number of different face
detector modules, each of which posts that

same data type, but with different content
and emphasis. Message type names are repre-
sented as a tree with dot-delimitation, e.g.
Vision.Face.Human and Vision.Face.Dog. One-
to-one messaging between any two modules
is done using unique message types.

In addition to standard XML and ASCII
messages, Psyclone provides powerful facili-
ties for publishing and subscribing to binary
data streams, using Psyclone’s version of
blackboards, called “whiteboards”, which
natively support streaming media. In Psyclone,
all modules and whiteboards have unique
names; modules subscribe to message types
from particular whiteboards as specified in
the psySpec. They can also unregister and
register dynamically for message types at run
time. Through dynamic subscriptions, interac-
tion between modules can thus be “rewired”
on the fly, with any module able to alter its
“connection” to other modules by registering
or unregistering for the type(s) of data they
produce.

It may be desirable to have the sensory I/O
and cognition modules running in different
languages and/or on different operating
systems or hardware. Some components may
only run on certain hardware architectures
or configurations, as is often the case with
open-source packages for speech recognition,
speech synthesis and computer graphics.
Another reason to run components sepa-
rately is that one may want particular compo-
nents to take advantage of specialized hard-
ware. Yet another reason is cost: Since
hardware is now cheaper than ever, access to
multiple pieces of older yet perfectly usable
hardware is becoming the norm. To allow
communication between Psyclone and
external modules we use network adapters
called A.I.R. plugs. Each supported program-
ming language, such as C++, Java and LISP, has
its own plug. Plugs have a simple, open API
with full messaging capabilities.The plugs free
the developer from concerning themselves
with sockets and other details of networking.
Daemons facilitate starting and managing
processes on remote machines: On startup,
Psyclone tells the daemon running on each of
the computers to start up all relevant
executables on that machine, automatically
sending over any configuration parameters
for these executables specified in the
psySpec.

The strategy of using separate executables
or separate hardware for each component
may seem foreign - even irrelevant - to some
graphics professionals, many of for whom the
goal is to get an entire system running on a
single computer or game console. However, a
strategy like CAIM, that supports modular
separation of functionalities during develop-
ment and allows for rearranging the compo-
nents and their interaction in a highly
dynamic way, is, to our knowledge, the most
powerful methodology currently available for
creating broad, interactive AI characters.
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Figure 2a: The Gandalf character interacting with a user, who is asking Gandalf to tell him about the planet
Saturn. Gandalf ’s rich multimodal perception and multimodal output enables him to generate dialog behavior
akin to that observed between two people.A special body-tracking system, including gloves, jacket and eye
tracker, provide Gandalf with enough fine-grain perception to allow highly reactive behavior, in addition to
deliberative actions.

Figure 2b: Gandalf is “massively interactive,” reacting believably to anything from the user’s subtle eye
movements (e.g. a glance over to the solar system), to a full communicative act such as questions about
the planets.



Once a modular design has been developed
and tested using Psyclone, it can be more
easily simplif ied and optimized to run
correctly on a single processor. That said,
Psyclone is also designed for long-term
stability in deployed applications, and can be
used for this purpose.

Mirage
We will now briefly describe how Psyclone
was used with the Constructionist AI
Methodology to produce an augmented-
reality room inhabited by an embodied virtual
agent, Mirage, developed by Thórisson and
students at Columbia University [12].

To support interaction with the agent, the
user puts on a pair of optical see-through
glasses (Sony LDI-D100B) that reveal the
location of the agent.Wearing the glasses, the
user still sees the real world, but superim-
posed on it is a stereoscopic, ghost-like
apparition of the Mirage agent, the interactive
humanoid, whose behavior is generated by
the system in real time. Using position and
orientation tracking of the user’s head and
hand, Mirage [Figure 4] can remain stationary,
or move around in the world, independently
of the user, giving the impression that he
occupies a physical location in space.

Mirage consists of eight main components:
Two perception modules, an action/animation
scheduling module, a speech recognition
module, a speech synthesis module, a decision
module and a news summary module [7]; a
complete graphics system renders the
embodied agent. All of these communicate
through Psyclone.

A detailed 3D model of the entire room,
including tables, chairs, etc., gives Mirage a
certain amount of knowledge about his
surrounding. All graphics are implemented
using the Java3D API.The model of the room
is scaled and oriented to match the real one;
Mirage can thus “perceive” the real objects in
the room, walk around obstacles and orient
himself relative to the user. Mirage also has
access to a database providing propositional
information about the name, type, use and
other attributes of individual objects.

To make the agent interactive and conver-
sational, a multimodal input system was
implemented that uses speech recognition
and motion tracking of the user’s right hand.
The agent itself is capable of multimodal
communication with the user via a speech
synthesizer, body language and manual
gesture. Users can point at any object in the
room and ask Mirage what that object is.
When asked about the news, Mirage will
recite up-to-date news summaries. The agent
is also aware of his own proximity and orien-
tation to the user. When his name is spoken
or the user comes within communicative
distance, Mirage will turn to greet.

The role of perception modules is to
create messages about changes in the envi-
ronment, including recognition of user’s

speech, proximity of the user to the Mirage
agent, etc. Those messages are then used by
the Decision module to create sensible
responses. Perception-1 is built into the
augmented reality graphics system. It keeps
track of agent’s and user’s position and orienta-
tion, noting changes of states such as “is the
agent visible to the user,” “is the agent looking at
the user,” etc. To track deictic gesture, a selec-
tion mechanism is triggered on any speech
command, returning a time-stamped list of
objects being pointed at [9]. Integrating speech
with spatial perception included piping messages
coming from the speech recognizer and Percep-
tion-1 into a third module, Perception-2. This
step was achieved with relative ease, demon-
strating the advantages of the modular
Constructionist approach. The list of objects
being pointed at is thus further processed by
Perception-2, where they are combined with
the speech to make a best guess at the meaning
of the user’s communicative act.

The main reason for having two perception
modules was to be able to use the built-in
geometric computation methods of the
graphics subsystem, and its preexisting object
selection and intersection mechanisms,
without having to put all perception into the
graphics system.Theoretically cleaner solutions
are undoubtedly possible, but they are likely to
have been computationally less efficient.

The decision module interprets all
messages from perception, and forms a
response action for the agent. That action is
then sent to the action scheduling module,

inside the graphics system, which coordinates
the character’s animation and speech
synthesis.When the decision module receives
contradicting inputs or is unable to settle
onto a single top-level decision, it can request
that the avatar ask clarification questions,
such as “Please repeat, I did not understand.”

Although eight modules makes for a rela-
tively coarse-grained system (compared to
e.g. the Gandalf system), the development
team, who had never used the Construc-
tionist approach before, realized its benefits
very early in the project. The advantages of
defining the messages and their content at
the same time as module functionality, and
being able to test a skeleton of the system
with “found” components in place, sped up
the identification of potential problems and
bottlenecks, and made it easier to modify the
system’s behavior during its development.

The total development time for Mirage was
only an estimated two mind-months (“man”-
months), over a period of nine weeks - well
under anyone’s prior expectations.This result
is comparable or better than that of others
using blackboard-like architectures, e.g.
Maxwell et al. [6], who constructed a highly
sophisticated robotic system with 10 full-time
students, over a period of eight weeks.

Future Work
We will continue improving CAIM and use it
to guide further development of the Psyclone
system. Future enhancements of Psyclone
include increased support of message content
semantics, which will become increasingly

Februar y  2004    29

Figure 3: When Psyclone starts up it reads in the psySpec (1), which specifies the setup of the system’s
modules. It then starts up any internal and external modules, e.g. speech recognition (2) and computer graphics
(3), including those which run on external computers, and sets up all subscription mechanisms for these.
Psyclone can further be set up to automatically start and configure other Psyclone servers (4), which in turn can
start up yet more Psyclone servers, supporting a variety of configurations.



important as more third-party modules
become available and manual maintenance of
semantics becomes impractical. Other
planned enhancements include extending
Psyclone to support a large number of
modules (thousands or tens of thousands in
mixed configurations, including single/multiple
modules per executable), running on a large
number of computers.

We will be looking specifically at the
connection between Psyclone and graphical
environments, refining it through its use for
various projects, mostly focused on interac-
tive graphical characters. We also plan on
proposing specifications for virtual world
vision representations and implementations,
an area that has to be addressed for this
work to progress at a faster pace.

Finally, we are in the process of setting up a
research forum, in collaboration with other
researchers, to develop this work further and
build a repository of AI and graphics software
that can be reused more easily through appli-
cation of Constructionist principles.We invite
anyone with interest to join in this effort. See
www.MINDMAKERS.org.
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