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Abstract. The concept of understanding is commonly used in everyday commu-
nications, and seems to lie at the heart of human intelligence. However, no con-
crete theory of understanding has been fielded as of yet in artificial intelligence
(AI), and references on this subject are far from abundant in the research litera-
ture. We contend that the ability of an artificial system to autonomously deepen
its understanding of phenomena in its surroundings must be part of any system
design targeting general intelligence. We present a theory of pragmatic under-
standing, discuss its implications for architectural design and analyze the behav-
ior of an intelligent agent implementing the theory. Our agent learns to understand
how to perform multimodal dialogue with humans through observation, becom-
ing capable of constructing sentences with complex grammar, generating proper
question-answer patterns, correctly resolving and generating anaphora with coor-
dinated deictic gestures, producing efficient turntaking, and following the struc-
ture of interviews, without any information on this being provided up front.

1 Introduction
A rudimentary investigation into the use of the term “understanding” in the field of
artificial intelligence (AI) reveals that occurrences are few and far between. When it
does appear it is primarily in the context of natural language (“language understand-
ing”), where parsing and manipulation of linguistic tokens (read: good old-fashioned
AI) takes the front seat. A distant second is its coupling with the words “scene” and
“image” in computer vision research (scene understanding, image understanding), with
an identical emphasis on parsing: Rather than talking about the phenomenon of un-
derstanding proper, understanding is equated with syntactic manipulation, which, as
everyone who has studied philosophy knows, is not the same thing (cf. [18]).

A coherent conceptualization of understanding is of importance to the field of AGI
for several reasons. First, if the concept of understanding is left undefined it cannot,
as a phenomenon, be effectively investigated; second, without a good definition of un-
derstanding it may be difficult to compare different systems with respect to their level
of understanding, and similarly, to compare the same system or different systems with
respect to their levels of understanding regarding different areas of expertise or per-
formance; and third, a coherent account of understanding is needed such that system
builders can create new systems, improve current systems, and train systems where
understanding is a specific goal. A formalized account of understanding would seem
crucial to the continued and successful progress of the field of AGI.



The apparent indifference of AI researchers to the phenomenon of understanding
is curious considering the available evidence about its role in human intelligence. If
“understanding” is simply a descriptive term used to classify the effectiveness of a given
behavior for a particular goal, after it has been observed – behavior referring here to
perception, thinking, and action control – then perhaps it could be said that intelligence
and understanding are synonyms, and ignoring the concept altogether is justified. If,
however, understanding is a unique ingredient or property of natural thinking systems
which affects their abilities and intelligence – and especially: their potential for growing
their own knowledge – then we would be well-served by studying understanding as
a phenomenon. We argue for the latter view and outline here a pragmatic theory of
understanding rooted in an analysis of how predictive controllers compute meaning.
First we look at some of the relevant background work from philosophy and AI, then
we present our our theory of pragmatic understanding and meaning, and then give an
overview the results of a prototype system whose knowledge acquisition and application
was constructed according to the theory. The results represent strong evidence for the
potential of the theory to elucidate the relationship between meaning, understanding,
prediction, and explanation, in a manner relevant to artificial general intelligence.

2 Related Work
An important question that has been discussed, mostly in the philosophical literature,
is the extent to which machines could be given understanding, if at all. Sloman has
stated that the question of whether machines can “really” understand is more of a minor
question of definition than anything else [18], arguing that the appropriate answer to
the question “Can you understand?” is not binary and can take the form of infinite
features and gradations. It seems a latent view of many that once a machine can do some
human task, that task is no longer deemed as requiring “intelligence,” and by extension,
requires no “real understanding”.This view might explain why Searle’s Chinese Room
argument still has appeal, in spite of the numerous publications that have long since
refuted it by illustrating its numerous fallacies [2,3,16]. Convincing arguments for the
impossibility of machines to understand remain scarce.

Some research has argued for the importance of understanding in cognition, citing
it as distinct from knowledge (cf. [6]), claiming that acquisition (deepening) of under-
standing constitutes a more accurate reflection of the world than knowledge acquisition
[7,8], and is thus a greater intellectual achievement. Others have taken the exact oppos-
ing view (cf. [10]). Without proper and reasonably specific definitions of these terms
and their context, as these accounts tend to be, they can be somewhat incoherent, too
heavily steered by the many senses in which the term might be used colloquially. As
a result many seemingly irreconcilable polarities and contradictions are uncovered [9]
(for instance, pitting the internal organization of phenomena against its relation to vari-
ous other phenomena as some sort of contradiction). As we shall attempt to demonstrate
below, such inconsistencies may be reconciled with proper definitions and the right uni-
fying approach.

While understanding as a phenomenon has received more attention in the philo-
sophical than the AI literature [8,7], even there it has nevertheless been claimed to
have “virtually escaped investigation in English-speaking philosophy” ([5]: 307); this
dearth of interest in the subject is evidenced not only there but also in the fields of



AI and cognitive science.4 A few books have been published with the word pair “un-
derstanding understanding” in the title [15,4]. Interesting as they may be, one of these
contains selected writings by cybernetics pioneer Heinz von Forrester, which, in spite of
its promising title, is not about understanding at all (as evidenced by the word “under-
standing” not appearing the index); the other gives a cursory (albeit a decent) summary
of the subject in the context of epistemological philosophy.

In the context of the work presented here, few authors if any have addressed the
more relevant question of what kinds of architectures could deepen their understanding
automatically, as this would seem of key importance for an AGI system for growing its
knowledge. Here we attempt a unification of several prior ideas, through the concepts
of prediction, granular model generation and evaluation, and knowledge acquisition
through experience [19]. While the literature has presented a multitude of ways to look
at and define understanding, and virtually all of the concepts we talk about have ap-
peared in the AI literature in one form or another, we are not aware of any that propose
the kind of unification presented here.

3 Towards a Theory of Pragmatic Understanding
Our concern here is with an agent’s understanding of phenomena of interest that allows
it to act intelligently towards it, in a practical and goal-directed way. We refer to our
theory of understanding as pragmatic, as we are concerned with the usefulness that
levels of understanding may achieve in guiding behavior.

Phenomenon A phenomenon Φ (process, state of affairs, occurrence) — where W is
the world and Φ ⊂ W — is made up of a set of elements5 {ϕ1 . . . ϕn ∈ Φ} of various
kinds including relations <Φ (causal, mereological, etc.) that couple elements of Φ with
each other, and with those of other phenomena.

Phenomenon & Context The relations<Φ ⊆ 2W×2W that extend to other phenomena
identify the phenomenon’s context. We partition <Φ in inward facing relations <inΦ =
<Φ ∩ (2Φ × 2Φ) and outward facing relations <outΦ = <Φ \ <inΦ . An agent whose
models are only accurate for<inΦ understandsΦ but notΦ’s relation to other phenomena;
an agent whose models are only accurate for <outΦ understands Φ’s relation to other
phenomena but will have limited or no understanding of Φ’s internals.

Models MΦ is a set containing models of a phenomenon Φ {m1 . . .mn ∈ MΦ} –
information structures that can be used to (a) explain Φ, (b) predict Φ, (c) produce
effective plans for achieving goals G with respect to Φ, and (d) (re)create Φ.

For any set of modelsM and a phenomenon Φ, the closer the information structures
mi ∈ M represent elements (sub-parts) ϕ ∈ Φ, at any level of detail, including their
couplings <Φ, the greater the accuracy of M with respect to Φ.

Insofar as an agentA’s knowledge consists of modelsM , we can define understand-
ing in the following way:

4 Exceptions do exist of course (cf. [1]), but not in the obvious areas such as language-, image-
and scene-understanding, where the word makes a mere superfluous appearance.

5 By “elements” and “sub-parts” we mean any sub-division of Φ, including sub-structures, com-
ponent processes, whole-part relations, causal relations, etc.



Understanding An agent’s A understanding of phenomenon Φ depends on the accu-
racy of M with respect to Φ, MΦ. Understanding is a (multidimensional) gradient from
low to high levels, determined by the quality (correctness) of representation of two main
factors in MΦ:

U1 The completeness of the set of elements ϕ ∈ Φ represented by MΦ.
U2 The accuracy of the relevant elements ϕ represented by MΦ.

Testing for Understanding This approach does not necessitate or force any particular
way to test for understanding, shifting that challenge rather to whichever methods prove
the best for exposing the above two factors. To test for evidence of understanding a
phenomenon Φ we may probe (at least) four capabilities of the understander:

1. To predict Φ.
2. To achieve goals with respect to Φ.
3. To explain Φ.
4. To (re)create Φ.

All can be seen to have a range [0, 1] where 0 is no ability and 1 is perfection, as
a function on U1 and U2 above. For a thorough evaluation of understanding all four
should be applied.

Prediction is the crudest form of evidence for understanding. Some prediction can
be done based on correlations, as prediction does not require representation of the di-
rection of causation yet captures co-occurrence of events. Prediction of a particular turn
of events requires (a) setting up initial variables correctly, and (b) simulating the impli-
cations of (computing deductions from) this initial setup.

Goal Achievement Correlation is not sufficient, however, to inform how one achieves
goals with respect to some phenomenon Φ. For this one needs causal relations. Achiev-
ing goals means that some variables in Φ can be manipulated directly (or indirectly via
intermediate variables). Unless the intelligent agent is omnipotent and omniscient, to
achieve goals with respect to a phenomenon Φ may require a bit more than an under-
standing of Φ: it requires understanding of how a certain subset of Φ relates to some
variables that are under an agent’s control. In short, the agent needs models for inter-
action with the world. For a robotic agent driving a regular automobile, to take one
example, the agent must possess models of its own sensors and manipulators and how
these relate to the automobile’s controls (steering wheel, brakes, accelerator, etc.). Such
interfaces tend to be rather task-specific, however, and are thus undesirable as a required
part of an evaluation scheme for understanding. Instead, we call for an ability to pro-
duce effective plans for achieving goals with respect to Φ. An effective plan is one that
can be proven useful, efficient, effective, and correct, through implementation.6

Explanation is an even stronger requirement for demonstrating understanding. Cor-
relation does not imply causation, which means that one may have a predictive model of
a phenomenon that nevertheless does not represent correctly its parts and their relations

6 Producing plans, while not being as specific as requiring intimate familiarity with some I/O
devices to every Φ, requires nevertheless knowledge of some language for producing said
plans, but it is somewhat more general and thus probably a better choice.



(to each other and parts of other phenomena); goals may in some cases be achieved
through “hacks” and “back doors”, without a proper causal model behind it. This is
why scientific models and theories must be both predictive and explanatory – together
constituting a litmus test for complete and accurate capturing of causal relations.

(Re)creating a phenomenon is perhaps the strongest kind of evidence for under-
standing. It is also a pre-requisite for the ability for correctly building new knowledge
that relies on it, which in turn is the key to growing one’s understanding of the world.
By “creating” we mean, as in the case of noted physicist Richard Feynman,7 the ability
to produce a model of the phenomenon in sufficient detail to replicate its necessary and
sufficient features. Requiring understanders to produce models exposes the complete-
ness of their understanding.

It is important to emphasize here that understanding, in this formulation, is not re-
ductionist: Neither does it equate the ability to understand with the ability to behave in
certain ways toward a phenomenon (e.g. achieve goals), nor the ability to predict it, nor
the ability to explain it, nor the ability to (re)create it. While any of these may be used to
assess a system’s understanding of a phenomenon, in our theory all are really required
(to some minimum extent) to (properly) assess a system’s understanding. Any assess-
ment method that does not include these four in some form runs the risk of concluding
understanding where there is none (and the converse).

4 Meaning
We can now move to a close cousin of understanding – meaning. Meaning does not exist
in a vacuum: A causal event x acquires meaning for some agent A when x has potential
to influence something of relevance to one or more of the agent’s goals G. Given e.g.
an event x with potential relevance to agent A, the agent may compute some meaning
of x with respect to (any or all of) its relevant goals, given a particular situation St (a
substate of a world W defined by a set of variables, S ⊂ W ). This computation relies
on deduction, among other processes.

To illustrate we can use two example events, rocks rolling down a hill and a com-
puter deriving square roots. Do rocks rolling down a mountainside contain any mean-
ing? When a computer is given the number 4 and outputs 2, does this output have any
meaning? “Surely”, you might be inclined to say, “math is meaningful in its regularity”.
But then what is the difference between computation and rolling rocks? At the atomic
level are forces at play (gravity and electricity, respectively) working according to pre-
determined rules. To answer either question we must ask “meaning to whom?” Both are
physical events, and without a biological being that can interpret them in some relevant
context, neither has any meaning.

As we can see from this example, the agent’s situation must also be included, be-
cause some event x may mean one thing in situation S1 and another in situation S2. If I
hear an announcement that the gate to the flight to my vacation destination has closed,
this will mean something very different depending on which side of the gate I am on at
that point in time; in one case I may start crying and the other not. And if I have a drink

7 Feynman, notorious for his capacity to understand even the most complicated phenomena in
his field, left a note on his blackboard when he died: “If I can’t create it, I don’t understand it.”
(http://archives-dc.library.caltech.edu/islandora/object/ct1:483 - accessed Apr 2, 2016).



in either contingency it will likely be for very different reasons. This example makes
another aspect of meaning clear: Meaning is time-dependent.

This means that without temporally demarcated goals there can be no meaning,
because the meaning of e.g. an event can only exist with respect to a particular goal
(held by an agent) that is relevant to the agent. A stone rolling down a hill has no
meaning – it is simply a meaningless process. When we know the stone weighs over
two tons and it’s heading your way do we derive some meaning from its existence.

In this formulation the meaning of a particular datum,8 e.g. the closing of the gate,
consists of the implications Id(t1) of that particular datum d presented at time t1; d(t1)
implies some set of things for a particular agent A in particular circumstances St1 with
regard to particular active goals G (an active goal at time t is a goal that the agent is ac-
tively trying to achieve at time t).9 Any potential implication may be computed through
the proper processes, including implications that might be relevant to the agent’s active
goals G in situation S at time t1. To be as useful as possible to the agent, the impli-
cations that are most temporally relevant to the agent’s goals, whether a hindrance or
help, should get computed as soon as possible after the datum presents itself.

Implications are computed through temporally-grounded deduction, from a set of
premises, to derive any potential implications (they are potential implications because
they are typically produced based on premises and initial conditions whose specification
may not be fully informed) given by the new datum. For instance, if I missed my air-
plane and the next airplane leaves in a week, I may have shortened my vacation by 50%.
In this case knowing this 400 milliseconds sooner or 4 seconds later will obviously not
make a big difference – either way I will be steaming angry or hugely disappointed,
as the meaning is extracted and the most relevant implications for my goal of taking a
2-week vacation dawns on me.

Implications Starting from an initial state St ⊂ W of a dynamic task-environment
(consisting of a series of such states {St . . . St+δ}), the Implications of a datum dt are
the computed deductions D that may be relevant to a particular set of goals G of a
particular agent A with particular knowledge K in situation St+i ⊂W , represented

Impl(dt, A(G)t+x) = D(dt, Si, (KA, GA, SA)t+y)

(t+ x and t+ y means these can refer to different points in time). While for any period
of time at least some implication can be deduced from a particular set of information,
whether the implications are relevant to an agent cannot be known before the deductions
have been made.

Most of the time a complex environment such as the physical world will present,
for any time period, a vastly greater amount of information than what any agent can

8 A datum dt can be an event, an utterance, the perception of a particular object, a particular
deduction or set of deductions, etc. occurring at time t – in short, anything that can be perceived
by the agent’s sensors and represented by its mind.

9 Unless otherwise specified the term “goal” may be read to mean “all active goals”, as typically
this is a set of goals; even if a single identifiable top-level goal can be found, there will always
be (obvious and non-obvious) sub-goals that must be taken into account. We thus use “goal”
and “goals” indiscriminately.



perceive and process for that period, i.e. the computational resources of most (interest-
ing) agents will be vastly less than those needed to process all available information,
for any time period. In the vast majority of cases such a complex environment can be
the source of an infinite string of deductions stretching into the far future; for any time
interval a real agent in a real environment will thus be faced with capping deductions in
both breadth (sources of deductions) and depth (time and detail).

For an agent, finding the meaning of a situation requires identifying which of the
possible deductions are relevant to the agent’s goals in that situation at that time.

Meaning The meaning of a datum dt for an agentA(K,G, S)t is captured by the set of
relevant implications Ir of dt for A with a set of goals G and knowledge K in situation
S at time t;

Meaning(dt, A(G)) = Implr(dt+x, {KA, GA, SA}t+y).

Typically there is never only a single meaning to anything (so we use singular and
plural interchangeably), since any datum has a large set of potential implications for
any large or complex phenomenon. What is relevant at any point in time depends on the
particular outcome of the predictions, in light of the system’s active goals. Since these
predictions cannot be guaranteed to be perfect, the meaning of anything and everything
will always be somewhat in flux and open to further interpretation. Computations may
produce differences in meaning based on slight variations of the initial conditions.

The quality of predictions produced via deductions from a set of premises depends
in large part on the accuracy of the models used for it. Models must be freely com-
posable and de-composable, in light of their usage, to realize their full potential for
predicting, achieving goals, and explaining. From Ashby’s Requisite Variety theorem
[17] we know that model “resolution” (i.e. their granularity) needs to be at least as de-
tailed as the finest discernible, relevant details of the phenomenon modeled. For any
reasonably complex phenomenon we will therefore have a large set of models M . 10

5 A System That Acquires Understanding & Meaning
We have designed and implemented an architecture that implements the pragmatic the-
ory of understanding outlined above. This system, called AERA [12,13], contains nu-
merous features that must be explained to provide a coherent account of its operation,
which is well beyond the scope of this paper (we refer the interested reader to our most
thorough overview of this work in [11]). Rather, this section serves (a) to show that
our approach to understanding and meaning has produced an implemented, working
system, (b) to show that this system demonstrates highly novel properties not seen be-
fore in any other system, and perhaps most importantly, (c) to show one way the above
theory can be mapped to a concrete implementation.

Based on a new constructivist methodology [20], an AERA agent can learn com-
plex tasks by observation, starting from only a tiny seed. Learning in AERA is life-long,
10 Another determinant of the quality of predictions is the observability of variables and the

accuracy of reading their values. For any triplet {A,G, S}, to produce predictions requires
fixing the values of numerous variables v ∈ V ⊂ S whose values may not be immediately
accessible (and thus guessed or retrieved from the agent’s prior experience), or whose values
may not be perfectly observable (cf. “Does that display show 880 or 830?”).



continuous, and incremental, and consists of building models based on observed phe-
nomena. For any situation Si(t) ⊂ W the system finds itself in, a set of observed
variables Vi ⊆ Si results in a large set of new models Mi being generated, each re-
lating two observed data vi, vj ∈ V in a directed causal relationship <i : vi → vj ,
meaning that vi is a cause of vj . As experience accumulates, models of groupings of
such relationship pairs emerge, representing hypotheses about the interactions between
the many observed sub-phenomena, at several spatio-temporal levels. At runtime an
AERA agent executes the subset of these models deemed most relevant to the situation;
predictions are produced from the present state using these models for deduction, in a
forward-chaining mode; abduction — backward-chaining the models’ causal relation-
ships — produces plans for how to achieve goals (i.e. partial world states not observed
at present).

In the experimental data referenced below, AERA agent S1’s phenomenon Φ to be
understood is a TV-style interview. This Φ’s elements are known to be e.g. deictic ref-
erences (pointing at, nodding towards, looking at, etc.), sentence morphology (word
sequences), question-answer pairs, etc. S1 starts with a tiny seed where its most prim-
itive sensation types are specified, allowing it ground its experience and bootstrap its
incremental learning of how to properly do multimodal interaction. The seed also con-
tains the top-level goals (1 for the interviewer, 4 for the interviewee). S1 observes two
humans interact for 20 hours, after which its performance is recorded for analysis, pro-
ducing over 20 minutes of interactions with humans. It is important to note that no
information whatsoever was provided in the seed on any of the phenomena learned –
these emerge through a process whereby the system tries to match its models to the
observed phenomena in a way that can predict, explain, and achieve goals with respect
to them, as per our pragmatic theory of understanding detailed above.

Explanation By design the system’s knowledge representation is self-disclosing: The
total collection of models at any point in time represents the system’s ability to ex-
plain the phenomena it has had experience with, from its best effort, by attempting to
represent directly the elements of the phenomenon (observable variables) and their rela-
tionships (<inΦ ). This is very different from e.g. artificial neural nets, whose knowledge
representation cannot be symbolically mapped to the domain the knowledge references.

Prediction Models and model hierarchies are used to predict the evolution of the situ-
ation, at any moment, δ microseconds into the future Si(tnow + δ). Models get a score
according to how closely the observed future compares to their predictions.

Goal Achievement The same models used to produce predictions also inform the sys-
tem what it is capable of, via backward chaining: Any (good) model chain of arbitrary
length whose end point is a goal to be achieved and whose starting point is the present
state tells the system what chain of events may be taken to get from the present state
to the goal, and as long as the chain includes models referencing variables that the sys-
tem can affect, the system can create a plan for achieving the goal. In such chains the
agent’s atomic operational capabilities are represented in models, and their execution is
handled via dedicated actuators on the agent’s embodiment.

Implications & Meaning Having acquired a set of models, when an AERA agent ob-
serves a datum di(t) the best models in which this datum appears produces predictions



(arity depending on available resources); those that relate in some way to the agent’s in-
stantiated goals at that point in time are considered relevant implications of di, and may
affect the agent’s subsequent overt actions in the task-environment. Meaning is thus
generated continuously, with the predictions most relevant to the agent at each point in
time enabling the agent to steer its behavior accordingly, by changing its plans, creating
new plans, backtracking, and abandoning or generating new subgoals.

Results: Autonomously Acquired Understanding In two experiments S1 has demon-
strated autonomous acquisition of a pragmatic understanding of (1) three types of lin-
guistic anaphora (resolving referents of “it”, “that” and “this”), (2) four types of co-
verbal deictic gestures (pointing with index finger, gazing at objects, palm-up hand ges-
ture, reference via touching/holding objects), (3) how to structure turn-taking, (4) how
to generate appropriate utterances for particular referents (correct answers to questions
– whether containing anaphora, co-verbal gestures or not), (5) how to keep an interac-
tion within given time limits, and (6) how to generate syntactically correct utterances.
With respect to item 6, examples of utterances produced by S1 include “Which releases
more greenhouse gases when produced, a plastic bottle or a glass bottle?” and “Com-
pared to recycling, making new paper results in seventy five percent more air pollution.”
As evidence of the accuracy and completeness of S1’s understanding, for the total of
73 utterances produced by S1 in the experimental data, only four (minor) grammatical
errors were found (Nivel et al. [12] provides details S1’s natural language learning.).
These were in fact the only errors found — no errors could be discerned in the data for
any of the other acquired skills (1–5).

This evidence suggests that with respect to the sub-phenomena listed above, all the
above elements of Φ have been modeled correctly, achieving a high score on U1 and U2
in section 3. The firs two points of evaluation in Section 3 are thus clearly demonstrated:
The system can use its acquired understanding to achieve goals in the dialogue, using
both prediction (to synchronize behavior with the world) and abduction (to construct
plans). We consider items 3 and 4, explanation and (re)creation, to partially demon-
strated: S1’s self-disclosing knowledge representation directly captures the structure of
the phenomena by encoding the (causal) relationships between observed variables, and
allows S1 to act correctly across the full range of priorly observed instances of the phe-
nomena. More through evaluation is needed on these last two points, including pushing
the limits of S1’s understanding.

6 Conclusions
We have outlined a theory of pragmatic understanding and meaning. The implemented
system incorporating its principles lends validity to the approach, and for the more gen-
eral issue that endowing agents with capabilities for autonomously acquiring a prag-
matic understanding of a complex phenomenon may be an important endeavor. The
implemented system has demonstrated an ability to acquire complex sentence grammar
from observation, contextual interpretation of multimodal communicative acts, acquir-
ing an understanding of a task-environment and computing in real-time the meaning
of events, and using this to successfully achieve dialogue goals in realtime interaction
with humans [11,12]. In this the system demonstrates what Pattee calls semantic clo-
sure [14]. Needless to say, the issue of understanding is a large one, and a multitude of



issues have been raised here that remain unformulated, let alone unanswered, such as
susceptibility to noise and scaling. The positive results from our experiments thus far
provide good reason for optimism on the future prospects of this line or research.
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