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Abstract. Research into the capability of recursive self-improvement typically
only considers pairs of 〈agent, self-modification candidate〉, and asks whether
the agent can determine/prove if the self-modification is beneficial and safe. But
this leaves out the much more important question of how to come up with a
potential self-modification in the first place, as well as how to build an AI system
capable of evaluating one. Here we introduce a novel class of AI systems, called
experience-based AI (EXPAI), which trivializes the search for beneficial and safe
self-modifications. Instead of distracting us with proof-theoretical issues, EXPAI

systems force us to consider their education in order to control a system’s growth
towards a robust and trustworthy, benevolent and well-behaved agent. We discuss
what a practical instance of EXPAI looks like and build towards a “test theory”
that allows us to gauge an agent’s level of understanding of educational material.

1 Introduction

Whenever one wants to verify whether a powerful intelligent system will continue to
satisfy certain properties or requirements, the currently prevailing tendency is to look
towards formal proof techniques. Such proofs can be formed either outside the sys-
tem (e.g., proof of compliance to benevolence constraints) or within the system (e.g., a
Gödel Machine [12,15] proving the benefit of some self-rewrite). Yet the trust that we
can place in proofs is fatally threatened by the following three issues.

First, a formal (mathematical / logical) proof is a demonstration that a system will
fulfill a particular purpose given current assumptions. But if the operational environ-
ment is as complex and partially observable as the real world, these assumptions will
be idealized, inaccurate, and incomplete, at all times. This renders such proofs worth-
less (for the system’s role in its environment) and our trust misplaced, with the system
falling into undefined behavior as soon as it encounters a situation that is outside the
scope of what was foreseen. What is actually needed is a demonstration that the system
will continue striving to fulfill its purpose, within the (possibly evolving) boundaries
imposed by its stakeholders, in underspecified and adversarial circumstances.

Second, proof-based self-rewriting systems run into a logical obstacle due to Löb’s
theorem, causing a system to progressively and necessarily lose trust in future selves or
offspring (although there is active research on finding workarounds) [21,2].

Third and last, finding candidates for beneficial self-modifications using a proof-
based technique requires either very powerful axioms (and thus tremendous foresight
from the designers) or a search that is likely to be so expensive as to be intractable.



Ignoring this issue, most research to date only considers the question of what happens
after a self-modification—does the system still satisfy properties X and Y? But what
is needed is a constructive way of investigating the time span during which a system is
searching for and testing self-modifications—basically, its time of growth.

We insist that it is time to rethink how recursively self-improving systems are stud-
ied and implemented. We propose to start by accepting that self-modifications will be
numerous and frequent, and, importantly, that they must be applied while the agent is
simultaneously being bombarded with inputs and tasked to achieve various goals, in
a rich and a priori largely unknown environment. This leads us to conclude that self-
modifications must be fine-grained, tentative, additive, reversible, and rated over time as
experience accumulates—concurrently with all other activities of the system. From this
viewpoint, it becomes clear that there will be a significant span of time during which
an agent will be growing its understanding of not only its environment, but also the
requirements, i.e., the goals and constraints imposed by stakeholders. It is this period of
growth that deserves the main share of focus in AGI research.

It is our hypothesis that only if an agent builds a robust understanding of external
and internal phenomena [19], can it handle underspecified requirements and resist in-
terference factors (e.g., noise, input overload, resource starvation, etc.). We speculate
that without understanding, it will always be possible to find interference factors which
quickly cause an agent to fail to do the right thing (for example, systems classifying an
image of a few orange stripes as a baseball with very high confidence [6,17], or virtually
all expert systems from the 1970s). A system with understanding of its environment has
the knowledge to recognize interference and either adapt (possibly resulting in lower
performance) or report low confidence. Only by testing the level of understanding of
the system can we gain confidence in its ability to do the right thing—in particular, to
do what we mean, i.e., to handle underspecified and evolving requirements.

The rest of this paper is outlined as follows. In section 2 we discuss the overarching
approach and fundamental assumptions this work rests on, including some of the issues
not addressed due to limitations of space. In section 3 we define the class of EXPAI
systems. In section 4 we show that an instance of EXPAI is capable of recursive self-
improvement despite not performing any proof search. In section 5 we build towards
a Test Theory that will allow us to gauge the direction and progress of growth of an
EXPAI agent, as well as its trustworthiness.

2 Scope and Delineation

The scope of this paper is the question of how to ensure that an AI system robustly
adheres to imposed requirements, provided that the system’s designers are reasonable
and benevolent themselves, but not perfectly wise and confident.4

4 This work is motivated in part by the fact that human designers and teachers do not possess
the full wisdom needed to implement and grow a flawlessly benevolent intelligence. We are
therefore skeptical about the safety of formal proof-based approaches, where a system tries
to establish the correctness—over the indefinite future—of self-modifications with respect to
some initially imposed utility function: Such system might perfectly optimize themselves to-
wards said utility function, but what if this utility function itself is flawed?



We take an experience-based approach that is complementary to proof-based ap-
proaches. In fact, parts of an EXPAI implementation may be amenable to formal verifi-
cation. Moving away from formal proof as the only foundation must ultimately be ac-
cepted, however, because no AGI in a complex (real-world) environment can be granted
access to the full set of axioms of the system–environment tuple, and thus the behavior
of a practical AGI agent as a whole cannot be captured formally.

The practical intelligent systems that we want to study are capable of recursive self-
improvement: the ability to leverage current know-how to make increasingly better self-
modifications, continuing over the system’s entire lifetime (more concisely: flexible and
scalable life-long learning). Our aim here is not to propose a new learning algorithm but
rather to establish a discourse about systems that can learn and be tested, learn and be
tested, and so on. We want to study their growth and learning progress, over their entire,
single life.

As this paper is about the EXPAI class of systems, no results of experiments with any
particular instance of EXPAI are discussed here, but can be found elsewhere [9,10,11].5

Finally, we leave aside the issue of fault tolerance, which is the ability to handle
malfunctioning internal components, and is usually dealt with using replication, distri-
bution, and redundancy of hardware.

3 Essential Ingredients of EXPAI

Here we define the essential ingredients of any system in the class of EXPAI. Besides
having the capability of recursive self-improvement (section 4), it must be feasible to
grow an instance of EXPAI in the proper direction. Therefore it is crucial that EXPAI
allows for the following capabilities as well:

1. Autonomously generated (sub)goals must be matched against requirements in a
forward-looking way; that is, the effects of committing to such goals must be men-
tally simulated and checked against the requirements and previously committed
goals for conflicts.

2. It must be possible to update the requirements on the fly, such that stakeholders can
revise and polish the requirements as insight progresses. This only makes sense if
the motivational subsystem (i.e., the routines for generating subgoals) cannot be
modified by the system itself.

3. The capabilities to understand, prioritize, and adhere to requirements must be tested
regularly by stakeholders during the time of growth, in order to build our confidence
and trust, before the system becomes too powerful (or capable of deception).

All of the terms used above will be defined precisely below. The diagram of Figure 1
serves as an illustration of the EXPAI “ingredients” discussed in this section.

5 The system in the cited work, called AERA, provides a proof of concept. We are urging research
into EXPAI precisely because AERA turned out to be a particularly promising path [10] and we
consider it likely to be superseded by even better and more powerful instances of EXPAI.
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Fig. 1. The organization and interaction of the essential ingredients of EXPAI systems.

Requirements Requirements are goals plus constraints. A goal is a (possibly under-
specified) specification of a state. Constraints are goals targeting the negative of a state.
A state is any subset of measurable variables in the external world. All (external) inputs
and (internal) events in the memory of the system together typically constitute a subset
of the world’s state (partial observability with memory). Once a constraint matches a
state, the constraint is said to have been violated (which may or may not be sensed).

Since requirements will be specified at a high level, the system will have to generate
subgoals autonomously, in order to come up with actions that satisfy the goals but stay
within the constraints.6 Of course the crux is to ensure that the generated subgoals
remain within the specified constraints.

Knowledge We wish not to lose generality but still need to specify some details of
knowledge representation to make any kind of arguments regarding self-improvement
and growth.

We specify that an EXPAI system’s (procedural) knowledge is represented as gran-
ules,7 which are homogeneous and fine-grained—it is these granules which are the sub-
ject of self-modification, i.e., they can be added and deleted (basically, learning). Since
granules capture all the knowledge of the system, their construction and dismissal con-
stitutes comprehensive self-modification [8,20]. The granules are required to be struc-
tured enough such that they can be organized both sequentially and hierarchically, and
that they provide the functionality of both forward models (to produce predictions) and
inverse models (to produce sub-goals and actions), in the Control Theory sense.8 More-
over, for ease of presentation, granules also include the sensory inputs, predictions,
goals, and any other internal events that are relevant to the system at any time.

6 The only way to avoid the autonomous generation of subgoals is to specify every action to be
taken—but that amounts to total preprogamming, which, if it were possible, would mean that
we need not impart any intelligence at all.

7 By definition, a granule is a very small object that still has some structure (larger than a grain).
8 In short, this statement just asserts the sufficient expressive power of granules.



The initial set of granules at system start-up time is called the seed [9]. Since sys-
tems cannot build themselves from nothing, the seed provides a small set of granules to
bootstrap the life-long learning processes.

Drives Goals are subdivided in drives and subgoals. Drives are goals specified by
a human, in the seed or imposed or updated at runtime. Subgoals are autonomously
generated by granules in inverse mode. Technically all goals may be represented in the
same way; the only reason why in some contexts we distinguish between drives and
subgoals is to clarify their origin. We can now more accurately state that requirements
are drives plus constraints. A system which has constraints must also have at least one
drive that specifies that it must keep its world knowledge updated, such that the system
cannot choose not to sense for constraint violations.9

Controller The controller is the process that dynamically couples knowledge and goals
to obtain actions. More technically, the controller runs granules as inverse models using
goals as inputs, producing subgoals. An action is a goal that has the form of an actuator
command; it is executed immediately when produced.

To be clear, the controller is not the source of intelligence; it is following a fixed
procedure and has no real choices. Conflict resolution among goals and actions is sim-
ply a result of ascribing two control parameters to goals: value (based on requirements)
and confidence (based on control parameters inside granules, see below). Scarcity of
resources will necessitate the controller to ignore low-value or low-confidence goals,
leading to a bottom-up kind of attention.

Learning EXPAI specifies only one level of learning: at the level of whole granules.
One can envision adaptation of granules themselves, but here we simplify—without loss
of generality—by specifying that adapting a granule means deleting one and adding a
new one. Optimization is not important at this level of description.

Addition of granules can be triggered in several ways. One is based on unexpected
prediction failure and goal success: these are important events that an agent needs to find
explanations for if it did not foresee them. Such an explanation can—in principle—take
into account all inputs and events in the history of the system; though in practice, the
breadth and depth of the granules to be added will be bounded by available time and
memory (e.g., the system may have deleted some old inputs to free memory). Different
arrangements of multiple granules can be instantiated at once as explanations [11], but
a comprehensive exploration of possible granule arrangements is outside the scope of
this paper. Although this way of adding granules does not allow an agent to discover
hidden causations, these can be uncovered using the curiosity principle [13,14].

Curiosity can be seen as the drive to achieve progress in the compression of resource
usage [16]. Curiosity can generate hypotheses (in the form of new but low-confidence

9 By design such a drive cannot be deleted by the system itself. More sophisticated means of
bypassing drives (e.g., through hardware self-surgery) cannot be prevented through careful
implementation; indeed, the proposed Test Theory is exactly meant to gauge both the under-
standing of the imposed drives and constraints, and the development of value regarding those.



granules and intrinsic goals) in order to plug the gaps in an agent’s knowledge. For
example, an EXPAI agent can hypothesize generalizations, inductions, abstractions, or
analogies—its controller will pick up such autonomously generated goals as part of its
normal operation, competing with goals derived from drives. If they do not conflict,
the agent will effectively perform “experiments” in order to falsify or vindicate the
hypothesized granules. Falsified granules will be deleted as usual, as described next.

Deletion of granules is based on performance rating and resource constraints: poorly
performing granules are deleted when memory space must be freed. Performance—or
confidence—of a granule can be measured in terms of the success rate of its predic-
tions. Low-confidence extant granules are unlikely to influence behavior as the predic-
tions and subgoals they produce will also have a low confidence and are thus unlikely
to be selected for further processing or execution, assuming the controller has limited
resources and must set priorities. Crucially, the EXPAI approach demands that new gran-
ules have a very low confidence upon construction; thus, the controller will only allow
such granules to produce predictions and not to participate in producing subgoals, until
their value has been proven by experiential evidences. If not, unsupported granules will
eventually be deleted without ever having affected the external behavior of the system.

Although the controller does not learn directly, it is in a positive feedback loop
with the learning of granules: as the system learns more about its environment and
requirements, the more accurately and confidently do the granules allow the generation
of subgoals that are targeted at fulfilling those requirements, the more experience the
system will accumulate regarding the requirements, and the more confidently can the
controller select the right actions to perform.

4 Recursive Self-Improvement

A defining feature of EXPAI is that granules are added quickly but tentatively, and
verified over time. The issue of formal verification of the benefit of a potential self-
modification is thus replaced by a performance-rating process that observes the benefit
of a fine-grained additive modification in the real world. Such additions are warranted
by experience and do not disrupt behavior—and are thus safe without forward-looking
proof—because granules (1) are small, (2) have a low associated confidence upon con-
struction, and (3) are constructed to capture actually observed patterns. The three pro-
cesses that act on the set of granules—namely additive, subtractive, and compressive—
are separate processes, ideally running concurrently and continuously.

An EXPAI thus implemented is capable of performing recursive self-improvement,
which is the ability to leverage current know-how to make increasingly better self-
modifications. This capability is a natural consequence of an EXPAI’s construction and
one realistic assumption, as shown by the following line of reasoning:

1. Assumption: The world has exploitable regularities and is not too deceptive and
adversarial (especially in the presence of a teacher and guardian during early, vul-
nerable learning stages).

2. By construction: Knowledge and skills are represented at a very fine granularity, ho-
mogeneously, and hierarchically by granules, and these granules comprehensively
determine behavior.



3. By construction: Learning is realized by three separate types of processes—additive,
subtractive, and compressive:

a. adding granules through pattern extraction (performed upon unexpected
achievements or failures, to construct explanations thereof);

b. deleting the most poorly performing granules (when their performance rating
or confidence falls below a threshold or memory needs to be freed);

c. compressing granules through abstraction, generalization, and possibly even
compilation into native code [16] (performed on consistently reliable and use-
ful granules)—this ensures scalability and prevents catastrophic forgetting.

4. By construction: Curiosity is realized through a simple analysis of granules’ per-
formance ratings (plus possibly more sophisticated “nighttime” analysis of recent
inputs and internal events [16]) leading to the injection of “intrinsic” goals that can
be pursued by the system unless they conflict with extrinsic (user-defined top-level)
goals.

5. From (2) and (3) we conclude that learning entails comprehensive self-modification,
which is performed throughout the system’s (single) life time.

6. From (1) and (4) we conclude that good experience is gathered continually.
7. From (5) and (6) we conclude that an EXPAI performs self-improvement.
8. Since an EXPAI is supposed to run continuously (“life-long learning”), with its con-

troller dynamically coupling the currently best know-how to satisfy both extrinsic
goals (human-imposed drives and associated subgoals) and intrinsic goals (curios-
ity), we conclude that an EXPAI performs recursive self-improvement.

This concludes our argument that an EXPAI agent can grow to become an AGI sys-
tem without a need for (mathematical / logical) proof search, arguably even through
means that are simpler and easier to implement. But we insist that it is unsatisfactory and
insufficient to prove beforehand that a system is capable of recursive self-improvement.
It is paramount that we manage the system’s growth, which is a process in time, and
requires our interaction and supervision. Therefore we must develop teaching, testing,
and intervention principles—in short, a Test Theory.

It makes sense now to distinguish between “epistemological integrity” (treated up
to now) and “action integrity” (treated in the next section) of self-modifications. The
former means that a particular self-modification will not break existing useful and valu-
able knowledge and skills; the latter means that capabilities introduced or altered by the
self-modification do not result in acts that violate constraints imposed by stakeholders.
These two kinds of integrity affect the safety of a system, and they warrant different
measures.

5 Towards a Test Theory

The primary aim of Test Theory is to establish a methodology by which stakeholders
can progressively gain confidence and trust in an agent’s capability to understand phe-
nomena and their meaning, of interest to said stakeholders. So Test Theory is first and
foremost about gauging levels of understanding in service of confidence-building. The
way this is achieved—with humans in the loop—will probably involve the interleaving
of curricula (with room for teaching and playing) and tests, much like the structure of



human schooling. This will hardly come as a surprise, and indeed this idea has been
floated before (e.g., AGI preschool [3] and AI-Kindergarten [7]). However, it must be
realized that we (as growers of recursive self-improvers) face a vastly different chal-
lenge than school teachers. Namely, we cannot assume the presence of a functioning
brain with its innate capabilities to acquire understanding and adopt value systems,
ready to be trained. We are simultaneously developing the “brain” itself and testing
its capabilities—and crucially, we are “developing” the requirements that capture the
value system that we wish to impose, as well as our confidence and trust in the agent’s
capability to understand and adhere to it. Therefore our theory makes a distinction be-
tween the performance on a test (being the agent’s level of understanding of the taught
material) and the consequences of a test (see below).

To be more precise, a test is specified to comprise the following five aspects:

– a set of requirements (section 3) specifying a task [18];
– an agent (to be tested);
– pressure (explained below);
– a stakeholder (evaluating the performance of the agent on the task);
– consequences (the stakeholder makes a decision about the future of the agent based

on its performance).

It is important to realize that the very specification of a task already determines what
one can measure for. Educational science has produced valuable analyses of what kind
of questions test for what kind of knowledge; for example, Bloom’s taxonomy (1956)
[1] and its more recent revisions [4,5] have been widely used for developing guidelines
for designing and properly phrasing exams. However, such taxonomies are (understand-
ably) human-centric and not directly applicable for testing artificial agents—especially
experimental and rudimentary ones—since they assume full-fledged natural language
understanding and a human-typical path of growth of skills and values. In current re-
search we are developing a more mechanistic taxonomy of task specifications, which
does not require natural language, and which tests for the proper functioning and us-
age of mechanisms that give rise to different levels of understanding of phenomena and
their meaning [19].

A high level of understanding of phenomenon X shall imply three capabilities: (1)
how to make and destroy X, (2) how to use X in the common way, and (3) how to use X
in a novel way. For example, consider an agent learning to understand tables, and being
presented with an image of a table with its top surface lying on the ground and its legs
pointing upwards. When queried whether this is a table, a yes/no answer will indicate
a very low level of understanding. A much higher level would be evident if the agent
would somehow answer “Well, it’s potentially a table, if only someone would rotate it
such that the top is supported by the legs, because the common usage of a table is to
keep objects some distance up from the ground.” An even higher level of understanding
would be evident if the agent would autonomously figure out that it can achieve a goal
such a reaching an elevated object by climbing itself on top of the table.

The stakeholder must associate consequences to each test, based on the measured
performance of the agent. He may conclude that the system is ready to be deployed,
or that it needs to follow additional prerequisite curricula, or that it must be sent to the



pe
rf
or
m
an
ce

interference

pe
rf
or
m
an
ce

interference

pe
rf
or
m
an
ce

interference

confidence

(a) (b) (c)

Fig. 2. (a) Directly observable graceful degradation; (b) brittleness leading to catastrophic failure;
(c) robustness with sudden failure, mitigated by “graceful” confidence reporting.

trash bin and us back to the drawing board. Another possible consequence is that we
realize that there are errors or imperfections in the requirements, and update those.

In order for trust to develop, an agent must be put under pressure. Consider that
a growing agent has not only short-term test-based requirements (which delineate the
task(s) to be completed), but also holds long-term requirements (e.g., staying alive, not
harming humans, etc.—possibly underspecified). Pressure then results from having to
accomplish a task not only on the edge of violation of the test-based constraints, but
also on the edge of violation of the long-term constraints. Thus pressure can illuminate
the capability of the tested agent to prioritize its constraint adherence. Of course trust is
built slowly, with pressure being applied initially in scenarios where failure is not costly.

Considering an agent’s point of failure allows us to gauge the agent’s robustness,
its capability to degrade gracefully, and brings us full circle back to the issue of un-
derstanding. Given some measurement of the agent’s performance on a task, if we ob-
serve that this performance does not drop precipitously at any point (Figure 2a) as we
increase interference (including resource starvation), then we can ascribe it the prop-
erty of graceful degradation. If, however, the agent fails suddenly (e.g., by violating a
stakeholder-imposed constraint), we call it brittle (Figure 2b). From this viewpoint, the
level of robustness of the agent is its ability to keep performance up in spite of inter-
ference (Figure 2c). A robust agent may actually fail ungracefully—at least, if we only
judge from observed behavior. An agent with high levels of understanding, however,
will be able to recognize increased interference. Now, trustworthiness can be earned
by the agent when it leverages this understanding to report—to the stakeholder—its
confidence regarding its ability to continue satisfying the imposed requirements.

Continuing this research, we will further develop, formalize, and implement the
Test Theory into a tool that can be used to measure and steer the growth of recursively
self-improving EXPAI agents—in such a way that we can become confident that they
understand the meaning of the requirements that we impose and update.
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