Affective Text Classification with Commonsense

Hugo Liu
Commonsense Thinking Project
Software Agents Group
MIT Media Lab
Agenda

- Affective UIs
- Existing approaches
- Affective Classification using OMCS
- Experiment: EmpathyBuddy
- Limitations / Future
User Interfaces: Social?

- Nass et. al at Stanford (1994)
 - human-human interaction
 - → Social
 - → Affective communication NATURAL
 - human-computer interaction
 - → Social (!)
 - → Affective communication NATURAL (!)
Affective UIs

- Affective Communication
 - Picard / Affective Computing
- What technologies exist for affect sensing?
 - In facial expressions (Picard)
 - Speech (Fernandez)
 - Physiology (Vyzas)
 - Text (Ortony/ Elliott/ Batliner et al/ Schank et al)
Existing Approaches to Affect Classification in Text

- Keyword Spotting
 - I had a really bad day at work.
- Statistical NLP
 - i.e. SVM, LSA, co-occurrence counting
 - corpus-driven
- Lexical Affinity
 - Lexical valence: HURT \Rightarrow .25 BAD
- Handcoded models
Existential Approaches: Failures

- **Keyword Spotting**
 - I had a *really bad* day at work. **OK**
 - I got fired today. **UH-OH (no affect keywords)**

- **Statistical NLP**
 - I had a really bad day at work because I got fired and the company has been going thru many rounds of layoffs because of the recent economic downturn and I had a really bad day at work because I got fired and the company has been going thru many rounds of layoffs because of the recent economic downturn and ... **OK**
 - I had a bad day. **UH-OH (input too short)**

- **Lexical Affinity**
 - I was hurt ➔ **BAD... OK**
 - I wasn’t hurt ➔ **BAD... UH-OH**

- **Handcoded models**
 - In model... **OK**
 - Outside model... **UH-OH**
Affective Commonsense about the World

- OMCS, Cyc, TT:
 - Large-scale knowledge about the world
 - Affective commonsense
 - A lot of people are scared of ghosts.
 - Getting into a car accident can be scary
 - Question: How can we exploit affective commonsense to build a common affect model?
 - Corollary: How can we circumvent some problems of other approaches?
Emotus Ponens: A first attempt

- **A Commonsensical Approach:**
 - Emotus Ponens: A Textual Affect Sensing Engine
 - Senses broad emotional qualities of story text
 - (on the sentence-level)
 - Limited domain (??)
 - Premised on common affect model grounded in commonsense

- **Experiment: EmpathyBuddy**
 - Uses EP for automatic affective feedback in an email browser via Chernov faces
Motivation from Psychology

- Emotions Literature:
 - Emotions as part of Consciousness
 - Plato, Aristotle, Descartes, Spinoza, Hume, etc.
 - Emotions are linked to physiology
 - James-Lange, Cannon-Bard, Schacter
 - Emotions in cognition
 - Aristotle’s Rhetoric, Ortony, Minsky, Damasio
 - Emotions and Culture
 - the recognition of emotion in language depends on traditions and cultures, so people may not necessarily understand the emotions of other cultures
$64,000 Question

- Marvin Minsky
 - Commonsense a part of cognition
 - Commonsense culture dependent
- William James
 - Affective understanding is culture dependent
- $64,000 question
 - Affective interpretation of everyday situations based largely in commonsense (?)
Circumventing Failures of Existing Approaches

Keyword Spotting
- I got fired today. **UH-OH (no affect keywords)**
- Look at semantic content of text, not only affect keywords

Statistical NLP
- I had a bad day. **UH-OH (input too short)**
- Statistical methods inherently semantically weaker but commonsense knowledge can operate on the sentence-level

Lexical Affinity
- I wasn’t hurt ➔ **BAD... UH-OH**
- **Model events: NOT(HURT(ME))**

Handcoded models
- Outside model... **UH-OH**
- **OMCS, Cyc, TT, etc.: Generic CSKBs are LARGE**
Emotus Ponens: 3 Phases

1) mine “affective commonsense” out of a generic commonsense knowledge base;
2) build a “commonsense affect model” by calculating mappings of everyday situations, things, people, and places into some combination of six primitive emotion categories;
3) use this constructed commonsense emotion model to analyze and annotate sentences
Phase I – mining...

- Task: choose a generic commonsense knowledge base (Cyc, OMCS, TT)
 - Cyc (Lenat, 2000)
 - Logical formulas, 3 million assertions
 - Pros: Good coverage, unambiguous
 - Cons: Tough to map into English, not “public”
 - Open Mind Commonsense (Singh, 2002)
 - Semi-structured English sentences, \(\frac{1}{2} \) million
 - Cons: ambiguous, spotty coverage
 - Pros: distributed teaching, already in English, “public”
Phase I – mining...

- From OMCS, extract emotion subset
 - Heuristic bag of words
- Define emotion bag of words as “emotion ground”
- Emotion grounds connect CONCEPTS ↔ with EMOTIONS
- Emotion grounds for canonical emotion in our system. So.. What’s canonical??
Six “Basic” Emotions

- surprise, happiness, fear, anger, disgust, and sadness
 - proposed by Ekman (1984) from research on universal facial expressions

- Why use these?
 - A good starting point
 - Easier to discern emotion-ground keywords
 - What else is out there?
Proposals for Basic Emotions
(see Ortony, What’s Basic About Emotions?)

- **Arnold**
 - Anger, aversion, courage, dejection, desire, despair, fear, hate, hope, love, sadness
 - Relation to action tendencies
- **Ekman, Friesen, and Ellsworth**
 - Anger, disgust, fear, joy, sadness, surprise
 - Universal facial expressions
- **Frijda**
 - Desire, happiness, interest, surprise, wonder, sorrow
 - Forms of action readiness
- **Gray**
 - Rage and terror, anxiety, joy
 - Hardwired
- **Izard**
 - Anger, contempt, disgust, distress, fear, guilt, interest, joy, shame, surprise
 - Hardwired
- **James**
 - Fear, grief, love, rage
 - Bodily involvement
- **McDougall**
 - Anger, disgust, elation, fear, subjection, tender-emotion, wonder
 - Relation to instincts
- **Mowrer**
 - Pain, pleasure
 - Unlearned emotional states
- **Oatley and Johnson-Laird**
 - Anger, disgust, anxiety, happiness, sadness
 - Do not require propositional content
- **Panksepp**
 - Expectancy, fear, rage, panic
 - Hardwired
- **Plutchik**
 - Acceptance, anger, anticipation, disgust, joy, fear, sadness, surprise
 - Relation to adaptive biological processes
- **Tomkins**
 - Anger, interest, contempt, disgust, distress, fear, joy, shame, surprise
 - Density of neural firing
- **Watson**
 - Fear, love, rage
 - Hardwired
- **Weiner and Graham**
 - Happiness, sadness
 - Attribution independent

(This table is taken from Ortony and Turner, 1990.)
Phase II – training commonsense emotion models

- Models to encapsulate emotion links
 - CONCEPT \leftrightarrow CONCEPT \leftrightarrow EMOTION
- Used to evaluate text
 - TEXT \rightarrow models \rightarrow EMOTION
- Models statistically trained from commonsense corpus (OMCS)
- Need a diversity of models for robustness
A Society of Models

- Subject-Verb-Object-Object Model (best accuracy)
- Conceptual Unigrams (fall-back 1)
- Conceptual Valence “+/-” (fall-back 2)
- Modifier Unigrams (fall-back 3)
Phase II – Training by Propagation

- Propagate emotional valence
 - from “emotion grounds”
 - to concepts (event, noun phrase, modifier)
 - through commonsense relations

- Propagation simulates undirected inference
 - Extremely Naïve Example:
 - “Tragedy is saddening”, “Hamlet is a tragedy”
 - Sad [0,1,0,0,0,0] \rightarrow Tragedy [0,0.5,0,0,0,0] \rightarrow Hamlet [0,0.25,0,0,0,0]
Architecture I: Model Trainer

Linguistic Processing Suite:
- Ontology-based Parsing
- POS tagging,
- phrase chunking,
- constituent parsing,
- SVOO identification,
- Semantic Class Generalizer

Emotional Commonsense Filter & Grounder

Propagation Trainer (run twice)

Models:
- SVOO
- Concept Unigram
- Concept Valence
- Modifier Unigram

Emotion Ground Keywords

updated models
Phase III – using models

- Task: choose a basic story unit
 - Independent-clause level
 - Because: functions as sentence, most basic unit that can describe an event

- Model-driven analysis
 - For each sentence, each model return a score that looks like:
 - [a happy, b sad, c anger, d fear, e disgust, f surprise]
 - Scores are weighted (based on model precision) and combined with a scoring function

Continued→

Hugo Liu -- CSR for Interactive Applications -- 2002.09.26

10/23/2002
Phase III – using models

- Inter-sentence smoothing
 - Techniques (Pattern Recognition):
 - Decay:
 - ANGER NEUTRAL NEUTRAL
 - ANGER ANGER50% NEUTRAL
 - Interpolation
 - ANGER NEUTRAL ANGER
 - ANGER ANGER60% ANGER
 - Global Mood
 - Global mood: sad
 - ANGER ANGER+SAD20%
 - Meta-Emotions
 - FEAR HAPPY FEAR RELIEF HAPPY
Architecture II: Text Analyzer

Text Analyzer

raw story text
sentences
(independent clauses)

Segmenter

Linguistic Processing Suite:
POS tagging,
phrase chunking,
constituent parsing,
SVOO identification,
Semantic Class Generalizer

Story Interpreter

parsed & processed
sentences

Meta-
emotion
Patterns

Trained
Models

Expressor

(re-annotated
sentences)

Smoother

re-annotated
sentences

10/23/2002

Hugo Liu -- CSR for Interactive Applications -- 2002.09.26
Application: EmpathyBuddy

- Affect sensing engine incorporated into an experimental application
- EmpathyBuddy
 - Chernov avatar
 - Interactive
 - Affective Response
User Testing

- 20 person study
- Performed 9/16-9/18
- Three interfaces given in random order
- 5 ? Questionnaire
- Implicit counting

Performance Measurement

<table>
<thead>
<tr>
<th>Questionnaire Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program was entertaining</td>
<td>4.1-</td>
</tr>
<tr>
<td>The program was interactive</td>
<td>4.6-</td>
</tr>
<tr>
<td>The program behaved intelligently</td>
<td>5.2-</td>
</tr>
<tr>
<td>Overall I was pleased with the program and would use it to write emails</td>
<td>5-</td>
</tr>
</tbody>
</table>

The program was entertaining
The program was interactive
The program behaved intelligently
Overall I was pleased with the program and would use it to write emails.

Score
- Neutral face
- Alternating, Randomized faces
- EmpathyBuddy
Next Steps

- Other applications:
 - Affective TTS, context-sensitive agents, gaming

- Open Questions:
 - Extensibility (away from everyday events)
 - How much more reasoning do we need (?)
 - Can we do sub-sentential annotations (?)
 - Dynamic feedback to correct mistakes (?)
 - Which models can benefit from external corpora?
Limitations of Approach

- Using keywords for emotion grounds (limited to OMCS)
- Extensibility of Knowledge
- Cannot capture user-dependent affect models
- No context for processing
 - Sarcasm
Feedback
(Make your own slide)
Info / Pointers

- E15-320D x3-5334
- hugo@media.mit.edu
- http://web.media.mit.edu/~hugo