Integrating User and Story Context into Textual Affect Sensing

Hugo Liu
Software Agents Group
MIT Media Lab

12.4.2002 affective computing talk
Overview

- Toward Affective Story Understanding
- Textual Affect Sensing: Traditional Approaches
- A Real-World Knowledge Approach
- Tracking Story Context
- Bootstrapping User Affect Model Acquisition
- Integration
Believable software agents should be social and affective [Nass et al. 1994; Bates, 1994]

Text/speech input are important and pervasive modalities (access via phone, pda, web)

This work focuses on text / transcribed speech

effective textual affect processing approaches the full difficulty of AI “story understanding”
Toward Affective Story Understanding

Mary was invited to Jack’s Party. She wondered if he would like a kite (from Minsky, 2000)

• Full Story Understanding
 – Test: Should be able to answer questions about the text, including those requiring implicit knowledge
 – Should track the states of characters (including narrator) and events through the course of the story
 – Create and model expectations of forthcoming events (daemons) [Charniak, 1972]
 – The interpretation of story events are Bayesian conditioned on expectations and states of characters and history of events
Toward Affective Story Understanding

- Full story understanding is out-of-reach until:
 - We have a better theory of philosophy of mind
 - Have better parsers and semantic understanders

- Affective understanding is a projection of full story understanding onto the affective dimensions.
 - Unfortunately, we would still need to maintain a lot of state that is not directly related to affect

- Pragmatist: “Let’s start with textual affect sensing and slowly integrate state into it.”
Textual Affect Sensing: Traditional Approaches

- **Keyword Spotting** [Elliott, Batliner et al.]
 - I had a **really bad** day at work.
 - I got fired today.

- **Lexical Affinity**
 - Lexical valence: fired ➔ .80 BAD
 - That motivational talk today really fired me up.

- **Statistical NLP i.e. LSA** [Goertzel et al.]
 - Trained linguistic models are semantically weak
 - Requires large input for accuracy
 - Can typically only classify affect into 2 or 3 states

- **Cognitive/Symbolic Models** [Schank, Dyer, Ortony]
Textual Affect Sensing: Cognitive/Symbolic Models

- Ortony, Clore, Collins [1988]
 - Emotions have cognitive structure
- Schank and Dyer
 - Psychologically motivated modeling of character’s affective states
 - Symbolic functionalism aka Strong Symbol AI has not worked. Not flexible, robust, or extensible.
 - Semantic Externalism [Putnam, 1988]
 - Meaning is out there in the community + environment
- Affective meaning is out there in the community + environment???
A Real-World Knowledge Approach

- Textual Affect Sensing
- Evaluating the underlying affective meaning (c.f. keyword spotting) of text at the sentential level (c.f. statistical NLP)
- Affect bias: Commonsense POV
- Open Mind Commonsense is used
 - 400,000 pieces of knowledge about the everyday world, including affective knowledge (c.f. lexical affinity)
 - Generic commonsense is an External Semantic Resource (c.f. cognitive/symbolic models)

12.4.2002 affective computing talk
A Real-World Knowledge Approach: OMCS

- (Non-affective)
 - *An activity* a doctor *can do* is examine the patient.
 - *You are likely to find* rollercoasters *in* an amusement park.
 - *The effect of* eating dinner *is* loss of appetite.

- (Affective)
 - *Some people find* ghosts *to be* scary.
 - *A person wants* popularity.
 - *A consequence of* riding a rollercoaster *may be* excitement.
A Small Society of Linguistic Models

- Subject-Verb-Object-Object Model (best accuracy)
 “Getting into a car accident can be scary” (OMCS)
 \[<\text{subj}>: \text{person_class}, <\text{verb}>: \text{get_into}, <\text{obj1}>: \text{‘car accident’}, <\text{obj2}>: \text{null}\]

- Concept-Level Unigram Model (fall-back 1)

- Concept-Level Valence “+/−” (fall-back 2)
 \text{narrator neg-verb pos-obj \rightarrow neg-valence}
 I WRECKED MY CAR

- Modifier Unigrams (fall-back 3)
Model Trainer

Linguistic Processing Suite:
- Ontology-based Parsing
- POS tagging,
- phrase chunking,
- constituent parsing,
- SVOO identification,
- Semantic Class Generalizer

Emotional Commonsense Filter & Grounder

Propagation Trainer (run twice)

Emotion Ground Keywords

Models:
- SVOO
- Concept Unigram
- Concept Valence
- Modifier Unigram

12.4.2002 affective computing talk
Text Analyser

raw story text
sentences
(independent clauses)

Segmenter

Linguistic Processing Suite:
- POS tagging,
- phrase chunking,
- constituent parsing,
- SVOO identification,
- Semantic Class Generalizer

Story Interpreter

Trained Models

Meta-emotion Patterns

Smoother

Expressor
(???)

re-annotated
sentences

re-annotated
sentences

parsed & processed
sentences

annotated sentences

parsed & processed
sentences

sentences

12.4.2002 affective computing talk
Demonstration

- Click Here for Empathy Buddy
User Study

- 20 person study
- Performed 9/16-9/18
- Three interfaces given in random order
- 5 ? Questionnaire
- Implicit counting

Performance Measurement

<table>
<thead>
<tr>
<th>Questionnaire Item</th>
<th>Neutral face</th>
<th>Alternating, Randomized faces</th>
<th>EmpathyBuddy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program was entertaining</td>
<td>4.2</td>
<td>6.2</td>
<td>6.8</td>
</tr>
<tr>
<td>The program was interactive</td>
<td>4.6</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>The program behaved intelligently</td>
<td>4.3</td>
<td>3.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Overall I was pleased with the program and would use it to write email.</td>
<td>3.6</td>
<td>4.4</td>
<td>6.0</td>
</tr>
</tbody>
</table>

12.4.2002 affective computing talk
Tracking Story Context

● OK, we can sense the user-independent (commonsense POV) affect of text at the *sentence level*.
● But, there’s no story-level coherence
● A few tricks:
 – Smoothing
 ● Decay, Interpolation, Global Mood, Meta-emotion
 – Topic-tracking
 – Character Affect-tracking
 – Plot Contour-tracking
Bootstrapping User Affect Model Acquisition

- The commonsense-POV might work with casual encounters with users, but not over longer term interactions
- Track user mood over interactions with different people, different topics
- Trap “personal affective commonsense”
 - *I hate crowded bars.*