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Cost-Based Anticipatory Action Selection for
Human-Robot Fluency

Guy Hoffman and Cynthia Breazeal

Abstract— A crucial skill for fluent action meshing in human
team activity is a learned and calculated selection of anticipatory
actions. We believe that the same holds for robotic teammates,
if they are to perform in a similarly fluent manner with their
human counterparts.

In this work we describe a model for human robot joint
action, and propose an adaptive action selection mechanism for
a robotic teammate, which makes anticipatory decisions based
on the confidence of their validity and their relative risk. We
conduct an analysis of our method, predicting an improvement
in task efficiency compared to a purely reactive process.

We then present results from a study involving untrained
human subjects working with a simulated version of a robot using
our system. We show a significant improvement in best-case task
efficiency when compared to a group of users working with a
reactive agent, as well as a significant difference in the perceived
commitment of the robot to the team and its contribution to
the team’s fluency and success. By way of explanation, we
raise a number of fluency metric hypotheses, and evaluate their
significance between the two study conditions.

I. INTRODUCTION

WO people repeatedly performing an activity together

naturally reach a high level of coordination, resulting
in a fluent meshing of their actions. In contrast, human-
robot interaction is often structured in a stop-and-go fashion,
inducing delays and following a rigid turn-taking pattern.
Aiming to design robots that are capable peers in human
environments, we try to attain a more fluent meshing of human
and machine activity.

In recent years, the cognitive mechanisms of joint action
have received increasing attention [1]. Among other factors,
successful coordinated action has been linked to the formation
of expectations of each partner’s actions by the other and the
subsequent acting on these expectations [2], [3]. We argue
that the same holds for collaborative robots: if they are to go
beyond stop-and-go interaction, agents must take into account
not only past events and current perceived state, but also
expectations of their human collaborators.

In this paper we present an adaptive anticipatory action
selection mechanism for a robotic teammate. We analyze our
model of anticipatory action in a cost-based framework of
coordinated shared-location action, and compare it to a purely
reactive agent acting within a traditional perception-action
loop, demonstrating a theoretical improvement in joint task
efficiency.

We then present results from a study involving untrained hu-
man subjects working with a simulated version of a robot using
our anticipatory system. We show a significant improvement in
best-case task efficiency when compared to users working with

a purely reactive agent. However, we were not able to show
this difference being significant when measuring the mean
score over repetitions. We attribute this in part to the small
number of repetitions used in our study.

That said, we are not interested solely in efficiency, but
also in the qualitative notion of fluency in coordinated action
meshing, ultimately leading to more appropriate collabora-
tive behavior. In a post-study survey we found a significant
difference in the perceived contribution of the robot to the
team’s fluency and success, as well as its commitment to the
team. Given that there are no generally accepted measures of
teamwork fluency, we raise three fluency metric hypotheses,
and evaluate these between the two conditions. We find the
groups to differ significantly in two (time between human and
robot action, and time spent in concurrent motion), but not in
a third (human idle time).

The remainder of the paper is structured as follows: In
Section II we briefly describe the cost-based Markov process
in which our agent is set, and in Section III outline a reactive
action-selection mechanism for an agent in this world. In Sec-
tion IV we introduce our adaptive cost-optimizing anticipatory
agent and analyze its behavior vis-a-vis a simulated human
teammate. Section V presents and discusses results from the
human subject study; Section VI discusses related work, and
we conclude in Section VII with future research directions.

II. WORLD DESCRIPTION

We model the team fluency problem as a discrete time-
based deterministic decision process including two agents, a
robot and a human, working together on a shared task.

Both robot and human share a common workspace, which
at any time point is in one of a finite number of states Xy =
{s¥y,...,s¥}, and is initially in state s’. The agents also have
a number of states X = {sf,...,s"} (the human’s states)
and X = {sf,..., s} (the robot’s states). In our model the
robot can only perceive the state of the workspace if it is in
state s(, (the perceptive state). We denote a full state of the
system s, =< s;",s?, s}, >, and similarly, ¥ = Xy x Xy X
Yg.

Human and robot have distinct abilities, described as two
sets of actions, Ay = {af,...,a}} for the human, and Ap =
{al,...,a]} for the robot.

T:((AgUAR)xX) — X is a transition function that maps
certain state-action pairs to new states. We denote a particular
state-action pair transition in 7'

€T — X
T (SE) = sp =< ai, s, > 8



Fig. 1. Transition costs between two states as a directed graph.

meaning that if agent « € {h,r} (human or robot) performed
action ¢ while the world is in state sg, the world would
transition into state s; after applying the action.

A central motivation of our model is to investigate aspects
of time associated with actions of two collaborating agents.
Therefore, state transitions are not atomic, and the decision to
take a particular action does not result in an immediate state
transition. Instead, moving between states takes time, and is
associated with a known discrete cost, which is a function of
the states before and after the action. This cost can be thought
of as the ‘distance’ between states, or more generally — the
duration it takes to transition between states. We denote the
cost of transitioning between states sj and s; with d(sg, s;).
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Thus when, at time ¢, agent € {h,r} decides to take
action a? on state s; and 77(s;) = s;, the world will be in
state s; only at time ¢ + d(sg, s;). While the other agent may
take more actions during this time, the next time step agent x
will be able to take another action is ¢ + d(sg, s;). It can be
useful to depict the state transitions as a directed graph, with
the nodes representing the states and the edges the transitions
between the states, weighted by the duration/cost function D
(see Figure 1).

For sake of simplicity, we will sometimes denote d(sy, s;)
as dy; as indicated in the figure.

Agents cannot change the other agent’s states with their
actions, but they operate on a common workspace. Therefore,
our model is clearly ill-defined with regards to race conditions
on the Xy state space. There are several possible solutions
(such as the use of semaphores and other synchronization
mechanisms). In this work, for the sake of simplicity, we will
assume that actions that change the workspace are locking with
regards to actions that operate on the common workspace for
both agents. In the implementation of our model described
below, we solve this race condition by making all state
transitions effecting the workspace atomic.

A. The Factory World

In our experiments we use a simulated factory setting
(Figure 2). The goal of the team is to assemble a cart made
of a Body, a Floor, two Axles, and four Wheels. The various
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Fig. 2. Simulated factory setting with a human and a robot building carts,
while sharing a workbench (gray circle), but dividing their tasks. The robot
has access to the tools (right and top-left of workbench), whereas the human
is responsible to bring the parts (below the workbench). Top left shows a
completed cart.

N By

parts have particular ways to be attached to each other — the
Body is welded to the Floor, Axles are riveted to the Floor
and Wheels are attached to Axles using a wrench of matching
color. A component is a partially assembled cart segment that
includes one or more individual parts attached to each other,
for example Azlel + Body + Floor.

The labor is divided between the human and the robot: the
human has access to the individual parts, and is capable of
carrying them and positioning them on the workbench. The
robot is responsible for fetching the correct tool and applying
it to the currently pertinent component configuration in the
workbench. Each part has a stock location (with an infinite
supply of parts), and each tool has a storage location, to which
it has to be returned for the robot to be able to find it again.
The workbench can, at any one time, contain at most two
components.

In the above-described framework, the workbench state
space Yy = Comps®, where Comps is the space of all
possible components.l In our case, |Comps| = 42, and thus
|Zw| = 42 x 42 = 1764. The robot’s state space includes
its position at one of the four tools’ storage areas or at the
workbench, and whether the robot is holding one of the tools
or not. Therefore, || = 25. Similarly, with 6 kinds of parts,
|X | = 49. Thus, the size of the state-space in this simulation
is 2,160,900.

The action-space of the robot is

Ap ={Workbench, Welder, Rivet, Wrenchl,
Wrench2, PickUp, Put Down, Use}

The first five actions are mobility actions, moving to one of
the five locations in the factory. PickUp and PutDown are
operational only in the tool locations, with the latter only
available at the correct storage location of the currently held
tool. Ay is a similar space with two more navigation action,

"Note that this is not 2P°27tssince not all parts can be attached to each
other, and some parts can appear multiple times in a component.



and no Use action. To illustrate the state transitions, here are
two examples of transitions brought about by actions in Ag
(Here, W is Wrenchl, R is RivetGun):

Thickup(< 8,80, < W0 >>) =< ¥ s < W, W >>

Tirse(<< Floor, Body >, s?’, < Wrkspe, Welder >>) =
=<< Floor + Body, ) >, 5?, < Wrkspc, Welder >>

TlgivetGun(< 57,5?7 < W7® >>) =< 5?75?7 < R,@ >>

The duration cost of a state transition that involves navigation
is the distance between the previous and the new location.
The duration cost for state transitions involving the inventory
of an agent, or changes to the workbench, is 1 in this
implementation, but could theoretically be different for each
tool.?

The robot can perceive the state of the workbench only when
it is located in it. Workbench state changes that happen while
the robot is in any other state are not applied to its internal
representation.

Moreover, we assume that the robot has a function ® that
maps the workbench state to the appropriate tool required to
bond the two components on the workbench. For example:
¢(< Floor + Azxlel, Wheell > ) = Wrenchl. This can be
a lookup table, or a decision process. In our implementation,
the agents models the components as having open and closed
male and female attachments to deduct ®. Also note that some
workspace states do not warrant any tool, because they either
have an empty component, or two components that cannot be
attached. We mark these function values as ¢(s¥) = 0.

III. REACTIVE AGENTS

A baseline agent that is purely responsive to its environment
and internal state, can be defined by an action policy that waits
in the workbench when ®(WorkBench) = (), and fetches
tool x, uses it, returns it, and returns to the workbench when
®(WorkBench) = .

The obvious fallacy of this policy occurs when the same tool
is needed twice in a row (which can happen with the wheels
and axles, in the factory domain), resulting in a superfluous
sequence of returning and then fetching the same tool. If the
distance between the workspace and the tool is d, and under
the assumption that the time it takes for the human to bring
the next part i is smaller than 4d + 3, the total cost of this
sequence is 6d + 5.

The naive policy can therefore be improved by delaying
the decision to return a tool until the state of the workbench
changes. This prevents the agent from returning a tool before
it is certain that it is not needed again in the next step. We
call this policy conservative tool return. Given the time delay
between the two Uses

h—(2d+2) if h>2d+2,
0 otherwise.

5:

2For example: welding can take longer than riveting, and picking up the
wrench could be faster than picking up the welder.

The total cost of the sequence is 2d + 3 + §. The gain in
performance is 4d + 2 — 4.

However, it is straightforward to demonstrate that there is
a negative impact of the “conservative tool return” strategy
in the case where the next tool needed is different than the
current tool. Note that the cost effect of conservative tool
return is dependent not only on the known world configuration,
but also on the turnaround time of the human action h, a
quantity that can not be known but only estimated by the
robotic agent. Additionally, the overall expected cost effect
is dependent on the probability distribution on the workbench
configuration over time. It therefore makes sense to discuss
an action selection policy based on these factors, which is the
topic of the following section. We will then frame the two
reactive policies discussed here as a subset of the proposed
anticipatory policy.

IV. ANTICIPATORY ACTION SELECTION

As discussed in the introduction, humans are remarkably
adaptive and increasingly effective when performing repetitive
trials of an identical task collaborating with a consistent
teammate. The use of educated anticipatory action based on
expectations of each other’s behavior may be a key ingredient
in the achievement of this action fluency. In this section
we will attempt to adopt this insight in the human-robot
interaction domain within the discussed framework.

A necessary assumption for anticipatory action selection in
our agent is that the human collaborator will follow a roughly
consistent action pattern, i.e. will make similar decisions under
similar circumstances.

The agent thus models the workbench as a first-order
Markov Process.> The probability of the workbench state at
time ¢, 0;’, is thus conditional on ¢} ; and denoted as

pij; = Pr(o’ = siloi’; = s;)

The agent can learn the parameters of this Markov process
using a naive Bayesian estimate. To do this, the agent keeps
a one-step history of the state transitions of the workbench.
A change from state s; to state s; increases the counter n;);.

Consequently, p;Tj is computed as
w o _ Ml
Pij; Swl
k=1 Tkl

However, in order to estimate the cost of preemptive action
as described in the following section (which is ill-defined for
non-constructive workbench states), and also to reduce the
decision state space, the robot in our factory domain can
alternatively model the probability of the tool needed based
on the previous state: if Q(z) = {s; : ¢(s;) = x} is the set

3 A presumably more realistic model would be to view the collaboration as
a Hidden Markov Model, with the human state transitions being hidden, and
the workbench transitions being the evidence layer of the model. However,
since many of the human’s state transitions do not affect the workbench state,
and the probability of workbench transitions conditional on the human state
transitions Pr(of = s;|o}* = s;) are not independent of o ,, it is unclear
whether such a model would indeed be of value in our domain, and is therefore
left to future investigation.



of workbench states that warrant tool x, the new probability
model learned is now
Pa)j = Pr(o)’ € Q(z)]oy”; = s;)

We estimate this model as follows: a change from state s;
to state s; € () increases the counter n,;. Using a Laplace
correction of 1, Da|j is then estimated by

Nalj +1

|Tools|
k=1 Tklj 1

A. Action Selection

As the agent only perceives the workbench state (and
therefore information about the transition distribution) when it
is in the workbench state, it makes sense to make decisions in
terms of action sequences. The acquisition of these sequences
is beyond the scope of this paper, but suffice to say that in our
scenario the agent needs only to consider action sequences
that begin and terminate while it is in the workbench state.

In the discussed factory domain we can identify four proto-
sequences (state transitions for the full sequences are presented
in brackets):

1) Pick up a tool and use it
[< 85,0 >—< s,z >]
2) Return a tool and return to workbench
(< sb,x >—< 53,0 >]
3) Return a tool, bring a new tool, and use it
[< sh,x >—< 53,y >]
4) Do nothing and wait
[s7 — s7]

The action selection process operates as follows: at any
time the robot is in the workbench state, it evaluates the cost
of each of the proto-sequences. Proto-sequence 1 needs to
be grounded for each tool and proto-sequence 3 needs to be
grounded for each of the currently not held tools. Given the
probability distribution, the robot can compute the expected
cost for choosing each of the strategies, and selects a grounded
sequence optimizing for cost. In calculating the expected cost
for proto-sequences 1-3, we need to assume that Vi.[h < 2d;].
Also note that the cost in our calculations includes performing
the correct action afterwards. Denoting the current state of the
workbench s;, and the workbench position 0, the expected
duration cost of proto-sequence 1-3 are

Cost1(z) =pg);(2dos + 2)+

Z[pylj (3doz + day + doy + 4)]
y#T

|Tools|

Costa(z) = Z [Pr); (2doz + 2doy + 3)]

y=1

Costs(x,y) =py)j(doz + dzy + dyo + 3)+

> " [p215(dow + duy + 2dyo + dy + dzo + 5)]
2y

Action sequence 4 is unique insofar as it is dependent not
only on the state transitions in the workbench, but also on
the behavior of the human teammate. If the human’s next
workbench-changing action is at time ¢+ h, the cost of waiting
is the cost of performing the correct action with complete
confidence, plus h. For the case that the robot is holding a
tool z:

Costy = P2y + Z[py\j(dOZ + dzy + dyO + 3)] +h
y#2

For the case that the robot is not holding a tool:

|Tools|
Costy = Z [Py (2doy + 2)] + R

y=1

However, Since h is not directly accessible to the robotic
agent, its estimate can be used as a confidence parameter,
adjusting between an aggressively anticipatory behavior and
a more cautious approach (see also below).

Using the above notation, we can now rephrase the previ-
ously discussed reactive agent behaviors. The naive agent’s
policy can be viewed as selecting proto-sequence 2 whenever
it is holding a tool in the workbench, and selecting proto-
sequence 1 whenever a tool is warranted. The agent employing
conservative tool return can be rephrased as selecting proto-
sequence 4 whenever no tool is warranted, and selecting proto-
sequence 1 or 3 if a workbench state warrants a tool. This
rephrasing enables comparison between the different policies,
as described in the following section.

B. Analysis

Figure 3(a) and 3(b) demonstrate the adaptation of cost-
optimizing anticipatory action vis-a-vis a theoretical human
teammate. In these figures, the factory layout is as depicted
in Figure 2, the human’s action is simulated to be constant
given a specific configuration, and the agent is using i = 250.
Figure 3(a) depicts the expected cost for the five available
action sequences when the robot perceives the F'loor in the
workbench, holding nothing, over 31 trials in which the human
is simulated to consistently bring the Body in this situation.
We can see that Sequence 4 (waiting) is the cost-optimizing
action for trials 1-4, and that getting the Welder becomes the
optimal anticipatory action from trial 5 onwards. In contrast,
Figure 3(b) shows that when holding the RivetGun and
perceiving Floor+ Body+ Axle2 (with a human consistently
bringing W heel3 to the workbench), Sequence 2—returning
the RivetGun—becomes optimal starting from the second
trial. This difference becomes apparent considering the loca-
tion of the Wrench on the opposite side of the workbench,
making it considerably more expensive to wait, the more
confident the robot gets that the Wrench is needed next. It it
interesting to note that due to the particular tool arrangement,
returning the RivetGun and pre-fetching the Wrench does
not become cost-optimizing even after 31 trials. While it
does become more optimal than waiting after eight consistent



Floor —> Body, holding nothing

18001 |

| N costl(Wrenchl)
1600 : o costl(Wrenchz)

: o costl(Rivet—Gun)
1400¢ i __ cost,(Welder)
1200 | —e— costy

|

|

1000

Cost estimate

@

o

o

T

/%
N

|

PR A

600 M

4001

Trial
(@

Fig. 3.

Floor+Body+Axle2 —> Wheel3, holding the RivetGun
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Cost evaluation with a simulated consistent human teammate. In (a) the robot is holding nothing and perceiving the F'loor, with a human simulated

to always bring the Body next; in (b) the robot is holding the RivetGun and perceiving Floor + Body + Azle2, with a human simulated to always bring

W heel3.

trials, the cost of an erroneous prediction, even as it becomes
extremely unlikely, is still too high, resulting in a preference
for Sequence 2 over Sequence 3. Note that this does not hold
for other decision junctions. For example, holding the Welder
with a consistent need for the RivetGun, pre-fetching it on the
way back from the Welder location becomes cost-optimizing
on the sixth trial (not shown in figure).

Using the analysis in the previous section, we can now
compare the reactive agents to our proposed method. In the
case described in Figure 3(a), our algorithm is equal to the
reactive agents (equivalent to Sequence 4) in trials 1-4, and
outperforms them increasingly as the amount of evidence
increases. In the case described in Figure 3(b), the naive
reactive agent is equivalent to Sequence 2, slightly outperform-
ing our method in the first trial, and then matching it, while
the conservative tool return agent (equivalent to Sequence 4)
chooses a more costly approach than our method from trial
two onward. Generally speaking, using h = 250 in the factory
scenario, we usually see the agent outperforming the reactive
agents within 2 trials, and converging into full anticipatory
behavior within 10 trials.

In an actual pilot run vis-a-vis a real-life, experienced,
and consistent human teammate, we can see evidence to that
effect. Whereas the reactive agent with conservative tool return
remains constant at a construction cost* of circa 800, the
anticipatory adaptive agent shows a significant improvement
after the first trial and again at the sixth trial, finally settling at
a lower per-cart construction cost of circa 650 (see: Figure 4).

Figure 5 shows the adaptation of the cost-function vis-a-vis
a theoretical inconsistent human teammate. In this case, given
the Floor in the workbench, the simulated human action is a
random variable with a fixed probability distribution, bringing
the Body with a probability of 70%, and an Azle with a
probability of 30%. The result is that waiting for the human’s
next move remains cost-optimizing for 12 iterations, delaying
the anticipatory behavior of the agent and resulting in slower

4The cost units, when measured with a human teammate, are in simulation
frames, running at 30 frames per second.
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Fig. 4. Change in per-cart construction time with an expert consistent

human in a pilot experiment vis-a-vis the reactive agent (left) and the adaptive
anticipatory agent (right).

convergence into a fluent and efficient activity pattern.

A final note regarding the risk-taking parameter h, which
we defined as the estimated time the human’s turn takes:
varying h affects the relative optimality of Sequence 4 (waiting
for the human). Lowering h significantly corresponds to an
expectation that the human returns very quickly with the next
part, resulting in a risk-averse policy (Figure 6). At the junction
depicted in Figure 3(a), for example, lowering h to 10 will
render the decision function equivalent to the ‘conservative
tool return’ reactive agent discussed above. Setting h = 500
results in an agent performing anticipatory actions as soon
as trial one. Fixing h at 100 results in taking the correct
anticipatory action at trial 16, instead of trial 5.

Ideally, h should be specific per state, as well as learned over
time as the agent collects more data regarding the turnaround
time of the human teammate.
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the F'loor with a simulated human teammate producing the Body with a
probability of 70% and an Axle with a probability of 30%.

Cost estimates for Floor —> Body, holding nothing
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Fig. 6. Cost analysis perceiving the F'loor with a simulated consistent human
teammate producing the Body, but varying the estimated human turnaround
cost h.

V. HUMAN SUBJECT STUDY

To further investigate the effect of adaptive anticipatory
action selection, we conducted a human subject study. We
expected to see an increase in efficiency as predicted by the
theoretical analysis, as well as an increase in the perceived
contribution of the robot to the team’s fluency and success.

A. Experimental Design

We recruited 32 participants (15 female) from the MIT
community through email solicitation and posters. Participants
arrived at our laboratory and were arbitrarily assigned to one
of two experiment conditions. Subjects in Group A interacted
with a reactive agent using the “conservative tool return”
policy; those in Group B interacted with an anticipatory agent.

All participants (from both groups) received identical in-
structions, which described the factory setup as a video game,
and were told that the human-robot team’s goal is to build 10
carts, with “each team member [having] their own role in this

joint effort”. Also, subjects were instructed to “build cars in
the least amount of time.”

The instructions were phrased so as to imply the importance
of the team as a joint performing entity. To control for
instruction bias, neither group was told whether the robot
will adapt to their behavior. All participants were allowed to
practice with the system before beginning the experiment.

The experimental protocol was reviewed and approved by
the institutional review board of the Massachusetts Institute of
Technology.

B. Results

Of the participants, five had to be eliminated from the study.
Two violated the experimental protocol, one experienced a
software crash, one was significantly inattentive, resulting in
scattered behavior, and for one subject the logging function-
ality was not working, resulting in a loss of data. This left us
with 27 subjects, 14 in Group A and 13 in Group B. All 32
completed a post-study survey regarding their experience.

TABLE I
TOTAL CART COMPLETION METRICS FOR UNTRAINED HUMAN SUBJECTS
IN THE REACTIVE (GROUP A) AND ADAPTIVE ANTICIPATORY CONDITION
(GROUP B). WE COMPARE EACH SUBJECT’S BEST SCORE IN TEN TRIALS,
MEAN SCORE OVER TEN TRIALS, AND TENTH TRIAL.

Score Group A Group B
metric | mean | std.dev. | mean | std.dev T(25)
Best | 1091.6 | 200.5 930.1 105.6 2.59;
p < 0.02
Mean | 1423.5 | 328.6 | 1233.3 | 2275 1.73;
not signif.
Final 1182.4 274.3 1030.7 154.8 1.75;
not signif.

Table I shows total cart construction measures for the
population. Cost units are in simulation frames at 30 frames
per second.

Each subject’s best performance is significantly better at a
confidence level of 98% in the adaptive anticipatory case com-
pared to the reactive case. Measuring the mean construction
time over ten trials, as well as the time for construction of the
tenth cart, we find the subjects in the anticipatory case to be
better (at p < 0.1), but not significantly at a 95% confidence
level. We believe that this is in part due to the fact that several
subjects in Group B took a number of inconsistent trials to
identify that the robot was adaptive, leading to a convergence
to a stable construction pattern only in the last few carts (see
also: Section V-D.2). According to this hypothesis, both the
mean and the final cart construction cost would be lower in
the anticipatory case if there were more trial runs per subject.
This claim needs to be investigated in subsequent research.

1) Survey: In the post-experimental survey, we found sig-
nificant differences between participants in the two groups. On
a seven-point Likert scale, subjects in the anticipatory action
agent “Group B” selected a significantly higher mark than
those in the reactive agent “Group A” when asked whether:



¢ “The robot’s performance was an important contribution
to the success of the team.”:
Group A: 4.88; Group B: 6.38; T(30)=2.87; p < 0.01
o “The robot contributed to the fluency of the interaction.”:
Group A: 4.125; Group B: 5.6875; T(30)=2.99; p < 0.01
o “It felt like the robot was committed to the success of
the team.”:
Group A: 2.8; Group B: 5.0; T(30)= 3.21; p < 0.005
The two groups did not differ significantly when subjects
were asked whether they themselves were “committed to the
success of the team”, or whether they “trusted the robot to
do the right thing at the right time.” Both groups averaged
between 6 and 7 on these two questions.

C. Measures of Fluency

In sum, we found significant differences between the two
conditions in the subjects’ perception of fluency as well as in
their perception of the robot’s commitment and contribution to
the team’s success. This conclusion is further embellished by
the qualitative findings described in Section V-D below. At the
same time, the mean (and convergent) task efficiency of the
team was not significantly different between the conditions.
This contradictory phenomenon could suggest that the notion
of fluency, commitment, and appropriate teamwork are sepa-
rate from those of simple task-time efficiency. If this is the
case, we would like to discern possible quantitatively measur-
able causes for the above-mentioned perceptual differences.

However, while there is a large body of work measuring
verbal fluency, there are no generally accepted measures of
fluency in shared-location joint action, even for human teams.
We therefore propose three fluency metric hypotheses, and
compare the mean performance of the two groups along these
measures in a post-hoc analysis of our study.

e Hypothesis I: Concurrent motion — In post-experiment
interviews, some of our participants noted a sense that the
team was well synchronized when “both team members
were constantly in motion”. We tested the hypothesis
that the amount of human-robot concurrent motion was
different between the anticipatory and the reactive con-
dition. To do so, we measured the percentage of frames
within each trial in which both human and robot were
in motion (i.e. in transition between two location-based
internal states), and indeed found those to be significantly
different between the two groups (A: 0.227; B: 0.322;
T(25)=3.11; p < 0.005). Figure 7(a) shows the mean
percentage of concurrent motion for each of the 10
trials, averaged over subjects in each group. The graph
shows that while the percentage of concurrent motion is
improving for both groups, it does so at a higher rate in
the anticipatory action condition.

e Hypothesis II: Human idle time — Our second hypothesis
for a measure of fluency is the amount of time the human
spent waiting for the robot. We postulated that if the
human was to spend much time waiting, it would feel like
the team was not working fluently. However, measuring
the percentage of frames in which the human waiting (i.e.
not doing anything, and not in transition between two

location-based states), we found no significant difference
between the two groups (Figure 7(b)). This was true
for both the mean and the convergent human idle time.
Both groups decreased the human waiting time at an
approximately equal rate, and with similar results.

o Hypothesis Ill: Functional delay — We denote our
third hypothesis “functional delay”, i.e. we postulate that
the amount of time passing between the human’s action
and the robot’s consequent action was different between
the two conditions. To test this, we measured the time
between the human’s PutDown action and the robot’s
subsequent Use action. We found this measure to be
significantly lower for Group B (A: 436.78; B: 310.64;
T(25)=5.04; p < 0.001), and more decidedly so for the
second half of each subject’s trial sequence, after the
robot has adapted to the human’s construction pattern (A:
432.07; B: 205.08; T(25)=6.28; p < 0.001) (Figure 7(c)).
In the reactive case, there is virtually no change across
trials.

While not ruling out additional factors, this evidence points
in a promising direction with regards to possible quantitative
measures affecting fluency in human-robot joint action. How-
ever, these findings are only initial and lay the groundwork
for future research, in which each of these hypotheses needs
to be separately controlled for, and evaluated for its effect on
the human team member’s perception of the robot’s fluency,
commitment, and task contribution.

D. Discussion

The open-ended segment of the post-experiment question-
naire reveals a qualitative difference between the two condi-
tions. Several subjects in Group B noticed the anticipatory
behavior and remarked on it positively, e.g.: “it was nice
when [the robot] anticipated my next move”, or “[the] robot’s
anticipation of my actions was impressive and exciting”.
Negative remarks in Group B usually referred to a desire for
even more anticipatory behavior, such as “[the robot] could do
better by getting the first tool before/while I take the first part,
because it was a consistent process and could be predicted”,
or “the robot should watch what I'm grabbing in advance.”

Somewhat surprisingly, many subjects in Group A —
without having been informed that the study was related to
anticipatory action or that the robot was meant to be adaptive
— noted with frustration that the robot did not predict their
actions. We view this tendency as indicative of the fact that
adaptiveness and anticipatory action are natural expectations of
a robotic teammate in a repetitive task. Quotes from Group A
included: “I was hoping that the robot would learn to anticipate
more”, “I expected more predictive behavior from the robot”,
“[the] robot was not able to anticipate [the] human’s actions”,
and “it might have been more efficient if after a few carts the
robot could pick up on the order in which i was bringing in
the parts and be prepared with the equipment to join it.”

Group A’s positive comments regarding the robot’s perfor-
mance were limited to remarks shaped by a low level of
expectation from the agent: “The robot seemed to do what
was expected”, “the robot did not mess up”, and “the robot
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was highly responsive and never let the human down with its
predictability,” were representative responses in this condition.

1) Notions of Teamwork: It is interesting to note that
several subjects in Group A noted that the team felt “lopsided”,
that “the human was the one who strategized, the robot just sat
there”, that the human “was more important than the robot”,
and that “the team’s performance was highly dependent on
human innovation”. Subjects in this group concluded that
“the robot seemed more like an assembly tool than a team
member”, that they “didn’t see the robot as a team player”,
that the robot was used “as a tool”, and one subject said that
they “didn’t get a sense that the robot really cared about the
success of the team.” In contrast, in Group B only one subject
noted that they “felt that the success or failure of the task was
[their] responsibility.” Conversely, one other stated that they
“trusted [the robot] more over time, as it seemed to anticipate
what [they were] going to do.” The rest of the subjects in
Group B did not address the balance of the team, the issue of
trust, or that of commitment, in any way.

2) Effect of Repetition Size: As noted in Section V-B,
we believe that the relatively minor improvement in mean
task efficiency through anticipatory action is related to the
small number of repeating trials in the experiment. Appraisal
of server logs, as well as user testimony, reveals that in
many cases subjects experimented with various construction
strategies in the first few runs, which caused the Bayesian
model to converge more slowly. This seemed to be particularly
true when subjects noticed that the robot changed its behav-
ior, causing them to experiment with different construction
sequences in an attempt to reveal the robot’s modus operandi.
One reason for this behavior was the experiment’s insistence
on identical instructions for both groups, not revealing that the
robot would adapt to the human’s consistent behavior. Several
subjects explicitly noted that the team would have performed
better had they known in advance that the robot learned to
anticipate their actions. Another possible way to counter this
effect would be to discount the learning over time (see also:
Section VII).

3) Effect of “Best Score” Indicator: We also believe that
the display of the game’s all-time “Best Score” in the user
interface was detrimental to the experiment as it might have
caused subjects to experiment with different strategies instead

of forming a consistent behavior pattern. Originally intended to
motivate subjects to faster performance, the exceedingly good
record time (only possible with a well-adapted agent) provoked
subjects to question their strategy attaining a significantly
worse score, and subsequently to change it several times over
the course of the experiment.

VI. RELATED WORK

Most work related to joint action — whether in philosophy,
psychology, or artificial intelligence — has been concerned
with a goal-oriented view of the problem, paying little atten-
tion to the quality of action meshing and fluency of teamwork,
both as it is perceived by the team members, and as it effects
the quantitative measures of the task.

In this body of work, joint action is usually described as
solving a problem where the participants share the same goal
and a common plan of execution. Grosz pointed out, in this
context, that collaborative plans do not reduce to the sum of
the individual plans, but consist of an interplay of actions that
can only be understood as part of the joint activity [4].

In Bratman’s detailed analysis of Shared Cooperative Ac-
tivity he defines certain prerequisites for an activity to be con-
sidered shared and cooperative [5]. He stresses the importance
of mutual responsiveness, commitment to the joint activity,
and commitment to mutual support. Supporting Bratman’s
guidelines, Cohen and Levesque propose a formal approach
to building artificial collaborative agents [6]. Their notion of
joint intention is viewed not only as a persistent commitment
of the team to a shared goal, but also implies a commitment
on part of all its members to a mutual belief about the state
of the goal. These principles have been used in a number of
human-robot teamwork architectures [7], [8].

Much work has been done in the field of Discourse Theory,
investigating discourse as a collaborative activity. Grosz and
Sidner have analyzed the structure of discourse and subse-
quently modeled shared plans as a separate extension, rather
than a composition of simple, single-agent plans [9]. Later
work has further elaborated the workings of collaborative dis-
course, in terms of plans, beliefs, goals, and actions (e.g. [10],
[11]). Collaborative discourse systems have been developed
and implemented on screen-based and robotic dialog systems,



taking into account both the verbal and the non-verbal aspects
of discourse (e.g. [12], [13]). Still, the question of fluency in
action meshing has not been part of this corpus. Moreover, as
these works focused mainly on linguistic dialog, they have not
addressed the case of nonverbal shared-location teamwork, or
the improvement thereof through repetitive joint execution of
a task.

Human-robot teamwork has also remained mostly in the
turn-taking domain. Some have studied a robotic arm assisting
a human in an assembly task [14]. Their work addressed issues
of vision and task representation, but does not investigate joint
adaptation, and does not address the timing issue. Other work
studies human-robot collaboration with an emphasis on dialog
and control, aimed primarily at teleoperation [15], [16] . Some
frame human-robot collaboration in the context of mixed-
initiative control and shared autonomy, arbitrating between the
robot’s autonomy and direct human control, but also fail to
address the question of shared-location fluency [17], [18].

Some work in shared-location human-robot collaboration
has been concerned with the mechanical coordination of
robots in shared tasks with humans (e.g. [19]). This work is
predominantly concerned with single-action control and safety
issues.

We have previously presented work in shared-location
human-robot teamwork, investigating the role of nonverbal
behavior on teamwork [7], [20]. While this task-level work
included turn-taking and joint plans, anticipatory action and
fluency have not been addressed.

Timing and synchronization have been reviewed on the
motor level in the context of a human-robot synchronized
tapping problem [21]. Anticipatory action, without relation to
a human collaborator, has been investigated in robot navigation
work, e.g. [22].

VII. CONCLUSION

We have presented work investigating the effect of adaptive
anticipatory action on the efficiency and fluency of action in
human-robot teamwork. Through this, we hope to initiate an
interest in the question of shared-location action timing and
fluency.

In the work contained herein, we introduced a framework
for evaluating shared human-robot fluency, and have presented
a cost-based anticipatory action selection mechanism. We
showed initial results on both the theoretical analysis of this
method and its effect on untrained humans, showing significant
differences in the subject’s perception of the robot’s fluency,
commitment, and contribution, while showing only a small
difference in mean and convergent task efficiency. In order to
explain this discrepancy, as well as quantitatively evaluate the
notion of fluency, we proposed three fluency metric hypotheses
and compared these between conditions, finding significant
differences along two of these metrics.

Several improvements to our method present themselves: in
the discussed framework, the robot has no knowledge of the
structure of the task. Domain-specific knowledge can decrease
the action space at each decision point and fortify the accuracy
of the probabilities of subsequent states.

We believe that our system can also be made more robust
by introducing a discount factor in the learned state transition
distribution, making more recent moves by the human team-
mate more salient to the robot.

Furthermore, the estimate of the human’s turnaround time
h should be state-specific and could be learned by the robot
during the collaboration.

In future work, we would like to evaluate the relative
effect achieved by the state transition distribution learning, as
opposed to the cost analysis during action selection. Also, the
scalability of our method should be evaluated by increasing
task complexity.

Additionally, the effects of anticipatory action vis-a-vis an
expert — instead of a naive — human teammate, is of interest,
as is a controlled evaluation of the effects of the proposed
fluency metrics on the efficiency of the task and the perceived
fluency and commitment of the robot.

Finally, this anticipatory framework is now being imple-
mented on a physical robot and we are currently conducting
studies evaluating the effects on our method on human-
robot fluency in a task involving a human-robot hybrid team.
Through this ongoing research we hope to evaluate the ap-
plicability of our model to real-life human-robot teamwork
applications.
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