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ABSTRACT
Demand response (DR) programs encourage end-use cus-
tomers to alter their power consumption in response to DR
events such as change in real-time electricity prices. Fa-
cilitating household participation in DR programs is essen-
tial as the residential sector accounts for a sizable portion
of the total energy consumed. However, manually tracking
energy prices and deciding on how to schedule home appli-
ances can be a challenge for residential consumers who are
accustomed to fixed price electricity tariffs. In this work,
we present Yupik, a system that helps users respond to real-
time electricity prices while being sensitive to their context
and lifestyle. Yupik combines sensing, analytics, and opti-
mization to generate appliance usage schedules that may be
used by households to minimize their energy bill as well as
potential lifestyle disruptions. Yupik uses jPlugs, appliance
level energy metering devices, to continuously monitor the
power usage by various home appliances. The consumption
patterns as well as data from external sources are analyzed
using data mining algorithms to infer user’s preferred usage
profile. Using the preferred profile as a reference, Yupik’s
optimization engine generates multiple usage plans that at-
tempt to minimize energy and inconvenience costs. Some of
Yupik’s capabilities are demonstrated with the help of pre-
liminary data collected from a home that was instrumented
with jPlugs to monitor the power usage of a few devices.
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1. INTRODUCTION
Demand response (DR) programs encourage end-use cus-

tomers to alter their power consumption in response to in-
centives or real-time electricity prices so that peak demand
may be reduced [1]. Reducing peak demand preempts the
need to invest in additional generation capacity that gets
utilized only during narrow peak periods, thereby minimiz-
ing costs and added environmental pollution. Studies in-
dicate that even minor shifts in peak demand have major
implications in terms of savings for both consumers and util-
ities [2]. A Lawrence Berkeley National Lab report estimates
that during 2006-08, the potential size of peak load reduc-
tion from existing DR resources in the US was as much as
5-5.8% of peak national demand [3]. As per another study,
DR programs alone could achieve up to half of EU’s 2020
targets concerning energy savings and CO2 emissions [4].

Although traditionally manual DR programs have been
used by industrial customers, facilitating household partic-
ipation is likely to result in considerable savings given that
this is a growing sector and accounts for a sizable portion of
the total energy consumed. For instance in EU-27 nations,
the domestic sector consumed 24.6% of total energy in 2007
while the sector grew by 8% from 1990 and 2007 [5].

Despite the savings possible through DR, the success of
these programs essentially hinges upon user participation
and their timely response to DR events such as increase or
decrease of electricity prices. One of the main barriers in
involving households to participate in DR is the lack of ef-
fective home automation systems [6, 7]. Manually tracking
hourly prices and deciding on how to schedule home appli-
ances can be a challenge for residential consumers who are
accustomed to fixed price electricity tariffs. In fact house-
holds may not even have the time or knowledge to correctly
respond to real-time prices [8]. Automating user’s demand
response is a challenge as home appliances need to be sched-
uled to maximize savings while respecting the comfort of
consumers and minimizing any lifestyle disruptions.

In this work, we present Yupik, a system that helps users
respond to real-time electricity prices while being sensitive
to their context and lifestyle. Real-time prices are gener-
ally published by utilities in advance or can be predicted
for the next couple of days as in [8]. Yupik is essentially a
planner that uses variable hourly prices and computes opti-
mal appliance usage schedules for the next planning horizon
(e.g. a day or two, or a week). The generated schedules can
then be used either by the households to plan their usage
and/or by the automatic load control systems for scheduling
appliances.
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Figure 1: Architecture of Yupik that generates convenient low cost appliance usage schedules. A webpage
on the right shows a Gantt chart with sample proposed schedules.

Yupik combines sensing, analytics, and optimization to
generate convenient low cost appliance usage schedules. It
uses jPlugs, appliance level energy metering devices, to sense
household’s appliance usage patterns. The jPlugs contin-
ually monitor the power consumed by various appliances
at home. The gathered data is processed and clustered by
Yupik’s analytics engine to derive operating characteristics
of appliances such as the number of operating levels, the
average power consumed at each level, as well as the time
and duration for which the appliance is operated at each
of those levels. From historical usage patterns as well as
historical and forecasted values of external factors that in-
fluence consumption (e.g. day of week, holiday, weather,
etc), the engine infers user’s preferred usage profile i.e., the
likely times, durations, and power levels of appliance usage
for the next planning horizon. For instance, the engine con-
siders the day of the week to estimate when the user may
utilize her washing machine. It includes the local weather
forecast while estimating the time of use (days and hours)
and the power levels at which an AC may be used during
the next planning horizon.

Taking user’s preferred usage profile as a reference, Yupik’s
optimization engine schedules appliances by considering their
time and load elasticities, operational characteristics, and
the cost of inconvenience to the user. Savings come from the
fact that usage is deferred to a time slot where the prices
are low and/or usage levels (power levels) are reduced. The
time elasticity determines whether a device can be deferred
from its usual usage times. For e.g., it is possible to resched-
ule washing machines, but a television does not offer much
flexibility. On the other hand, the load elasticity determines
whether an appliance can be operated at reduced power lev-
els. For e.g., appliances such as AC, refrigerators and wash-
ing machines can operate on multiple levels and the power
consumption can change nonlinearly between those levels.
For appliances with high time elasticity such as washing ma-
chine, Yupik attempts to schedule them on their preferred
days that also have lower rates. For appliances that have low
time elasticity and are usually non-deferrable, Yupik sched-
ules these close to their preferred usage times. In order
to minimize discomfort and increase flexibility, Yupik out-
puts multiple schedules with costs close to the optimal. An
interface displays the schedules along with their projected
electricity bill amounts and the costs for the past usages,
thus allowing users to track their monthly expenses.

While there have been prior efforts [8, 9] to optimally
schedule home appliances in the presence of real-time prices,
most of them pay little attention to user’s comfort and life-
style which is the focus of our work. Lu et al [10] introduce a
parameter to consider temperature-based comfort zones, but

the approach is limited to ventilation and cooling devices.
In [8], authors allow devices to be scheduled within a user-
specified time window. On the other hand our work infers
usage preferences based on the data collected from jPlugs
which give much richer information about the usage patterns
and operating characteristics than what can be provided by
the consumers. In order to minimize lifestyle disruptions,
devices are scheduled close to their normal operating rou-
tines. We also take into account the hold times of devices
(i.e. the duration for which a device should remain ON after
being switched on to do useful work) which is not consid-
ered in prior work. In order to provide flexibility to the
user, we output multiple low cost schedules instead of only
one optimal as opposed to prior work. Our work has some
similarities with [11] where authors assume the availability
of a preference matrix that lists user’s preferences by rank.
However they do not specify how the matrix could be popu-
lated. In our work, historical usage patterns along with data
from external sources is used to infer user’s preferred usage
profile. While in [11], authors focus on scheduling multiple
users to balance the total load, our focus is on scheduling
appliances in a single household considering hourly energy
prices.

2. SYSTEM
Fig 1 shows the high level architecture of Yupik. Yupik

combines sensing, analytics, and optimization to generate
usage plans that minimize both cost and inconvenience.

2.1 Sensing
Yupik monitors the energy consumed by individual appli-

ances in a household through smart plugs known as jPlugs.
A jPlug looks like a normal power strip. The appliance
that needs to be monitored is plugged into jPlug’s socket
which in turn plugs into the wall socket. jPlugs sense the
voltage, frequency and current drawn by the connected ap-
pliance and compute parameters such as as power factor,
active, reactive, and apparent power. All these quantities
are time stamped, affixed with appliance specific labels, and
transmitted over a secure Wi-Fi link (802.11b) to a home
gateway periodically every ten seconds (jPlugs implement
the entire IP stack). The gateway accumulates data from
multiple jPlugs which is then processed by Yupik to generate
optimal appliance usage schedules.

Although Yupik is a planner that suggests optimal usage
schedules, these schedules can also be used to control home
appliances via jPlugs. A jPlug is equipped with a solid-
state switching relay and the appliance connected to it can
be switched on/off over the network. Unlike most commer-
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cially available smart plugs, jPlugs maintain accurate tim-
ing information and use the Simple Network Time Protocol
(SNTP) to synchronize their clocks over the network. This
is valuable for DR systems.

2.2 Analytics
Yupik’s analytics engine analyzes consumption data col-

lected from jPlugs as well as the historical and forecasted
values of external parameters and applies data mining meth-
ods to infer user’s preferred usage profile for the next plan-
ning horizon.

For days that have passed, the diurnal usage pattern and
the operational duration corresponding to each home appli-
ance are extracted from jPlug data. For each device, the
timestamped data entries of power usages are processed us-
ing the Two-step clustering approach [12] to determine the
number of operating levels and the mean power consumed
at each level. The day is divided into fixed size time slots
(e.g. hourly) and the usage pattern of a device is obtained
by marking its operating level in each slot. For example,
if the device was used in time slots 2, 3, and 6 at power
levels 10W, 30W, and 20W respectively, the usage pattern
is {(2, 10W), (3, 30W), (6, 20W)}. The operational duration
is simply the number of slots where the device was in ON
state (in the above example, the duration is 3 time slots).

The user’s preferred usage profile for a device on a certain
day of the planning horizon is essentially a frequently occur-
ring usage pattern i.e. the set of time slots when the user
prefers to use the device along with the power level for each
time slot. The novelty of the analytics engine is that it es-
timates the preferred usage profile by relating variations in
appliance usage with the user’s Context Vector. The context
vector includes parameters that influence user’s consump-
tion and whose historical as well as true/forecasted values
are available. Examples of such parameters include day of
week, weather (temperature), summer or winter, holiday or
not, TV schedule, etc. For e.g., a context vector could hold
the following 3 parameters: day of week ∈ {1, . . . , 7}, holiday
∈ {0, 1}, Cricket match on TV ∈ {0, 1}. Thus the consump-
tion data of a device d for the previous n days can be viewed
as a list of context vectors along with the associated usage
patterns {(Ci, U

d
i )}

n
i=1. Since the parameters in the context

vector are such that their values are available for days in the
planning horizon, the problem of estimating user’s preferred
usage profile reduces to determining the likely usage pat-
tern given the context vector. The estimation is performed
in two steps. Firstly the operational duration for the de-
vice is predicted. Then, the likely usage pattern with the
predicted operational duration is mined.
Prediction of operational duration (ŷd): The predic-
tion is modeled as a regression problem, where the input is
the context vector and the output is the predicted opera-
tional duration. Given the past data {(Ci, y

d
i )}

n
i=1, where

Ci is the context vector (θ
(1)
i , ..., θ

(k)
i ) of k parameter values

and yd
i is the number of time slots used by device d, the

regression problem is to predict the value of yd for a new
context vector C such that yd = f(C). We use the linear
regression model that takes the form as:

f(C) = w0 +

m∑
j=1

wjϕj(C)

where ϕj(·) are basis functions operated on C. The predic-
tion model learns the weights wj by solving the regularized

least squares formulation on the past data of the device and
the learnt parameters are used for the prediction of future
operational duration of the same device with a confidence
interval ωd. Since the estimate may be a real number, it is
rounded to an integer.
Inference of preferred usage profile: In order to deter-
mine the frequently used usage pattern of a device, firstly the
frequently used operational time slots of the device are de-
termined. As the usage of appliances varies on a day-to-day
basis and depends on parameters in the context vector, the
usage history is filtered based on the given context vector.
Within the filtered data, the problem of locating frequently
used operational time slots is modeled as the frequent item-
set mining problem from data mining. Using standard no-
tation [13], let D be the database of diurnal "transactions",
each containing the set of operational time slots of the de-
vice over the set of all possible time slots I in a day. The
collection of frequent item-sets of different sizes in D is de-
fined as F(D,σ) := {X ⊆ I | support(X,D) ≥ σ} where
support(X,D) denotes the proportion of transactions in D
that contain the item-set X and σ ∈ [0, 1] is a threshold. We
are interested in picking the most likely frequent item-set
of time slots whose size matches the operational duration
predicted by regression (ŷd ± ωd). For this, we start with
a large value of support threshold σ and decrement it step-
wise until we obtain item-sets of required size. At each step
the Apriori algorithm [13] is used to determine the collection
of frequent item-sets F(D,σ).

Having located the most frequent item-set of operational
time slots, each time slot in the item-set is marked by the
average operating power level considering the subset of data
records that contain this frequent item-set. This results in
a frequent usage pattern that is regarded as the user’s pre-
ferred usage profile for the specified day. If the planning
horizon spans multiple days, then the preferred usage pro-
file of each day is used by the optimization module as a base
to schedule appliances.

2.3 Optimization
The optimization engine proposes plans to schedule home

appliances based on given hourly energy prices and the pre-
ferred usage profile. The scheduling problem is modeled
as an integer linear program (ILP) wherein the objective
is to minimize both the energy and inconvenience costs for
the consumer over a planning horizon. This is subject to
consumer and appliance constraints such as the operational
duration and hold time per device, number of appliances
that can be run together, need to run appliances at specific
times, etc. Both deferrable and reducible devices are con-
sidered. If a device is deferrable, its usage can be shifted in
time, and if reducible, its power level can be changed. The
planning horizon is divided into fixed sized time slots and
the scheduling problem is to determine the slots where each
device is used and at what power level.
Notation Let the planning horizon T = {1, ..., κ} consist of
κ time slots and Rt be the energy price at time slot t. Let
D be the set of all devices to be scheduled. Let Li denote
the set of permissible power levels1 for device i including 0

for OFF state. Let Hi denote the hold time for i i.e. once
the device is ON, it should be ON for at least Hi slots. Let
yit ∈ Li denote the device usage indicator to be determined
1We only consider power levels that do useful work and ex-
clude modes such as stand by that need not be scheduled.
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i.e., yit = 0 if i is OFF in time slot t and yit = p > 0 if i is
ON state at power level p.
Elasticity Given the user’s preferred usage profile for a
device, that is, the time slots and power levels at which the
user regularly uses it, the optimization engine schedules the
device close to these time slots. For every device i, the user
provides a tolerance of δi time slots. If in the preferred usage
profile, the device i is scheduled at time τ for a duration
of s slots, then it is rescheduled somewhere in the interval
[τ − δi, τ + s + δi] in the optimized schedule. δ can be set
large or small depending on the time elasticity of the device,
for e.g. a high value for washing machine and a low value
for a water heater or TV.
Multiple Chunks If a device is used multiple times in the
usage profile, then each continuous usage chunk is consid-
ered as a separate device for scheduling over T . Let D(i)
denote the set of chunks corresponding to device i. Let the
set of all such time chunks including all devices be D ′ . Let
Si and Mi denote the start time and length of chunk i re-
spectively. Let Pit denote the given power level in the tth
slot of chunk i. Let P

avg
i denote the average power level of

chunk i considering all its slots.
Energy Cost A device j at timeslot t consumes yjt units
of electricity priced at Rt. Therfore the energy cost is

E =

κ∑
t=1

(

d ′∑
j=1

yjt) × Rt

Inconvenience Cost The inconvenience cost is composed
of two parts. If a device j is scheduled outside of the region it
was being used earlier, then the distance of the new schedule
from the current use is given by I

j
1 =

⌊Sj⌋−1∑
t=1

(Sj − t)|yjt −P
avg
j | +

κ∑
t=⌈Sj+Mj⌉

(t−(Sj +Mj))|yjt−P
avg
j |

where the first term sums the distances times difference in
power levels for slots scheduled before the region of regular
usage. The second term does the same for slots after the
region. If a device is scheduled within its current usage
region, then the difference in power levels of use is given by
the following cost

I
j
2 =

⌈Sj+Mj⌉−1∑
t=⌊Sj⌋

|Pj − yjt|

Objective function Thus the objective function with both
the energy and inconvenience costs is

min
yjt, j∈D ′,t∈T

g = E +

d ′∑
j=1

[
ϵ1 ∗ I

j
1 + ϵ2 ∗ I

j
2

]
where ϵ1 and ϵ2 are control parameters.
Device level Constraint A device i at time slot t must be
scheduled at a power level within set Li. Besides as different
chunks of the same device are scheduled independently and
may overlap, the total power level used for a slot must also
lie in Li. To ensure both these, we introduce binary variables
bλit ∈ {0, 1}, λ ∈ Li and the following constraints:∑

j∈D(i)

yjt =
∑
λ∈Li

λ ∗ bλit,
∑
λ∈Li

bλit = 1 ∀t ∈ T, ∀i ∈ D

Conservation of Operational Hours Each device must
be able to complete its task by running for the essential
number of time slots, i.e., the sum of durations of all chunks
of a device in the preferred profile must equal the number
of assigned slots in the optimized schedule:

∑
j∈D(i)

Lj =

κ∑
t=1

∑
λ∈Li\0

bλit ∀i ∈ D

Tolerance Constraint The tolerance value δj constrains
the slots where the device j can be scheduled. Since it was
previously scheduled at time Sj in the preferred profile, it
can only be scheduled in slots [Sj − δj, Sj + Mj + δj] in the
optimized schedule. This constraint is written as:

⌈Sj+Mj⌉+δj−1∑
t=⌊Sj⌋−δj

yjt = Mj ∀j ∈ D
′

Hold Time Constraint If the device j is switched ON at
time slot t, then the device should be ON for at least next
Hj time slots. To introduce this constraint, we define the
change of state indicator variables xjt = yjt − yjt−1, ∀j ∈
D ′, t ∈ T . Hence we wish to define the following constraint:

xjt > 0 & xjt = yjt ⇒ yjt+r−1 > 0 ∀r ∈ {2, . . . , Hj}

The above if-condition can be linearized using two sets of
binary variables ajt, cjt, j ∈ D ′, t ∈ T and number of con-
straints of the order of |D ′||T |. This is done by assuming
lower and upper bounds on xjt, yjt, and xjt − yjt. In par-
ticular, if u is the maximum power level of any device, then
these bounds could be −u, u.
Fuse Capacity The sum of maximum power levels of all
devices scheduled in the same time slot should not exceed
the fuse capacity of the household Fuse. Let Lmax

i = max Li.
d∑

i=1

L
max
i

( ∑
λ∈Li\0

bλit

)
≤ Fuse ∀t ∈ T

Hard Constraints If the user wishes to explicitly provide
a preference to switch ON/OFF devices during specific time
periods, then hard constraints can be introduced on the de-
cision variables yjt as per the requirement.
Multiple Solutions The above ILP can output multiple
solutions. Besides the difference between the best and the
second best solutions may sometimes be minimal in terms of
cost in dollars, however the difference in inconvenience may
be significant. Therefore to provide flexibility to the users,
the optimization engine outputs multiple solutions within
a specified optimality gap. Let g(Y) denote the objective
function value for a solution Y = {yjt}, j ∈ D ′, t ∈ T . Then
the engine outputs all solutions within a relative optimality
gap of α = |g(Y) − g(Y∗)/g(Y)|, where Y∗ is the optimal. α

is set close to 0, for e.g 5%. The solutions are aggregated
and multiple usage plans are displayed to the user.

3. INTERFACE
The aggregated schedules output by the optimization en-

gine are displayed using a Gantt chart on a webpage. For
instance, these could be viewed by the user via a browser
on a desktop or a smartphone. The interface provides the
following information: (i) proposed times of use for each
appliance as per the Yupik schedules (ii) Cost estimates of
proposed schedules (iii) actual time of use for each appliance
by the user (iv) Cost of a actual usage by the user (v) Actual
daily and monthly expense incurred thus far.

Fig. 1 (right) shows the Gantt chart that has 24 time slots,
one for each hour, with the current time shown using a red
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line (08:30 pm). The chart displays two proposed plans A
and B for the current day (17 Feb 2011 ). Each plan is
identified by a unique color and shows the proposed times
and durations of use for each appliance. A user may choose
to use an appliance during proposed time slots or deviate
from these. The yellow timelines show the actual usages by
the user. The corresponding costs are shown under ‘Actual
Use’. The current day is shown highlighted (orange) among
days of the week and the actual daily expenses incurred
are displayed below each day. When the expense for a day
exceeds the optimal estimate, it is highlighted in red (e.g.
Mon), else green (e.g. Tue). Thus the interface informs the
user of possible optimal usage plans and their actual usages
and helps them keep track of daily and monthly expenses.

4. EXPERIMENTS
We use preliminary data from an ongoing project where

jPlugs are being tested in a few homes in Bangalore, India.
For analytics, along with some of our code, we used the clus-
tering and frequent item-set mining subroutines from data
mining open-source WEKA [14]. CPLEX [15] was used to
solve the ILPs for optimization (although solving ILPs can
be NP-hard, household appliance scheduling does not result
in a large-scale problem and is easily handled by CPLEX).
Since the local utility does not provide variable electricity
prices for residential customers, the day-ahead hourly prices
published by ComED [16] were used.

We use four weeks of consumption data from a home
where jPlugs monitored the usage of a TV, a music system,
and a power strip. We did not have data from devices which
consume more power since the instrumented jPlugs had a 5

Amps limit. Therefore in reality scheduling these devices
may not result in significant savings in dollars. However,
we use this data to validate the analytics module in terms
of searching frequent usage patterns and the optimization
module by considering normalized relative savings with re-
spect to no scheduling. We also treat the power strip as a
virtual device as we do not know which devices were con-
nected to it.
Analytics Fig. 2(a) shows the histogram of power con-
sumed by the TV. We clearly see two clusters with signif-
icant difference in their means. This shows that the TV
operates at two power levels. The left cluster has its mean
at 15.77W and represents the standby mode, while the right
cluster has its mean at 89.15W and represents the normal
operating mode. The two-step clustering approach essen-
tially retrieves these two means. As jPlugs log the power
consumed even when the device is switched off, zero power
entries were filtered out before clustering. Fig. 2(b) shows
the same for the power strip where it is hard to determine
if it operates at either two or three different power levels
(the rightmost power level is used only for a small fraction
of time). This is perhaps because different devices may have
been connected to the power strip at different times. The
two-step clustering approach retrieves two power levels with
means 20.50W and 55.66W.

Next, to retrieve user’s preferred profile for TV usage dur-
ing the four weeks, the days were divided into 24 hourly
time slots and each slot was marked on or off according to
the usage (standby was considered off). Fig. 2(c) shows the
frequency of usage for each time slot during the 4 weeks.
We divided the days into weekdays and weekends and used
regression to infer the number of operational hours for a

weekday, which resulted in 5.8 slots. Fig. 2(d) shows three
frequently used item-sets of time slots A,B, and C of sizes
5, 4 retrieved by the apriori algorithm. The item-set A = 19-
23h of size 5 was the closest in size to the predicted duration
of 5.8 and was also the most frequent item-set with a sup-
port threshold of σ = 0.4. This means that for 40% of the
days, the TV was on from 19-23h. Thus this is regarded as
the regular/preferred usage profile for TV.

Figure 2: Clusters and frequent usage patterns

Optimization For optimization, we have a total of 3 de-
vices i.e. D ={TV, music system, power strip}. The fre-
quent usage pattern of each device was retrieved by the an-
alytics engine and used as the user’s preferred usage profile.
Scheduling was performed for a planning horizon of one day
with 24 time slots i.e. T = {1, . . . , 24}. The optimization

Figure 3: Variation with ϵ1

ILP has 3 control parameters: tolerance δi∀i ∈ D, and ϵ1,
ϵ2 that weigh the inconvenience costs. We show how varia-
tions in these parameters help users attain the desired level
of balance between optimal energy price and comfort level.

Fig. 3(left) plots the normalized savings versus conve-
nience costs when optimization is performed with a different
value of ϵ1 each time, keeping ϵ2 and δi∀i ∈ D fixed. Sav-
ings are computed with respect to the cost incurred by user’s
preferred usage schedule retrieved from analytics, without
any optimization. When ϵ1 is low, the inconvenience cost
of scheduling devices outside their regular/preferred usage
regions remains low and the objective function pays more
attention to reducing energy costs. This results in high
savings but low convenience. As ϵ1 increases, devices are
scheduled closer to their regular usage regions resulting in
more convenience and low savings. Fig. 3(right) shows the
case when optimization outputs multiple schedules close to
the optimal. We see that even though savings are more
or less the same in two schedules, convenience costs differ,
providing users more flexibility in scheduling devices. The
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control parameter ϵ2 weighs the inconvenience caused as a
consequence of change in power levels. Fig. 4(left) shows the
variation in savings and inconvenience as a function of ϵ2.
We see that relative to ϵ1, higher values of ϵ2 are needed
to bring about a change in costs. This is because ϵ2 only
weighs the difference in power levels of slots which are sched-
uled at the preferred usage times whereas ϵ1 considers both
difference in time as well as difference in power levels for slots
scheduled outside the preferred usage regions. The tolerance

Figure 4: Variation with ϵ2, tolerance δ

parameter δi determines the time elasticity of each appliance
i.e. devices are allowed to be scheduled only around a win-
dow of their frequently used time slots. Fig. 4(right) shows
the normalized savings as a function of δ = δi∀i ∈ D for
different values of ϵ1, ϵ2. As ϵ1, ϵ2 move from low to high,
the effect of δ reduces as the inconvenience costs become
too high, resulting in devices being scheduled at their pre-
ferred times, thus lowering the savings. In practice, graphs
of costs versus control parameters for average-case homes
with standard appliances could be used to guide users to set
appropriate values of control parameters for their homes.

5. DISCUSSIONS AND FUTURE WORK
In this work, we presented Yupik, a planner that helps

users respond to variable hourly electricity prices. Yupik
combines sensing, analytics, and optimization to generate
flexible appliance usage schedules that may be used by the
users to minimize their energy bill as well as potential lifestyle
disruptions. The consumption data collected via jPlugs is
correlated with external data such as the day of week, hol-
iday, etc to determine the regular or preferred operating
routines of devices. Devices are scheduled close to their reg-
ular usage times by taking into account their time and load
elasticities so that user inconvenience is minimized. We pre-
sented preliminary experimental results based on jPlug data
collected from a few low power devices in a single home. In
future work, we plan to collect and analyze data from more
homes with devices consuming more power as well as ex-
periment with data from external sources such as weather
database.

Understanding user behavior and inferring their prefer-
ences using data collected from a number of sensor devices
and external sources is a challenging problem. While our
work estimates a unique preferred usage profile, each us-
age profiles has an associated likelihood. Future work will
consider the problem of scheduling appliances given multi-
ple usage profiles and their likelihoods. To infer preferred
usage profiles, future work will also consider the more gen-
eral approach of association rule mining where we wish to
mine rules of the form context vector ⇒ usage pattern. An-
other scheduling challenge is how to update schedules based
on differences between predicted prices and real prices that
become available before each hour.
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