
Spontaneous Synchronization
in Multi-hop Embedded Sensor Networks:
Demonstration of a Server-free Approach

Aggelos Bletsas and Andrew Lippman
Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: {aggelos, lip}@media.mit.edu

Abstract— A common time reference is essential for
distributed sensing, especially when the individual sensors
are communicating over wireless, possibly through several
intermediate nodes. Prior art in time synchronization
over multi-hop wireless sensor networks has focused on
centralized solutions that utilize one or more beacons
or distributed peer-to-peer approaches, validated only in
simulation environments. In this work, we demonstrate
distributed synchronization using nearest neighbor com-
munication and no other central point of control. The
technique was inspired by natural synchronization in
colonies of fireflies and was implemented in an embedded
wireless network. The goal was to synchronize speakers
and displays at various nodes of the network and quantify
the synchronization error as a function of network diame-
ter and communication overhead. One interesting finding
was that the error does not scale linearly with the diameter
of the network as reported previously in the literature,
since it depends on the frequency skew distribution of the
participating node oscillators. A video of the demonstration
is also available [16].

I. I NTRODUCTION

A common time reference is important for many
applications of distributed sensing, especially when the
individual sensor nodes span a large geographical area
and communicate over wireless. Time synchronization
becomes non-trivial when individual nodes are several
hops away and therefore a single broadcast signal from
a particular node (a “server”) is not sufficient, as it
cannot reach all nodes. Energy constraints of the indi-
vidual sensor nodes prohibit extensive communication,
complicating further the problem of time synchroniza-
tion. Sensor Networks ought to self-configure and work
unattended, therefore any synchronization scheme should
have minimal complexity both at the network level
(requiring minimal coordination among the nodes) and

also at the individual sensor node level, especially due
to its embedded, limited computing capabilities micro-
processor (as measured in floating point operations per
second and internal memory size).

In this work we implement a time
synchronization technique for multi-hop,
energy/communication/computing-constrained sensor
networks which is completely beacon (or server) free.
Moreover, it requires no global coordination since
all nodes in the network communicate with nearest
neighbors for time-synchronization purposes. Therefore
the scheme has no centralized point of control (or
failure), it has no network routing overhead and it
is appropriate for ad-hoc sensor networks where the
topology might change (often due to mobility) or might
be unknown.

Our initial goal was an experimental evaluation of time
synchronization in multi-hop networks, in a real-world
setup. For that cause, we implemented a distributed
orchestra, where each node could have a speaker to
output a song, while at the edges of the network, two
nodes were equipped with LED displays (figure 1). At
the same time, we wanted to quantify in practice, the
observed accuracy and precision of the algorithm against
its required communication and computation overhead
using our embedded wireless network. Evaluation of the
scheme through implementation in a real-world embed-
ded network reveals the important limitations on compu-
tation, communication and complexity sensor networks
encompass.

On the other hand, evaluations of synchronization
schemes only through simulations usually underestimate
the limited resources in terms of memory, computa-
tion and communication of each node and also assume
worst case scenarios that might not reflect reality. Even

displays

speakers

Fig. 1. Demo on a glass wall: each node can communicate with at most 4 immediate neighbors. The network manages to synchronize all
nodes so that they can “output” through speakers the same music. At the edges of the network, the nodes are equipped with LED displays
instead of speakers, to provide for visual proof of synchrony. All nodes are communicating with immediate neighbors only and there is no
point of central control.

(a) 4-IR Pushpin without speaker.
The four IR transceivers provide
directional communication only
along the horizontal and vertical
axis.

(b) 4-IR Pushpin with speaker. (c) 45-LED display. A 4-IR Push-
pin is connected behind the LED
grid.

Fig. 2. The individual nodes used in this work. Speakers and displays provided for audio-visual output.

though experimental study of time synchronization has
been reported before insingle-hopembedded wireless
networks, there is a significant gap in measurements
of time synchronization error in realizations ofmulti-
hop wireless embedded networks. To our knowledge,
this work is the first to fill this gap. Video of the
demonstration could be found at [16].

The proposed scheme and the implemented demo were
inspired by natural phenomena of synchronization: the
way fireflies blink in unison, even though they interact
only locally or the way cardiac neurons fire in sync.

II. REQUIREMENTS ANDEXPERIMENTAL SETUP

The goal in this work was to demonstrate a time
synchronization scheme that would be:

a) transparentto the sensing or actuating tasks of any
node in the network. Each node should communicate
only locally with its immediate neighbors and avoid
explicit connections to remote servers of “true time” one
or more hops away.

b) self-calibratingwith no coordination requirements
upon deployment or during operation. The multi-hop
network shouldspontaneouslyconverge to a common
time reference without centralized control.

To make matters more realistic, we chose to evaluate
the transparent and self-calibrating (as defined above)
character of the scheme at the extremes: we evaluated the
scheme at the edges of the network, when connectivity
is established only through intermediate nodes. RF com-
munication range could be on the order of hundreds of
meters, therefore it would be more appropriate to utilize
short-range and directive communication links in order
to demonstrate multi-hop performance. We used 8051-
based micro-controllers (8-bit, 2 Kbytes of RAM and 32
Kbytes of program space) connected to short-range, 4-
way infrared transceivers. Those are the pushpin nodes
[11], [18], that we packaged in round battery holders
as shown in figure 2(a). Pushpins practically allowed
evaluation of the synchronization scheme at the edges
of the network, for several values of network diameter
d as shown in figure 3(a). The experimental setup for
d = 4 is shown in 3(b).

The goal was to demonstrate network multi-bit clock
synchronization among all nodes in a distributed fashion,
not just synchronization to a reference signal coming
from a specialized server [12], [1] or beacon [4]. No
prior knowledge of network topology was assumed and
all nodes were loaded with the same code. All nodes
could be equipped with small speakers (figure 2(b)) and
as a proof of synchrony they would play the same piece

of music at the same time. According to ([3] p.95), the
smallest perceivable time difference from humans is on
the order of 30-50 milliseconds, therefore clock synchro-
nization error above that limit could be perceived.

Apart from the oscilloscope measurements at the
edges of the network and the audio outputs at many
intermediate nodes, visual patterns at the edge nodes
provided for visual proof of synchrony. Displays from
the rf-Badges [9], [17] were connected to 4-IR pushpins
and used in this work (figure 2(c)).

III. T HE ALGORITHM AND ITS IMPLEMENTATION IN

OUR EMBEDDED NETWORK

Lamport in his 1978 work in the context of computer
clocks and processes synchronization [10], described a
simple algorithm, based on the fact thattime is a strictly
monotonically-increasing quantity. Therefore events hap-
pening in subsequent times should have timestamps
ordered accordingly, otherwise a correction in the clocks
should be made. Although Lamport’s work has been
extensively referenced in the area ofsensor network
time synchronization, there has been no validation and
testing in embedded networks so far (at least to the
extent of our knowledge). Since time is viewed as a non-
decreasing quantity in Lamport’s algorithm, its imple-
mentation probably has been considered problematic in
memory-restricted and communication-constrained sen-
sor networks.

• Broadcast: node i transmits its clock valueCi(t)
at regular intervals. Time-stamping occurs just be-
fore transmission and the MAC protocol has been
modified accordingly.

• Receive and Compare:upon reception from nodej
of a clock valueCi(t) from nodei, nodej compares
and keeps the highest value: ifCi(t) > Cj(t) then
Cj(t)← Ci(t) else ignore.

In this work, we modify Lamport’s algorithm to fit
the memory and communication constraints of sensor
networks and through implementation in a multi-hop,
embedded network, we prove that the new algorithm
can sufficiently synchronize the whole network, in a dis-
tributed,transparentandself-calibratingway (as defined
previously), satisfying many real-world scenarios.

The first modification in Lamport’s algorithm is that
time is no longer considered a monotonically increas-
ing quantity: clockCj(t) in every network nodej is
bounded above and upon reaching that value, time is

(a) (b)

Fig. 3. Topologies for various network diametersd used in this work 3(a). The oscilloscope probes are connected at the edge nodes of the
network. The case ford = 4 is shown in 3(b).

reset. Therefore, clock functionCj(t) follows a “saw-
type” periodic waveform and its period should be set
according to the natural phenomenon which is sensed
by the sensor network. In this work, since the goal was
distributed synchronized play of music, the periodT of
each clock was set to 13 seconds approximately.

The first reason behind upper bounding time, was the
fact that timestamps are communicated among neigh-
boring nodes and therefore their size in bits should be
kept minimal, because of memory, bandwidth and energy
constraints. In this work, clock valueCj(t) of nodej is
represented by an unsigned 16-bit variable, incremented
each time a 16-bitcounter resets. This reset occurs
every 5.9 msecs approximately, limiting the resolution
of each clock variableCj(t) in the millisecond regime.
The counter is interrupt driven and since it controls time
increments, it is assigned the highest priority interrupt.

The second reason behind upper bounding time, was
our desire to explicitly studyself-calibrationcapabilities
of the algorithm and show in practice that even though
clocks reset periodically (in this case, every 13 seconds
), the network as a whole, re-synchronizes quickly and
unattended (spontaneously) and is able to perform its
sensing and actuating tasks.

Note that in this realization, we have timeCj(t)
of node j to be represented as a 16-bit integer, with
resolution set by another 16-bit counter. However, only
the first 16-bit value is communicated to nearest neigh-
bors. The length in bits of the clock valueCj(t) and
its resolution depend on the physical phenomenon that
needs to be sensed. For example, for environmental
sensing of moisture, a 16-bit clock incremented every
1.3 seconds would need 24 hours approximately, to reset.

Therefore, the same “saw-type” definition of time would
suffice, the information communicated over the network
would be the same as in the example of this paper and
the only modification would be in the clock resolution in
each node. The network would reset in synchrony every
24 hours instead of 13 seconds. The slower period in
this work (and resolution on the order of milliseconds)
helped us quickly validate the fact that the networkre-
calibrates after every clock variableCj(t) expiration,
without unwanted periods of instability.

In other words, the length in bits and the resolution
of the clock variableCj(t) depend on the physical phe-
nomenon to be sensed and the algorithm could be used
with success in many different contexts and applications
such as environmental sensing.

The second modification in Lamport’s algorithm, is
the fact that broadcasting of time-stamped information is
controlled by an independent timer and not by the clock
of each node. The reason behind such implementation
decision was that we wanted to decouple the two stages
of the algorithm (broadcast and receive), simplify design
and avoidbootstrappingproblems, that might occur if we
had used the same timer to control bothwhen as well
aswhat to transmit. Time-stamping during the broadcast
phase occurred just before transmission, therefore the
Medium Access Control (MAC) protocol in every node
had been modified accordingly.

Table I lists the clock periodT and the resolution
of each node’s clock, the time needed for each node
to transmit timing packet information to its neighbors
and how often every node broadcasts its clock value
in packets per second (pps), for two scenarios (r1, r2)
evaluated in this work.

TABLE I

PERIOD AND RESOLUTION OF EACH CLOCK, TRANSMISSION

DELAY AND BANDWIDTH USED FOR TIMING PACKETS (IN

PACKETS PER SECOND).

T of C(t) res ofC(t) tx delay bw

r1 13.2 sec 5.9 msec 1.24 msec 0.3 pps
r2 13.2 sec 5.9 msec 1.24 msec 3 pps

It is important to note that the packet each node
transmits at regular intervals1bw , contains only the 16-bit
time variable, a protocol header byte and one additional
byte with Cyclic Redundancy Check (CRC) information.
In other words, the 4-byte packet transmitted contains
no information about node source id, destination id or
any other kind of routing information since communi-
cation is happening with nearest neighbors. Therefore,
the synchronization scheme istransparent (as defined
previously) to the sensing or actuating task of each node.

We called the new scheme “Spontaneous Synchroniza-
tion”. Video of the demonstration could be found at [16].

IV. RESULTS

We run experiments with duration 500 seconds
each and measured the absolute synchronization error
| Ci(t)− Cj(t) | where nodesi, j are the edge nodes
of the network as shown in figures 3(a),3(b). To do so,
each node output a pulse when its clock variable reached
a specific value (Ci(t) = max/2)1. We have already
described that time is represented by an unsigned 16-bit
integer (reaching its maximum value and then reseting
every T seconds), incremented from the overflow of a
16-bit counter (controlled by the crystal oscillator of each
node and overflowing everyres milliseconds, from table
I). Therefore, we measured the absolute synchronization
error at the edges of the network everyT seconds and for
T ' 13 sec, the 500 seconds experiment corresponded
to 37 measurements per experiment.

The network managed to synchronize all individual
nodes so they could play the same piece of music
repeatedly, as long as the nodes were switched on. That
provided a quick proof of synchronization error smaller
than 30 milliseconds, since that is the smallest time dif-
ference perceived by humans ([3], p.95). Moreover, we
were assured that time reseting at each individual node
didn’t cause instabilities but on the contrary, the network

1note thatmax need not be216 − 1 = 65535 but it could be set
to a smaller value:max = T

res
.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Network diameter (maximum number of hops)

A
bs

ol
ut

e
er

ro
r

an
d

st
an

da
rd

 d
ev

ia
tio

n
in

 m
s

Measured error in ms vs. diameter of the network

r1
r2

Fig. 4. Measured average time synchronization absolute error and its
standard deviation in milliseconds, as a function of network diameter.
Clock resolution and transmit time is on the order of milliseconds,
limiting the error in the millisecond regime, as expected. Notice
that error is not increased linearly with number of hops, since error
depends on the sign of clock skew differences between neighboring
nodes (second term in equation 5).

managed to re-calibrate and converge to a common time
reference, continuously and unattended.

The oscilloscope measurements helped us quantify the
performance of the synchronization scheme (figure 3).
Average absolute error̂|ε(t)| and its standard deviation
for different network diameters are shown in figure
4. All experiments were run twice since apart from
network diameter (d), we wanted to study performance
against different bandwidth (bw from table I) used for
broadcasting time (broadcast phase of the algorithm).

From figure 4 we can see that the absolute synchro-
nization error|ε| is on the order of a few milliseconds.
This is not a surprising result since the clock resolution
of each network node is on the order of milliseconds
(table I). Moreover, as we will see below, the synchro-
nization error depends on the transmission delay which
is, again, on the order of milliseconds. Ways to reduce
the error because of those two factors down to the
µsecond regime are discussed in section V.

What is surprising about these measurement results,
is the fact that synchronization error does NOT increase
linearly with the diameter of the network as it has
been reported previously in simulation setups. A simple
analysis follow to justify the above findings: we could
model the timerCi(t) of each nodei as a linear function.
Time increases with a rateφi that depends on the crystal

oscillator of each node. The differenceφ − 1 is called
frequency skew and for the crystals used in our nodes,
it is on the order of± 50 parts per million (ppm).

Let’s ignore for now the fact that time resets at each
node and let’s assume that nodei transmits its timestamp
at timet0. The packet will be received and processed by
neighboring nodej at time t0 + x.

Time durationx includes the propagation time of the
signal which is basically the time needed for the first
bit to arrive at the destination (distance/speed of light),
the transmission time which is the time needed for the
transmitter electronics to transmit the waveform (tx delay
at table I in section III) and finally the time the operating
system at the receiver needs to process the received
packet.

Ci(t0) = φi t0 + θi (1)

Cj(t0 + x) = φj (t0 + x) + θj (2)

x = propagation delay + (3)

+ transmission delay +

+ operating system delay

Propagation delay is negligible, on the order of a
couple ofµseconds for short range transceivers, there-
fore x is dominated by tx delay and os delay. In our
system, tx delay is 1.24 msec (since we are using slow
transceivers) while operating system delay has been kept
one order of magnitude smaller, given the fact that we
are using pipelined, RISC micro-controllers driven by
22.11084 MHz crystals. Medium Access Control has
been modified in order to avoid adding delays in the
transmission of timing packets.

If Ci(t0) > Cj(t0 + x) thenCj(t0 + x)← Ci(t0) and
the absolute error| ε | at time t0 + x becomes:

| ε(t0 + x) | = | Ci(t0 + x)− Cj(t0 + x) |
= | Ci(t0 + x)− Ci(t0) | ⇒

| ε(t0 + x) | = φi x (4)

Therefore, the error at timet0 + x is on the order of
(1± 50 10−6) x ≈ tx delay = 1.24 msec. Thereinafter,
the error might increase or decrease depending on the
frequency skew differences of nodei, j clocks, since
it is not difficult to see that according to this linear
representation of time in equation 1, the error at time

tc > t0 becomes2:

ε(tc) = Ci(tc)− Cj(tc) =

= ε(t0 + x) + (φi − φj) ∆t (5)

∆t = tc − (t0 + x) (6)

We can see that the error at timetc might decrease if
φi − φj < 0 or increase ifφi − φj > 0. The amount
of increase or decrease is on the order of(50 10−6 −
(−50 10−6)) T/2 ≈ 650 µsec since we have at least
one packet transmission perT seconds. From the above,
it is straightforward to understand that the measured
absolute error might decrease belowtx time and there
were occasions when the absolute error could drop at
the µsecond regime.

The fact that time resets at each node doesn’t affect
the above analysis: reseting changesθ at each clock,
not φ (which depends on the crystal oscillator on-board)
and time differences using our algorithm depend on
frequency skew differences∆φ (equation (5)), therefore
changes ofθ due to reseting, don’t matter.

Even in the case where a node’s clock resets and then
that node receives a clock value from another node’s
clock which is close to reset, it can be seen that there
are no instabilities in the overall system since both
clocks will eventually reset and the synchronization error
between them will start fromφ x and will be increased
or decreased depending on the sign of their frequency
skew difference.

From figure 4 we can see that increasing the broadcast-
ing rate from 0.3 packets per second (r1) to 3 packets per
second (r2), doesn’t dramatically affect the overall error,
since that increase of rate just decreases∆t in equation
(5) but it doesn’t affectx which is the dominating factor
in the error. Increasing the broadcast rate (or decreasing
∆t) allows for finer increase or decrease of the error (on
the order of 650µsec/10 = 65 µsec for r2 compared
to 650µsec for r1). Increasing the broadcast rate would
make more sense for oscillators with higher frequency
skew, than those used in this work (± 50 ppm).

From the above analysis, it is now obvious why the
average absolute error is not increasing monotonically
with the diameter of the network. That is because the
error as we saw, depends on the sign of the frequency
skew among the clocks (second term in equation 5),
therefore by inserting additional nodes in a chain topol-
ogy (figure 3(a)), the sign might be negative, leading to

2provided that there is no time modification during the receive-
and-compare phase of the algorithm at nodej

smaller synchronization errors. Analysis that shows that
error increases linearly with the diameter of the network
[10] assumes worst case scenarios i.e. the sign of∆φ in
equation (5) is always positive, therefore the error builds
up with the number of hops. This interesting behavior
as depicted in figure 4 would not have been observed
if we hadn’t implemented our algorithm in a real-world
embedded network.

V. FURTHER IMPROVEMENTS

The synchronization error could be further reduced
by minimizing x. That can be achieved if the packet
transmission time (which is deterministic and known)
is incorporated in the transmitted timestamp during the
broadcast phase of the algorithm. That basically means
that each node broadcasts at timet, C(t) + tx time
instead ofC(t). Moreover, the operating system delays
could be minimized or anticipated (and therefore incor-
porated as well in the transmitted timestamp). It is also
useful to reduce uncertainties due to the channel access
scheme in the MAC layer (allowing for time-stamping
at the MAC layer could be one solution).

We implemented the above modifications in a RF,
embedded, single-hop network and the synchronization
error was reduced down to theµsecond regime. The
interested reader could refer to [2] for additional infor-
mation regarding the RF, single-hop case.

VI. SPONTANEOUSORDER AND ITS CONNECTION TO

BIOLOGICAL SYNCHRONIZATION

What we have seen so far, is that coupling between
neighboring oscillators with similar (but not exactly
the same) frequency skew and periodic (due to reset)
time waveforms, is able to globally provide network
synchrony.

This global phenomenon of sync emerged as a conse-
quence of local interactions between homogeneous ele-
ments and resembles similar phenomena found in nature:
the way fireflies manage to globally blink in unison,
even though they interact locally or the way millions
of cardiac neurons fire in sync to produce the cardiac
pulse. Those phenomena depend on coupling between
oscillators, they have nothing to do with averaging of
similar quantities (like timestamps for example) and they
are canonical examples ofentrainment([15], p.72). In
the above examples of entrainment, including our work,
synchrony is not controlled by any centralized authority
but it is the natural emergent result of local interactions.

Inspired by the fireflies phenomenon, we attached two
display-equipped nodes (figure 2(c)) at the edges of the

network in order to visualize synchrony (figure V). The
displays output a “heartbeat waveform” synchronized
by the distributed scheme presented in this work. The
difference with fireflies is that fireflies need only 1-bit
synchronization as opposed to the 16-bit synchronization
presented in this work.

VII. R ELEVANT WORK AND DISCUSSION

We were particularly interested in multi-hop time
synchronization algorithms. Work using simulations and
reported in [14], [6] and [7] falls into this category. The
basic idea is that each node exchanges two-way timing
information with its closest neighbors, its neighbors with
their neighbors and so on, up until the reference node.
In [14], the same clock model of equation 1 is used,
time offset between two nodes is linear (as we also saw
in equation 5) and bounds on the time offset between
two nodes are derived. Those bounds are used to outcast
redundant information and estimate in a sub-optimal, low
complexity scheme the offset between any two nodes. In
[6], the same clock model is used and two-way timing
information is used to estimate time offset between two
neighboring nodes using the NTP algorithm [12]. The
major problem with such approach is the fact that delays
between any two nodes are not symmetric in general.
In [7], two versions of pair-wise synchronization are
used: one based on the implementation of a spanning
tree starting from the reference node down to the edges
and one distributed implementation using node-to-node
measurements from a node that needs synchronization
up to the reference node.

In all the above implementations there are two distinct
differences compared to our Spontaneous approach: a)
the above need two-way measurements, meaning that
each node needs to send a timing packet and receive
its response back, while in our case we need just one
way transmissions and therefore, the overhead is smaller,
b) all the above approaches need the maintenance of
a hierarchy from the edge nodes up to the reference
node in the form of a Network Time Protocol(NTP)-
like hierarchy ([6], [14] or Spanning tree version in
[7]) or find appropriate communication paths toward
the reference path (distributed version in [7]). This is
significant overhead compared to our approach where
routing is not needed, since the edges of the network are
coupled through nearest neighbor communication and no
relay of timing packets is required.

In [13], it was suggested that sensor network nodes
need to provide information about when a specific event
happened, according to their own clock instead of trying

(a) (b) (c)

Fig. 5. Visual proof of synchrony. A “heartbeat” pattern is synchronized over the network and displayed at the edges. The distributed,
server-free approach for network synchronization resembles the decentralized coordination of colonies of fireflies that inspired this work.

to synchronize all nodes to the same reference. Ordering
of events matters, according to the same reasoning
and each node should be able to provide an interval,
according to each own clock, on when a specific event
happened as an approximation of global time. Bounds
provided by that scheme are a function of network
diameter and specific formulas were derived. However,
approaches like that make distributed actuation scenarios
(like those in our work) difficult to implement in practice.

Reference signals could be used to trigger time-
stamping in different receivers, reducing the variability
of a wireless transmission time due to channel access
delay and propagation time of a signal [4]. Then the
two receiving nodes would exchange information to find
out their time offset. Such approach is quadratic in
the number of participating nodes and therefore more
expensive than the approaches discussed so far. It also
needs special handling in the case of several beacons and
nodes in the vicinity of more than one beacon. Also it
is not an infrastructure-free approach compared with our
Spontaneous scheme.

It has been argued that time synchronization might
be viewed as an offline problem, depending on the ap-
plication [5]. Post-factosynchronization in [5] basically
suggests that clocks should be left “free running” and
time offsets should be calculated offline, after data have
been time-stamped and gathered. This is true for a large
range of potential wireless sensor network applications.

Finally, we should mention the cooperative construc-
tion of a propagating signal waveform across several
hops, that could be used for synchronization [8]. It
remains to be implemented and evaluated in practice.

VIII. C ONCLUSION

We presented and practically implemented a simple
time synchronization algorithm for wireless mutli-hop
sensor networks, which requires no beacons/servers in
the network and no global coordination but only local
communication among the nodes. We quantified its er-
ror as a function of the diameter of the network and
theoretically analyzed the observations. Within certain
limitations, the algorithm could practically provide for
16-bit synchronization in realistic embedded sensor net-
works, with msec down toµsec synchronization error
without extensive communication or computing overhead
requirements. We experimentally showed that the syn-
chronization error is not necessarily increased linearly
with the number of hops and provided a simple analytical
explanation. Video of the demonstration could be found
at [16].

ACKNOWLEDGMENT

The authors would like to thank Josh Lifton and
Mat Laibowitz from the Responsive Environments Group
(http://www.media.mit.edu/resenv/) for their kind assis-
tance in hardware throughout this work.

REFERENCES

[1] A. Bletsas,“Evaluation of Kalman Filtering for Network Time
Keeping”, Proceedings of IEEE International Conference on
Pervasive Computing and Communications (PERCOM), Fort-
Worth Texas, March 2003.

[2] A. Bletsas, A. Lippman,“Natural Spontaneous Order in Wireless
Sensor Networks: Time Synchronization Based on Entrainment”,
Technical Report, MIT Media Lab, December 2003.

[3] P. R. Cook, Music, Cognition and Computerized Sound. An
Introduction to Psychoacoustics, MIT Press, Cambridge Mas-
sachusetts, 1999

[4] J. Elson, L. Girod, D. Estrin,“Fine-Grained Network Time
Synchronization using Reference Broadcasts”, Proceedings of
the Fifth Symposium on Operating Systems Design and Imple-
mentation (OSDI), Boston MA, 2002.

[5] J. Elson, K. R̈omer, “Wireless Sensor Netowkrs: A New Regime
for Time Synchronization”, Proceedings of the First Workshop
on Hot Topics in Networks, October 2002.

[6] S. Ganeriwal, R. Kumar and M. Srivastava,“Timing Sync Proto-
col for Sensor Networks”, Proceedings of the First International
Conference on Embedded Networked Sensor Systems, Los An-
geles CA, 2003.

[7] J. V. Greunen, J. Rabaey,“Lightweight Time Synchronization for
Sensor Networks”, Proceedings of the 2nd ACM International
Workshop on Wireless Sensor Networks and Applications, San
Diego, CA, September 2003.

[8] A. Hu, S. D. Servetto,“Asymptotically Optimal Time Synchro-
nization in Dense Sensor Networks”, Proceedings of the 2nd
ACM International Workshop on Wireless Sensor Networks and
Applications, San Diego, CA, September 2003.

[9] M. Laibowitz, J. Paradiso,Wearable Wireless Transceivers, Cir-
cuit Cellar, no.163, February 2004.

[10] L. Lamport, Time, Clocks, and the Ordering of Events in a
Distributed System, Communications of the ACM, vol. 21, no.7,
July 1978.

[11] J. Lifton, D. Seetharam, M. Broxton, J. Paradiso,“Pushpin
Computing System Overview: a Platform for Distributed, Embed-
ded, Ubiquitous Sensor Networks”, Pervasive 2002, Proceedings
of the Pervasive Computing Conference, Zurich Switzerland,
August 2002.

[12] D. L. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis”, RFC 1305, University of
Delaware, March 1992.

[13] K. Römer, “Time Synchronization in Ad Hoc Networks”,
MobiHOC 2001, Long Beach Ca.

[14] M.L. Sichitiu, C. Veerarittiphan,“Simple, Accurate Time Syn-
chronization for Wireless Sensor Networks”, IEEE WCNC 2003.

[15] S. Strogatz,Sync, The Emerging Science of Spontaneous Order,
1st ed. New York: Theia, 2003.

[16] Demo website,
http://web.media.mit.edu/ aggelos/demos/demos.html

[17] Badge website, http://www.media.mit.edu/resenv/badge
[18] Pushpin website, http://web.media.mit.edu/ lifton/PushPin/

