Intelligent Antenna Sharing in Cooperative Diversity Wireless Networks

Ph.D. Thesis Defense
June 2005

Aggelos Bletsas

aggelos@media.mit.edu

Viral Communications Group, MIT Media Laboratory
Thesis Committee

- Andy Lippman,
 Principal Research Scientist, MIT Media Lab.

- Joe Paradiso,
 Associate Professor, MIT Media Lab.

- Moe Win,
 Associate Professor, MIT LIDS.
Motivation and Inspirations

You are (probably) here because you have all experienced:

- bad reception...
- battery problems...
- no connectivity during large gatherings (4th of July problem!)

Could we fix all the above problems?
Motivation and Inspirations

You are (probably) here because you have all experienced:

- *bad reception*...
- *battery* problems...
- no connectivity during large gatherings (4th of July problem!)...

Could we fix all the above problems?

Inspirations:

- Gupta and Kumar IT 2000 result: local communication helps...
- Multiple Antennas at each radio help...
Motivation and Inspirations

You are (probably) here because you have all experienced:

- *bad reception*...
- *battery* problems...
- no connectivity during large gatherings (4th of July problem!)...

Could we fix all the above problems?

Inspirations:

- Gupta and Kumar IT 2000 result: local communication helps...
- Multiple Antennas at each radio help...
- Could we merge the two above? More users \Rightarrow *better* wireless communication?
In general, multi-antenna systems increase:

- reliability (diversity gain).
- spectral efficiency bps/Hz (multiplexing gain)

Explore multiple antennas in the **Relay** channel, via *cooperative* relays.
Additional Problem Constraint: Low Complexity and Implementation

In general, multi-antenna systems increase:
- reliability (diversity gain).
- spectral efficiency bps/Hz (multiplexing gain)

- Explore multiple antennas in the Relay channel, via cooperative relays.
- IMPLEMENTATION TODAY, with existing RF-front ends.

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 4/50
Main Difficulties

Information is not a priori known at the relays.
Main Difficulties

- Information is not a priori known at the relays.
- Number of participating antennas is unknown.
Main Difficulties

- Information is not a priori known at the relays.
- Number of participating antennas is unknown.
- Number of *useful* participating antennas is unknown.
Main Difficulties

- Information is not a priori known at the relays.
- Number of participating antennas is unknown.
- Number of *useful* participating antennas is unknown.
- Coordination and Group formation ought to be distributed, not "genie-aided".
Main Difficulties

- Information is not a priori known at the relays.
- Number of participating antennas is unknown.
- Number of *useful* participating antennas is unknown.
- Coordination and Group formation ought to be distributed, not "genie-aided".
- MIMO ST-coding ≠ coding for the Relay channel.
Information is not a priori known at the relays.

Number of participating antennas is unknown.

Number of *useful* participating antennas is unknown.

Coordination and Group formation ought to be distributed, not "genie-aided".

MIMO ST-coding ≠ coding for the Relay channel.

Radio transceiver complexity.
Outline

Assumptions and Background

Approach

Performance

Implementation Example

Relevant Technologies

Conclusion

Acknowledgements
Assumptions and System Model

Inline with prior art in the field:

- Half-duplex radios.
- Simple RF-front ends:
 - Half-duplex radios.
 - No rate adaptation (no CSI at the source).
 - No phased arrays (No beamforming).
- \(y_d = a_{sd} x_s + n_d \).
- Neighboring interfering streams: noise.
- (Mostly) Rayleigh fading. \(\mathcal{E}[|a_{sd}|^2] = 1/d^\nu \)
- Slow Fading (most difficult communication problem).
Assumptions and System Model

Inline with prior art in the field:

- Half-duplex radios.
- Simple RF-front ends:
 - Half-duplex radios.
 - No rate adaptation (no CSI at the source).
 - No phased arrays (No beamforming).
- $y_d = a_{sd} x_s + n_d$.
- Neighboring interfering streams: noise.
- (Mostly) Rayleigh fading. $\mathcal{E}[|a_{sd}|^2] = 1/d^v$
- Slow Fading (most difficult communication problem).
Approaches

Non-cooperative communication.

Cooperative Repetition.
Simultaneous transmissions (Space-Time Coding).
Our Approach.
Proactive single relay selection.
Instantaneous channel conditions (instead of average).

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 8/50
Approaches

- Non-cooperative communication.
- Cooperative Repetition.
Approaches

- Non-cooperative communication.
- Cooperative Repetition.
- Simultaneous transmissions (Space-Time Coding).

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 8/50
Approaches

- Non-cooperative communication.
- Cooperative Repetition.
- Simultaneous transmissions (Space-Time Coding).
- Our Approach.
 - *Proactive* single relay selection.
 - *Instantaneous* channel conditions (instead of average).
Outline

- Assumptions and Background
- Approach
- Performance
- Implementation Example
- Relevant Technologies
- Conclusion
- Acknowledgements
Wireless Channel Observations

Receiver cares about signal strength (not distance).

Selection based on distance or \textit{average} SNR... is suboptimal.

\textit{Instantaneous} channel conditions matter!
Wireless Channel Observations

- Receiver cares about signal strength (not distance).
- Selection based on distance or average SNR... is suboptimal.
- Instantaneous channel conditions matter!

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 10/50
Wireless Channel Observations

Receiver cares about signal strength (not distance).

Selection based on distance or *average* SNR... is suboptimal.

Instantaneous channel conditions matter!
Our Approach: *Opportunistic Relaying*

\[Policy \, I: \quad h_i = \min\{|a_{si}|^2, |a_{id}|^2\} \]

\[Policy \, II: \quad h_i = \frac{2}{\frac{1}{|a_{si}|^2} + \frac{1}{|a_{id}|^2}} = \frac{2|a_{si}|^2|a_{id}|^2}{|a_{si}|^2 + |a_{id}|^2} \]

\[T_i = \frac{\lambda}{h_i} \]

Here \(\lambda \) has the units of time. For the discussion in this work, \(\lambda \) has simply values of \(\mu \text{secs} \).

\[h_b = \max\{h_i\}, \quad \iff \]

\[T_b = \min\{T_i\}, \quad i \in [1..M]. \]
Our Approach: *Opportunistic Relaying*

Policy I: \(h_i = \min\{|a_{si}|^2, |a_{id}|^2\} \)

Policy II: \(h_i = \frac{2}{|a_{si}|^2} + \frac{1}{|a_{id}|^2} = \frac{2 |a_{si}|^2 |a_{id}|^2}{|a_{si}|^2 + |a_{id}|^2} \)

\[
T_i = \frac{\lambda}{h_i}
\]

Here \(\lambda \) has the units of time. For the discussion in this work, \(\lambda \) has simply values of \(\mu\sec s \).

\[
h_b = \max\{h_i\}, \quad \iff \quad T_b = \min\{T_i\}, \quad i \in [1..M].
\]
Our Approach: *Opportunistic Relaying*

Policy I:
\[h_i = \min\{|a_{si}|^2, |a_{id}|^2\} \]

Policy II:
\[h_i = \frac{2}{|a_{si}|^2 + |a_{id}|^2} = \frac{2 |a_{si}|^2 |a_{id}|^2}{|a_{si}|^2 + |a_{id}|^2} \]

\[T_i = \frac{\lambda}{h_i} \]

Here \(\lambda \) has the units of time. For the discussion in this work, \(\lambda \) has simply values of \(\mu\text{secs} \).

\[h_b = \max\{h_i\}, \quad \iff \]

\[T_b = \min\{T_i\}, \quad i \in [1..M]. \]
Our Approach: *Opportunistic Relaying*

Policy I: \[h_i = \min\{|a_{si}|^2, |a_{id}|^2\} \]

Policy II: \[h_i = \frac{2}{\frac{1}{|a_{si}|^2} + \frac{1}{|a_{id}|^2}} = \frac{2|a_{si}|^2|a_{id}|^2}{|a_{si}|^2 + |a_{id}|^2} \]

\[T_i = \frac{\lambda}{h_i} \] (10)

Here \(\lambda \) has the units of time. For the discussion in this work, \(\lambda \) has simply values of \(\mu \text{secs} \).

\[h_b = \max\{h_i\}, \quad \iff \]
\[T_b = \min\{T_i\}, \quad i \in [1..M]. \] (11) (12)

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 11/50
Discussion: a note on CSI and time synchronization

- RTS/CTS exchange is only needed at the relays to estimate uplink/downlink channel.
- CTS reception is not exploited at the source.
- No beamforming or rate adaptation at the relays.
- No need for an explicit time sync protocol.
- It is a multi-hop scheme.
- We do know that the term "Opportunistic" has been used before...
Outline

- Assumptions and Background
- Approach
- Performance
- Implementation Example
- Relevant Technologies
- Conclusion
- Acknowledgements
Outage Performance (1)

Outage event between source \(s \) and destination \(d \):

\[
\log(1 + |a_{sd}|^2 \text{SNR}) \leq \rho \iff |a_{sd}|^2 \leq (2^\rho - 1)/\text{SNR} \iff \gamma_{sd} \leq \Theta
\]

"Best" opportunistic relay is chosen, according to instantaneous, end-to-end channel conditions:

\[
b = \arg \max \left\{ \min \{\gamma_{si}, \gamma_{id}\}, \quad i \in [1..M] \right\}
\]

(13)

Probability of outage via "best" relay:

\[
P_r(\gamma_{sb} < \Theta_2 \cup \gamma_{bd} < \Theta_2), \quad \Theta_2 = 2 \left(2^{2\rho} - 1 \right)/\text{SNR}
\]

(14)
The above outage probability of opportunistic relaying is calculated for the case of Rayleigh Fading:

$$P_r(\gamma_{sb} < \Theta_2 \cup \gamma_{bd} < \Theta_2) = \prod_{i=1}^{M} (1 - \exp(-\Theta_2 \left(\frac{1}{\gamma_{si}} + \frac{1}{\gamma_{id}} \right)))$$ \hspace{1cm} (15)

Taking into account the direct path between source and destination, the overall outage probability becomes:
The above outage probability of opportunistic relaying is calculated for the case of Rayleigh Fading:

\[
P_r(\gamma_{sb} < \Theta_2 \cup \gamma_{bd} < \Theta_2) = \prod_{i=1}^{M} (1 - \exp(-\Theta_2 \left(\frac{1}{\gamma_{si}} + \frac{1}{\gamma_{id}} \right)))
\]

(16)

Taking into account the direct path between source and destination, the overall outage probability becomes:

\[
P_{rout} = (1 - \exp(-\Theta_2/\bar{\gamma}_{sd})) \prod_{i=1}^{M} (1 - \exp(-\Theta_2 \left(\frac{1}{\gamma_{si}} + \frac{1}{\gamma_{id}} \right)))
\]

(17)
Outage Performance (3)

A single relay doesn’t help... [has been shown before...]

Opportunistic relays do help, even under a total tx power constraint!
Outage Performance (3)

Capacity for outage prob. = 0.01 and FIXED total transmission power (SNR=10)

- A single relay doesn’t help... [has been shown before...]
- Opportunistic relays do help, even under a total tx power constraint!

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 16/50
Outage Performance (4)

```
\[ P_{\text{out}} = \delta. \]

\[ \rho_{\text{opportunity}} = \frac{1}{2} \log_2 \left( 1 - \ln(1 - \delta^{1/M}) \right) \frac{SNR}{2} \frac{\gamma_{\text{sid}}}{M} \]  \hspace{1cm} (18)

\[ \rho_{\text{direct}} = \log_2 \left( 1 - \ln(1 - \delta) \right) SNR \frac{\gamma_{\text{sid}}}{M} \]  \hspace{1cm} (19)
```
Diversity-Multiplexing Tradeoff (1)

\[d \Delta = - \lim_{SNR \to \infty} \frac{\log P_e(\rho)}{\log SNR} \]

\[r \Delta = \lim_{SNR \to \infty} \frac{\rho(SNR)}{\log SNR} \]

- Diversity-Multiplexing Gain tradeoff tool averages out geometry.
- Cooperative diversity ≠ multihop communication. This tool can reveal associated gains/losses.

Theorem 0: The achievable diversity multiplexing tradeoff for the decode and forward strategy with \(M \) intermediate relay nodes is given by \(d(r) = (M + 1)(1 - 2r) \) for \(r \in (0, 0.5) \).
Diversity-Multiplexing Tradeoff (1)

\[d \triangleq - \lim_{SNR \to \infty} \frac{\log P_e(\rho)}{\log SNR} \]

\[r \triangleq \lim_{SNR \to \infty} \frac{\rho(SNR)}{\log SNR} \]

- Diversity-Multiplexing Gain tradeoff tool averages out geometry.
- Cooperative diversity \(\neq \) multihop communication. This tool can reveal associated gains/losses.

Theorem 0: The achievable diversity multiplexing tradeoff for the decode and forward strategy with \(M \) intermediate relay nodes is given by \(d(r) = (M + 1)(1 - 2r) \) for \(r \in (0, 0.5) \).

Theorem 1*: Under opportunistic relaying, the decode and forward protocol with \(M \) intermediate relays achieves the same diversity multiplexing tradeoff, as in Theorem 0.
Diversity-Multiplexing Tradeoff (1)

\[
d \triangleq - \lim_{\text{SNR} \to \infty} \frac{\log P_e(\rho)}{\log \text{SNR}} \\
r \triangleq \lim_{\text{SNR} \to \infty} \frac{\rho(\text{SNR})}{\log \text{SNR}}
\]

- Diversity-Multiplexing Gain tradeoff tool averages out geometry.
- Cooperative diversity ≠ multihop communication. This tool can reveal associated gains/losses.

Theorem 0: The achievable diversity multiplexing tradeoff for the decode and forward strategy with \(M \) intermediate relay nodes is given by
\[
d(r) = (M + 1)(1 - 2r)
\]
for
\(r \in (0, 0.5) \).

Theorem 1*: Under opportunistic relaying, the decode and forward protocol with \(M \) intermediate relays achieves the same diversity multiplexing tradeoff, as in Theorem 0.

Theorem 2*: Opportunistic amplify and forward achieves the same diversity multiplexing tradeoff stated in Theorem 0.

*: In cooperation with Ashish Khisti.
Opportunistic, single relay selection is as good as space-time coding simultaneous transmissions!

This result holds for decode/forward as well as amplify/forward!
Opportunistic, single relay selection is as good as space-time coding simultaneous transmissions!

This result holds for decode/forward as well as amplify/forward!
Opportunistic, single relay selection is as good as space-time coding simultaneous transmissions!

This result holds for decode/forward as well as amplify/forward!
Diversity-Multiplexing Tradeoff (2)

- *Opportunistic*, single relay selection is as good as space-time coding simultaneous transmissions!

- This result holds for decode/forward as well as amplify/forward!
● **Opportunistic**, single relay selection is as good as space-time coding simultaneous transmissions!

● This result holds for decode/forward as well as amplify/forward!
Energy gains counterbalance the decrease of rate by a factor of 2.

For the example above, 50% throughput increase is possible (8-PSK uncoded cooperative vs 2-PSK uncoded direct).
Results: Reception Energy Gains

- Cooperative reception of M relays \Rightarrow reception energy cost increases by a factor of M.

- Rx energy is comparable to Tx energy in modern radios [R. Min 2003].

- Proactive nature of Opportunistic Relaying, reception energy cost is fixed.

\[
\begin{align*}
|a_{s,i}|^2 & \quad |a_{i,d}|^2 \\
|a_{s,j}|^2 & \quad |a_{j,d}|^2
\end{align*}
\]

Source Destination

\[\text{Direct Relayed}\]
Results: Power Allocation Optimality (1)

What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:

It can be shown that opportunistic relaying is superior to other approaches in the field.
What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:

\[
\begin{bmatrix}
\frac{y_{D,1}}{\omega} \\
\frac{y_{D,2}}{\omega}
\end{bmatrix} = \begin{bmatrix}
\sqrt{P_{SD}} a_{SD} \\
\frac{1}{\omega} \sum_{i=1}^{M} \sqrt{\frac{P_{SRi} \sqrt{P_{RD}}}{P_{SRi} + N_0}} a_{SRi} a_{RD} \\
\frac{1}{\omega} \sqrt{P_{SD}} a_{SD}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
\frac{n_{D,1}}{\omega} \\
\frac{n_{D,2}}{\omega}
\end{bmatrix}
\]

\[
\varepsilon[\check{n}_{D,2}, \check{n}_{D,2} | H_{R \rightarrow D}] = N_0 \left(1 + \sum_{i=1}^{M} \frac{P_{RD} |a_{RD}|^2}{P_{SRi} + N_0} \right) = \omega^2 N_0
\]

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 22/50
What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:

\[y = \begin{bmatrix} \sqrt{P_{SD}} h_{SD} & 0 \\ \frac{1}{\omega} \sqrt{P_{SD}} h_{SD} & H_{21} \end{bmatrix} x + n \]

(21)

\[y = H x + n \]

(22)

\[I_{AF} = \frac{1}{2} \log_2 (1 + \frac{P_{SD}}{N_0} |h_{SD}|^2 + \frac{|H_{21}|^2}{N_0}) \]

(23)
Three cases considered, with all relays equivalent (same average received SNR):

- Power to one relay (selection based on average SNR).
- Power distributed to all relays (space-time coding).
- Power to opportunistic relay (Our Approach).

CDF of Mutual Information

Selection one random relay
Selecting all relays
Opportunistic Relaying
Three cases considered, with all relays equivalent (same AVERAGE received SNR):

- Power to one relay (selection based on Average SNR).
- Power distributed to all relays (space-time coding).
- Power to opportunistic relay (Our Approach).
Under a sum power constraint (and no beamforming capabilities) using all relays is suboptimal compared to opportunistic relaying.

Similar results for decode and forward.
Under a sum power constraint (and no beamforming capabilities) using all relays is suboptimal compared to opportunistic relaying.

Similar results for decode and forward.
Overhead: Collision Probability (1)

\[h_i = \min\{ |a_{si}|^2, |a_{id}|^2 \} \]

Policy I: \[h_i = \min\{ |a_{si}|^2, |a_{id}|^2 \} \]

Policy II: \[h_i = \frac{2}{\frac{1}{|a_{si}|^2} + \frac{1}{|a_{id}|^2}} = \frac{2 |a_{si}|^2 |a_{id}|^2}{|a_{si}|^2 + |a_{id}|^2} \]

\[T_i = \frac{\lambda}{h_i} \]

Here \(\lambda \) has the units of time. For the discussion in this work, \(\lambda \) has simply values of \(\mu s e c s \).

\[h_b = \max\{ h_i \}, \quad \iff \]

\[T_b = \min\{ T_i \}, \quad i \in [1..M]. \]
Worst case scenario:

\[
Pr(\text{Collision}) \leq Pr(\text{any } T_j < T_b + c \mid j \neq b)
\]

\[
where \quad T_b = \min\{T_j\}, \quad j \in [1, M] \text{ and } c > 0.
\]

(a) No Hidden Relays: \(c = r_{max} + |n_b - n_j|_{max} + d_s \)

(b) Hidden Relays: \(c = r_{max} + |n_b - n_j|_{max} + 2d_s + \text{dur} + 2n_{max} \)
Overhead: Collision Probability (2)

Worst case scenario:

\[
Pr(Collision) \leq Pr(\text{any } T_j < T_b + c \mid j \neq b)
\]

where \(T_b = \min\{T_j\}, \ j \in [1, M] \) and \(c > 0 \).

(a) No Hidden Relays:
\[
c = r_{max} + |n_b - n_j|_{max} + d_s
\]

(b) Hidden Relays:
\[
c = r_{max} + |n_b - n_j|_{max} + 2d_s + dur + 2n_{max}
\]

- \(n_j \): propagation delay between relay \(j \) and destination. \(n_{max} \) is the maximum.
- \(r \): propagation delay between two relays. \(r_{max} \) is the maximum.
- \(d_s \): receive-to-transmit switch time of each radio.
- \(dur \): duration of flag packet, transmitted by the "best" relay.
If $T_b = \min\{T_j\}, j \in [1, M]$ and $Y_1 < Y_2 < \ldots < Y_M$ the ordered random variables $\{T_j\}$ with $T_b \equiv Y_1$, and Y_2 the second minimum timer, then:
If $T_b = \min\{T_j\}, j \in [1, M]$ and $Y_1 < Y_2 < \ldots < Y_M$ the ordered random variables $\{T_j\}$ with $T_b \equiv Y_1$, and Y_2 the second minimum timer, then:

$$Pr(\text{any } T_j < T_b + c \mid j \neq b) \equiv Pr(Y_2 < Y_1 + c)$$ (30)
If $T_b = \min\{T_j\}, j \in [1, M]$ and $Y_1 < Y_2 < \ldots < Y_M$ the ordered random variables $\{T_j\}$ with $T_b \equiv Y_1$, and Y_2 the second minimum timer, then:

$$Pr(\text{any } T_j < T_b + c \mid j \neq b) \equiv Pr(Y_2 < Y_1 + c)$$ \hfill (33)

Given that $Y_j = \lambda / h(j), Y_1 < Y_2 < \ldots < Y_M$ is equivalent to $1/h(1) < 1/h(2) < \ldots < 1/h(M)$

$$Pr(Y_2 < Y_1 + c) = Pr\left(\frac{1}{h(2)} < \frac{1}{h(1)} + \frac{c}{\lambda}\right)$$ \hfill (34)

Ratio $\frac{\lambda}{c}$ needs to be as high as possible. λ and c are user controlled.
Overhead: Collision Probability (3)

If \(T_b = \min\{T_j\}, j \in [1, M] \) and \(Y_1 < Y_2 < \ldots < Y_M \) the ordered random variables \(\{T_j\} \) with \(T_b \equiv Y_1 \), and \(Y_2 \) the second minimum timer, then:

\[Pr(\text{any } T_j < T_b + c \mid j \neq b) \equiv Pr(Y_2 < Y_1 + c) \] (36)

Given that \(Y_j = \lambda/h(j) \), \(Y_1 < Y_2 < \ldots < Y_M \) is equivalent to

\[1/h(1) < 1/h(2) < \ldots < 1/h(M) \]

\[Pr(Y_2 < Y_1 + c) = Pr\left(\frac{1}{h(2)} < \frac{1}{h(1)} + \frac{c}{\lambda}\right) \] (37)

Ratio \(\frac{\lambda}{c} \) needs to be as high as possible. \(\lambda \) and \(c \) are user controlled.

However \(\lambda \) needs to be kept small:

\[E[T_j] = E[\lambda/h_j] \geq \lambda/E[h_j] \] (38)
Lemma: Given $M \geq 2$ i.i.d. positive random variables T_1, T_2, \ldots, T_M, each with probability density function $f(x)$ and cumulative distribution function $F(x)$, and $Y_1 < Y_2 < Y_3 \ldots < Y_M$ are the M ordered random variables T_1, T_2, \ldots, T_M, then $Pr(Y_2 < Y_1 + c)$, where $c > 0$, is given by the following equations:

$$Pr(Y_2 < Y_1 + c) = 1 - I_c$$

(39)

$$I_c = M (M - 1) \int_{c}^{+\infty} f(y) \left[1 - F(y)\right]^{M-2} F(y - c) \, dy$$

(40)

Wireless channel statistics of $h \Rightarrow$ pdf f and cdf F of $T = \lambda/h \Rightarrow Pr(\text{collision})$.

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 28/50
Lemma: Given \(M \geq 2 \) i.i.d. positive random variables \(T_1, T_2, \ldots, T_M \), each with probability density function \(f(x) \) and cumulative distribution function \(F(x) \), and \(Y_1 < Y_2 < Y_3 \ldots < Y_M \) are the \(M \) ordered random variables \(T_1, T_2, \ldots, T_M \), then \(\Pr(Y_2 < Y_1 + c) \), where \(c > 0 \), is given by the following equations:

\[
\Pr(Y_2 < Y_1 + c) = 1 - I_c
\]

(41)

\[
I_c = M (M - 1) \int_c^{+\infty} f(y) \left[1 - F(y) \right]^{M-2} F(y - c) \, dy
\]

(42)

Wireless channel statistics of \(h \Rightarrow \text{pdf} \, f \) and \(\text{cdf} \, F \) of \(T = \lambda/h \Rightarrow \Pr(\text{collision}) \).

Example: for a mobility of \(0 - 3 \) km/h \(\Rightarrow \) maximum Doppler shift is \(f_m = 2.5 \) Hz \(\Rightarrow \) minimum coherence time on the order of \(T_c \approx 200 \) milliseconds.

For \(c/\lambda \approx 1/200 \Rightarrow \Pr(\text{Collision}) \leq 0.6\% \) for policy I.

For \(c \approx 5\mu s \Rightarrow \lambda \approx 1\mu s \approx \frac{1}{100}T_c \).

For \(c \approx 1\mu s \Rightarrow \lambda \approx 200\mu s \approx \frac{1}{1000}T_c \).
Rigorous analysis earns you trips around the world...
Overhead: Collision Probability (5)

Rayleigh and Ricean Fading vs λ/c, for $M=6$
Overhead: Collision Probability (6)

Assymetry and collision probability

4 different topologies for M=6
...and a Remark...

$$b = \arg \max \{ \min \{ \text{SNR}_{si}, \text{SNR}_{id}\} \} = \max \{ \text{SNR}_{sid} \}, \quad i \in [1..M]$$ \hspace{1cm} (43)
...and a Remark...

\[b = \arg \max_i \min\{\text{SNR}_s, \text{SNR}_i\} = \max\{\text{SNR}_s\}, \quad i \in [1..M] \] (45)

\[b = \arg \max_i \min\{\text{SINR}_s, \text{SINR}_i\} = \max\{\text{SINR}_s\}, \quad i \in [1..M] \] (46)
Outline

- Assumptions and Background
- Approach
- Performance
- Implementation Example
- Relevant Technologies
- Conclusion
- Acknowledgements
Implementation: Hardware

- Rethinking wireless: approach needs access to physical (layer 1), link (layer 2), routing (layer 3).
- COTS radios usually give limited access to all layers ⇒
- We built our own low cost embedded Software Defined Radios (SDRs).
- We built a room size cooperative diversity demo.
Implementation: Demo Setup

right view

left view

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 35/50
Implementation: Demo Setup

left view

right view

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 35/50
Implementation: Signal Structure

- Signal structure of each frame
 - Preamble 32 bits (on-off keying)
- Direct transmission of 16 frames
- Direct and best relay transmission (16 + 16 = 32 frames)
Outline

- Assumptions and Background
- Approach
- Performance
- Implementation Example
- Relevant Technologies
- Conclusion
- Acknowledgements
Coordination, Cooperation and Time Keeping

Relays (or receiver) might be busy or in sleep mode!

Time keeping could simplify required *scheduling*.

Time keeping as the basis of scalable communication.

Extensive work on Network Time Keeping:

- centralized
- decentralized
Coordination, Cooperation and Time Keeping

- Relays (or receiver) might be busy or in sleep mode!
- Time keeping could simplify required *scheduling*.
- *Time keeping as the basis of scalable communication.*

Extensive work on Network Time Keeping:

- centralized
- decentralized
Centralized Time Keeping

- No control over the network: noisy environment.
- No control over the time server: would like to use existing infrastructure.

Three End-to-End algorithms were compared:
- Averaging (NIST).
- Linear Programming (proposed before).
- Kalman Filtering (our proposal).

Estimation of ϕ and θ, with minimum communication BW and computation requirements.
Centralized Time Keeping

- No control over the network: noisy environment.
- No control over the time server: would like to use existing infrastructure.
- Three End-to-End algorithms were compared:
 - Averaging (NIST).
 - Linear Programming (proposed before).
 - Kalman Filtering (our proposal).

Estimation of ϕ and θ, with minimum communication BW and computation requirements.
Centralized Time Keeping Results

- Improving **accuracy** (error) and **precision** (variance of error), compared to existing approaches.
- Computation efficient (since it is recursive) -
- Implemented and tested using existed NTP infrastructure.

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 40/50
Centralized Time Keeping Results

- Improving *accuracy* (error) and *precision* (variance of error), compared to existing approaches.
- Computation efficient (since it is recursive) -
- Implemented and tested using existed NTP infrastructure.

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 40/50
Decentralized Time Keeping

The network is the time server.

- Only local communication.
- Exchange timestamps and keep the highest (Lamport’s idea).
- Redefine time as a periodic function!
- The network *re-calibrates* periodically and autonomously.
Decentralized Time Keeping Results

Error could decrease with increasing Network diameter!

\[\epsilon(t_c) = C_i(t_c) - C_j(t_c) = \epsilon(t_0 + x) + (\phi_i - \phi_j) \Delta t \]
\[\Delta t = t_c - (t_0 + x) \]

Error depends on communication BW.

\[x = \text{propagation delay} + \text{transmission delay} + \text{operating system delay}. \]
Objective: play music in synchrony, display heartbeat at the edges...
This algorithm is based on oscillator’s coupling (no averaging).

Coupling among terminals with semi-periodic signal \equiv Entrainment.

It is relevant to natural phenomena of synchronization (fireflies, cardiac neurons etc.)
Outline

- Assumptions and Background
- Approach
- Performance
- Implementation Example
- Relevant Technologies
- Conclusion
- Acknowledgements
Conclusions

Bigger Picture:

- No more *bad reception*...
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...

- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...
- Additionally:
 - No performance loss compared to simultaneous transmissions and space-time coding.
 - Cross-layer research is needed.
 - Centralized/decentralized network time-keeping contributions.
 - Method was implemented in low-cost hardware.

Applications: WiFi, Zigbee, Tetra...
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...

Additionally:
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...
 Additionally:
- No performance loss compared to simultaneous transmissions and space-time coding.
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...
 Additionally:
 - No performance loss compared to simultaneous transmissions and space-time coding.
 - Cross-layer research is needed.
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...
 Additionally:
 - No performance loss compared to simultaneous transmissions and space-time coding.
 - Cross-layer research is needed.
 - Centralized/decentralized network time-keeping contributions.
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...

Additionally:

- No performance loss compared to simultaneous transmissions and space-time coding.
- Cross-layer research is needed.
- Centralized/decentralized network time-keeping contributions.
- Method was implemented in low-cost hardware.
Conclusions

Bigger Picture:
- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...
 Additionally:
 - No performance loss compared to simultaneous transmissions and space-time coding.
 - Cross-layer research is needed.
 - Centralized/decentralized network time-keeping contributions.
 - Method was implemented in low-cost hardware.
 - Applications: WiFi, Zigbee, Tetra...
Conclusions

Bigger Picture:

- No more *bad reception*...
- Improved battery duration...
- Improved spectral efficiency (bps/Hz).
- Tx/Rx energy savings.
- Towards more scalable wireless networks...

Additionally:

- No performance loss compared to simultaneous transmissions and space-time coding.
- Cross-layer research is needed.
- Centralized/decentralized network time-keeping contributions.
- Method was implemented in low-cost hardware.
- Applications: WiFi, Zigbee, Tetra...
Conferences

Journals

A. Bletsas, "Evaluation of Kalman Filtering for Network Time Keeping", accepted for publication, IEEE Transactions in Ultrasonics, Ferromagnetics and Frequency Control (TUFFC).
"Tolerating ambiguity is a sign of maturity..."
"Tolerating ambiguity is a sign of maturity..."

In memory of Stephen A. Benton (1941-2003)
Acknowledgements

Thesis Committee: Andy Lippman, Joe Paradiso and Moe Win.

Colleagues at MIT: Ashish Khisti, Josh Lifton, David Reed and Joe Jacobson.

My UROPs: Vimal Bhalodia, Amanda Lechman and Marios Michalakis.

Colleagues outside MIT: Thucydides (Duke) Xanthopoulos.

Office-mates: Dean Christakos, Ilia Mirkin and Dimitris Vyzovitis.

Group Mates: Jamie Cooley, Jeff Hallbig, Casey Muller, Hector Yuen and the rest of the Viral Comm Gang: Arthur Petron, Kwan Hong Lee and Fulu Li.

MIT people: Judith Donath, Neil Gershenfeld’s Physics and Media Group, Hyundong Shin and Walter Bender.

Necsys Crew: Paula Aguilera, Steve Berezansky, Jon Ferguson, Jeannie Finks, Will Glesnes, Tom Greene, Elizabeth Harvey-Forsythe, Henry Holtzman, Jane Wojcik, Chi Yuen.

ML colleagues: Betsy Chimento, Tamara Hearns, Kevin Davis, Cornelle King, Sandy Sener and Stacie Slotnick.

My sweet aunts here at Media Lab: Polly Guggenheim and Deborah Widener.

To all my friends at Crete: Yiannis, Dia, Olga, Andonis, Costas, Mihalis.

Friends here in Boston (including Greek Mafia): Thodoros Konstantakopoulos, Anna Stefanidou, Ioannis Kitsopanidis, Nikol Papadopoulou, Duke Xanthopoulos, Margarita Dekoli, Vasillis Ntziachristos, Christina Benou, Eirini Iliaki, Ioannis Kizanis, Anna Kondyli, Yiannis Zacharakis, Georgia Konstantinopoulou, Karrie Karrahalios, Paris Smarakdis, Costas Pelekanakis, Thais Aleluia, Petros Bufunos, Thodoros Akiskalos, Christi Electris, Constadinos Caramanis, George Constadinidis, Maria-Katerina Nikolinakou, Angelina Aessopou, Wei Chai...

Brother and his family here in Boston, sister and her family in Norway, Eleftheria and her family in Thessaloniki, and parents and grandaunt in Crete...

aggelos@mit.edu, Ph.D. Thesis Defense, MIT June 2005. – p. 49/50
Thank you!

...to Eleftheria, Thodoris, Aimilia-Anastasia, Constadinos, Christina and to my family.