
An Extensible Architecture for Multiple Applications

with Shareable Media

Cathy Lin, David Cheng, Pengkai Pan,
James Jung-Hoon Seo, Aisling Kelliher, Glorianna Davenport

Room E15-435 Media Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{llin, drcheng, ppk, jseo, aisling, gid}@media.mit.edu

November 1, 2000

Abstract

Shareable Media is a network-based system that ex-
plores how a community of users can share stories and
express ideas through a shared database of digital video
clips. To adapt this to the rapidly evolving Internet,
we need to design and experiment with an extensible
architecture for Shareable Media, which has the ca-
pability to deploy multiple applications on wired and
wireless devices through connections of both broad and
narrow bandwidth.

The current architecture consists of three modules:
Application Manager, Shareable Media Framework,
and Storage Manager. Through the Application Man-
ager, application designers register, test, release, and
monitor their products on top of the architecture. The
Shareable Media Framework provides application pro-
gramming interfaces that allow user-defined applica-
tions to access data in the system. Both modules re-
trieve and store content through the Storage Manager.

Currently, three applications are under development
for the extensible architecture: PlusShorts, Individeo,
and M-Views.

1 Introduction

Rich media, such as audio and video, will inevitably
be used and shared by many people in their daily life
through the rapidly evolving Internet. We could imag-
ine that, in the very near future, millions of hours
of rich media content will be created by $200 wire-
less digital video cameras, edited on 1 GHz handheld
computers and distributed over gigabyte fiber Internet
connections. Nowadays, there are two basic models for

sharing rich media content. The first is a server-client
broadcast or video-on-demand model, such as Real
Server-Player and Microsoft’s Media Server-Player.
The second is peer-to-peer data sharing model, such
as Napster and Gnutella. In both models, the media
objects being shared are treated as complete entities
and simply transfer from one place to another. The
two models are not able to foster interaction and col-
laboration among users, while also being ill-suited to
the requirements of either learning or entertaining. In-
spired by the “intercreativity” idea, a term coined by
Tim Berners-Lee [1], we have addressed the following
questions: What type of interchange might be devel-
oped to encourage people to create and share rich-
media stories on the Internet? Can we create easy-to-
use models that facilitate sharing and reusing available
content which exists on the Internet?

The Shareable Media project is an experimental
project for exploring and addressing these questions.
It is an effort to provide a coherent structure that
will facilitate distributed collaboration and commu-
nication among filmmakers, storytellers, artists and
audiences. The project explores how a community of
users can share web-based stories and express ideas
through a shared database of digital video/audio clips.
Each user can contribute original material, which then
becomes available to all other users.

To adapt this idea to the Internet, we need to de-
sign and experiment with an extensible architecture
for Shareable Media. In particular, we focus on the
following questions in this paper.

1. How can an extensible architecture be designed to
deploy multiple applications on wired and wire-
less devices through connections of both broad

and narrow bandwidth?

2. How can we provide an interface for any developer
to write novel applications for Shareable Media?

To address these two questions, we take an approach
consisting of three modules: Application Manager,
Shareable Media Framework and Storage Manager.
Through the application manager, developers are able
to register, test and release their applications on top
of the architecture. The shareable media framework
provides an application programming interface (API)
for application developers. Through the framework,
developers do not need to know the database schema.
The storage manager is used by all other modules as a
black box to retrieve and store content. In this paper,
we focus on the application manager.

In the past year, we have built three prototype ap-
plications for Shareable Media: PlusShorts, Individeo
and M-Views. PlusShorts and Individeo use various
interfaces to involve the user in telling stories through
video while M-Views is an application for wireless de-
vices which continuously provides usage information of
Shareable Media for mobile users. We present these
applications to demonstrate the extensible capabilities
of our architecture.

The paper is organized as follows. We first define
the data model and describe the architecture with its
three modules (Section 2). In Section 3, we discuss
the implementation of the system. Then we refer to
related works (Section 4), and outline possible exten-
sions (Section 5). Finally, draw conclusions about our
contributions.

2 Design

To build a system for shareable media, we create a
Shareable Media Architecture (SMA). At the heart of
the SMA is multimedia content, drawn from an eclec-
tic source of individuals. Additionally, applications
run on the SMA and exclusively use the database of
shared media. The goal of the SMA is to efficiently
manage media and user information while providing
application designers with a powerful API for media
manipulation.

2.1 Data Model

We can set four types of data for the SMA to manage:
Media, Applications, Profiles, and Feedback.

Properties:
(PositionInSequence,
 Duration,
 ...)

M
ediaE

lem
ent

M
ediaE

lem
ent

M
ediaE

lem
ent

MediaCollection

Properties:
(...)

Properties:
(...)

Figure 1: The Media Object Hierarchy

Media consists of MediaElements, MediaCollections,
and Properties. These three interrelated Media ob-
jects are the atoms on which we base the SMA. Ap-
plications let users construct MediaCollections from
MediaElements, which are any solitary multimedia ob-
jects (audio/video clips, images, and text). In doing
this, it is often necessary for applications to define
Properties that indicate the role of each MediaElement
with respect to the entire MediaCollection. Possible
Properties of MediaElements for a storymaking ap-
plication are PositionInSequence or Duration. The
object hierarchy of Media is shown in Figure 1.

Applications are either system or user-defined. Be-
cause system applications handle low-level and basic
tasks such as user registration, user login, and media
submission, we focus on the user-defined applications.
These interact with an API that provides access to all
the Media objects. They construct MediaCollections
internally that the SMA can interpret and store.

Profiles are all user-related information. We can spec-
ify two types of Profiles: User and Developer. Users
are ordinary consumers who wish to access Shareable
Media for fun or work. They can search through exist-
ing Media objects and add their own MediaElements
or create unique MediaCollections. Users wishing for
additional features beyond the scope of existing ap-
plications can take the initiative and write their own
programs. These Developers may work independently
on the SMA and eventually deploy their work as a new
application.

Feedback is any action performed on a Media object
by a User. There are three types of Feedback: User-
Action, Rating, and Comments. The UserAction feed-
back works without explicit control by the user. A
MediaElement receives UserAction when a user views
it or uses it in a MediaCollection. Users may wish to

Data Tier

Business Logic Tier

Presentation Tier

Test DB DB

Storage Manager

Application Manager

System
Applications

User-Defined
Applications

Application Manager
Frontend

Shareable Media
Framework

invoke

Inactive

R
elease

T
est

Figure 2: The Shareable Media 3-Tier architecture

provide a little more direct feedback by rating a Me-
dia object. Typically represented numerically, Rat-
ings give the SMA a concrete measure of the Media
quality. Finally, users can attach text in the form of
Comments. These complex objects attached to Media
objects can support threads to extend user collabora-
tion.

2.2 Architecture

To handle the objects in the data model, we develop
a 3-tier architecture, shown in Figure 2.

This design has two distinct advantages for application
development:

1. Modularity. Applications remain unaware of the
low-level database schema through the Shareable
Media Framework.

2. Extensibility. A dedicated module helps devel-
opers bring applications online and debug their
programs with a test database.

3. Scalability. With the Storage Manager as a black
box, we have the ability to expand the system to
a distributed environment.

This roughly follows the standard protocol. The first
tier is the Data Tier, containing the database and the
file system. The second tier contains the Business
Logic, and comprises the three components detailed
below. Finally, the third tier is the Presentation Tier,
with applications that directly access only the Busi-
ness Logic.

2.2.1 Application Manager

A crucial component of the SMA is the application
manager. Developers use this to put applications
online through a process of registering, testing, and
releasing. To handle this, the application manager
responds to several issues concerning compiling, at-
tribute handling, application states, and access con-
trol.

Compilation

All source code and compiled application programs are
stored in a centralized web server. After developers
submit their source code, they select an appropriate
compiler. The application manager will then attempt
to compile the application and automatically email the
developer with a status report: either a listing of error
messages or a web address for further input.

Attributes

New applications can define their attributes for Me-
diaElements, MediaCollections, and Properties. At-
tributes are informative tags attached to an object
that the application finds significant, such as time,
location, or characters. The application manager up-
dates an internal attribute map after developers regis-
ter application attributes. Thus, when receiving a call
from applications later on, the framework can modify
and retrieve data by examining the attribute map and
making queries.

A problem arises when developers use the same word
to describe different attributes in different contexts.
For example, the “location” of a video clip in differ-
ent applications may have different meanings in the
database. Some applications care about nations and
can more accurately use the “country” attribute. An-
other application may consider “city” to be a location.
This problem is compounded when development of a
new application occurs prior to registration, so the de-
velopers lack a set naming scheme for their attributes.

To solve this problem, we introduce an attribute map
that creates a binding between the name developers
use in an application and the associated data in the

database. To minimize the possibility of duplicate at-
tributes, the application manager displays the exist-
ing attributes with detailed descriptions before devel-
opers can register new attributes. Attribute creation
requires the developer to provide the name used by
the application, a detailed description, and data type.

Application States

There are three states for an application: testing, re-
leased and inactive. In the testing state, applications
are only open for developers and invited users. Data
access is limited to a separated testing database. In
the released state, applications are open to all users
and have access to the main database. Finally, in the
inactive state, applications are invisible to users but
retain their MediaCollections in the database. Devel-
opers can change application states if the application
manager verifies that the new mode is applicable.

The testing mode is the default mode. When in a
testing state, an application is only accessible through
a testing URL. The system will keep the testing ap-
plication for some time and then recover the testing
system unless its developer asks for an extension.

After the system internally verifies that the testing
application’s MediaCollections can be stored and re-
trieved without errors, it allows the developer to re-
lease the application to the public. After a release,
applications can still be tested but additionally have
the ability to be upgraded or deactivated.

To upgrade applications, developers are required to
update source code and add, remove, or modify appli-
cation attributes. The system maintains two versions
of one application – one in the testing state and the
other in the released state. If the old version is inac-
tive, the new one will replace it in the testing state.
Re-releasing an existing application will replace the
old active version.

For all applications in the system, the application
manager provides test logs and statistical information
for developers.

Access Control

Developers of one application can grant users the right
to read data, write data, or open application interface
packages. The predefined system applications han-
dle administrative tasks such as user registration, lo-
gin, and content submission. All built-in applications
have full access to user-defined applications. This is
necessary for them to launch applications and specify
parameters. However, user-defined applications have
limited access to areas such as user information or ap-
plication management.

2.2.2 Shareable Media Framework

The SMA provides an API for application develop-
ers. It contains four packages: Media package, Utility
package, Profile package, and Feedback package.

Media Package

The media package is designed to wrap up all at-
tributes attached to a Media object and hide inter-
nal representations and mappings. For example, if an
application receives a MediaElement as a search re-
sult, it can access all its attributes, such as content,
thumbnail, keywords, or authors. MediaElement, Me-
diaCollection, Property are all included in the media
package.

Utility Package

Applications call the framework to save and retrieve
information. The utility package contains beans to
carry out these operations. For sample, applications
can call SearchBean to search through all MediaEle-
ments or SaveCollectionBean to save its representation
of MediaCollection objects.

Profile Package

The SMA makes profiles for users and developers. The
profile package contains interfaces to query and update
data on those profiles. Interfaces are designed not only
for user-defined applications but also for system appli-
cations. However, the user-defined applications will
have limited access to some profile methods.

Feedback Package

The feedback package easily reflects the data model
for the Feedback data type. The package provides
logging functionality to construct the UserAction feed-
back. Additionally, methods can render user input of
Rating systems into meaningful numerical values. Fi-
nally, Comments are grouped in different threads.

2.2.3 Storage Manager

The application manager and the shareable media
framework access and update content through the
storage manager while it knows nothing about the
database schema.

We design the storage manager as the only gateway to
the data layer. It allows us to add more functionality
to the storage manager without requiring code changes
in any other components. As a result, it leaves a
rich research area for future system improvement. For
example, one storage manager can access distributed
databases and optimize data transfer to the user.

The storage manager is not the focus of our current re-
search. Firstly, it has little impact on the extensibility
of the SMA. Secondly, much research has been done in
this area and we can use an existing model. Finally,
increasing Internet speed is reducing the severity of
this problem.

3 Implementation

We implemented the system based on the design archi-
tecture discussed in the previous sections. The proto-
type was developed on Microsoft Windows NT Server
4.0. We used Oracle 8i for database management and
Oracle Application Server 4.0 as a web and application
server. All software components were implemented
using Sun’s Java technologies, mainly Enterprise Jav-
aBeans (EJB). System applications such as user reg-
istration and media submission were developed using
Java Servlets, Java Server Pages (JSP) and Java Ap-
plets. The web server supports common server-side
technology: CORBA, JSP, Servlets, CGI (Common
Gateway Interface) and EJB. Therefore the system
accommodates major web applications.

For a system to be stable, backing up data periodically
is necessary. The commercial product with online
backup support is Oracle 8i combined with a third-
party software running on the Windows NT Server.
Due to the objected-oriented nature of the language
and the well-developed enterprise API of J2EE, this
was the natural choice. Although issues arise about
the relative slowness of Java executables, the large size
of media files make network connections the more sig-
nificant bottleneck of the SMA.

3.1 Application Development

The three applications currently deployed on the SMA
illustrate the flexibility of the architecture. MediaCol-
lections used range from story-centered sequences of
video clips to content-based retrieval of information.
With each application, users have a level of control
over the shared media that current commercial prod-
ucts do not support.

3.1.1 PlusShorts

PlusShorts is a web-based application that allows a
distributed group of users to contribute to, and collab-
orate upon, the creation of shared movie sequences.
PlusShorts uses punctuation as an iconic system for
describing and augmenting edited video. The punc-
tuation symbols are used to detail the structure of a

video sequence and inspire dialogue about the essence
of that structure. The intention of this application is
to provide users with a level of interactivity that is
both playful and meaningful.

3.1.2 Individeo

Individeo is a web-based tool that features interfaces
for browsing and editing sequences of video clips. The
browser allows users to understand how the video is
being reused by multiple storytellers. The editor lets
users create expressive sequences with video and text.
The goal of this application is to foster casual creative
storytelling and messaging using video as a primary
media. The system may also serve as a basis for col-
laborative cinematic productions.

3.1.3 M-Views

M-Views enables users to construct and share video
communication using the shareable database over a
wireless Internet connection. The project emphasizes
mobile and place sensitive applications.

4 Related Works

A significant amount of research has already been con-
ducted to build scalable systems that can serve multi-
ple distributed multimedia applications or devices.

A better system for application development is the
DAVE model, developed by Mines et al in [6]. It
implements an application programming interface, a
connection manager, and an object manager with de-
vice objects to demonstrate a plug and play design
for distributed multimedia applications. Using this
model, application developers can easily develop dis-
tributed multimedia applications and create reusable
multimedia toolkits. Analogous to DAVE, our archi-
tecture aims at providing a “plug and play” interface
for application developers to put their tools online.
However, DAVE lacks a defined server structure; ap-
plications use the powerful DAVE API only to handle
data transfers between connected devices.

The work of Blum and Molva [2] is similar to the
DAVE model but also introduces the concept of an
‘application pool.’ As the center of control and coordi-
nation, the application pool resembles the framework
of the SMA and invokes applications. However, it fails
to address the issue of adding, modifying, or removing
applications.

Login

DB

Media Submission

Applications User Interface

Figure 3: The Shareable Media 2-Tier architecture
(Prototype)

During 1998 and 1999, our group focused on designing
a system for asynchronous sharing of streaming video
on Internet and built a prototype, I-Views [7]. It al-
lows widely distributed groups of people to view, edit,
compare, evaluate and discuss video material over the
Internet. In I-Views, the design and implementation
of server side modules are primarily based on the client
side needs. The architecture of I-Views is not able to
deploy multiple applications in an easy way.

4.1 Early Prototype

Initial implementations of Shareable Media used a
simple two tier architecture (Figure 3). This design al-
lowed for quick server development. With each compo-
nent of the SMA modularized into a program that pro-
duced raw data, developers easily worked in parallel
with each other. Although the model served well for a
basic system, the support for multiple applications was
minimal. Application developers had to work closely
with the server administrators to deploy applications.
The lack of a defined standard API resulted in du-
plicated code. Finally, schema changes became very
costly where application procedures operated directly
with the database. The current implementation of the
SMA addresses each of the drawbacks of the initial
system while retaining the modularity of architecture
components.

5 Future Work

The SMA as outlined leaves room for improvement.
Several sections of the SMA could be developed to

improve service speed, application development, user
interactions, and media handling.

5.1 Scalability

Although the current model for the SMA is signif-
icantly more efficient than the prototype of Section
4.1, it lacks scalability as implemented. Because of the
flexibility in the 3-tier design, we can easily expand the
functionality of the barely-implemented storage man-
ager. Specifically, we can target two issues that will
dramatically speed up content delivery to users: cache
and distributed computing.

Our current implementation requires that we unload
the media from the database into the filesystem be-
fore streaming it to the user. Keeping often-used me-
dia readily available saves server-side bandwidth from
repetitive data transfer [3]. It is also important to ex-
plore the possibilities of caching media on client ma-
chines [4]. Further research is necessary to determine
the effectiveness of using clients with fast Internet con-
nections as small/partial data mirrors. This is not an
unreasonable request for the user and can potentially
decrease the load on a central server significantly.

There has been much research conducted into dis-
tributed multimedia applications [5]. Since the cur-
rent data delivery is not fast enough for rich media
content, it brings the issue of possible server-side dis-
tributed computing. A network of both web servers
and database servers can optimize content delivery.
One possible usage of multiple web servers is to have
each server ping a user on login and assign the fastest
machine to that user for the duration of the session.
Later research can determine a synchronization algo-
rithm for the storage manager to use to ensure that all
content available is as current as possible regardless of
the database server being used.

5.2 Application Development

Open source is an existing model to develop poten-
tially high quality applications by allowing a group of
developers to collaborate on their projects. Addition-
ally, if not enough data exists or data is not correct
in the test database, the application manager will mi-
grate data from the main database to the test one. It
will also allow developers to submit data directly to
the test database.

5.3 Data Model Update

Our data model can be updated to support commu-
nities, or interest groups. One possible community

implementation is a content filter for members to fo-
cus their work. Communities of developers can share
source code and make group decision about changing
the state of the project.

5.4 Media Support

We will support more non-traditional, multimedia
data types such as Flash. We can also develop an
intelligent agent to detect duplicated media content
to increase system integrity while minimizing wasted
disk space.

It is possible to detect the device and connection speed
rate between clients and servers. A smart system will
filter the media content to adapt media to the transfer
rate and satisfy users using a wide range of Internet
connections [8]. For example, if a user is watching
a clip from her Palm, we want Shareable Media to
only transfer low quality video or still thumbnails to
represent the video.

6 Conclusions

The architecture we designed has many possibilities
for future growth. Nevertheless, it is currently flexi-
ble enough to accommodate the creativity of users and
developers while keeping the internal database schema
hidden. This is most effectively demonstrated by
PlusShorts, Individeo, and M-Views. Shareable Me-
dia is a viable project for the future Internet. Shared
applications built on top of the shared media make
this open system unique.

Acknowledgments

We would like to thank all members of the Shareable
Media Team. Emery Lin, Jocelyn Lin, and Daniel Ta-
lavera have been working intensively to develop the
Shareable Media project. This work is funded by the
Digital Life Consortium, the News in the Future Con-
sortium, IBM, Oracle, and Sun Microsystems. We also
particularly thank Tom Gardos of Intel Corporation
for his contributions to Shareable Media.

References

[1] Tim Berners-Lee. Keynote address. In the Fifth
International World Wide Web Conference, May
1996.

[2] C. Blum and R. Molva. A CORBA-based platform
for distributed multimedia appliations. In Pro-
ceedings of Multimedia Computing and Network-
ing, February 1997.

[3] A. Dan and D. Sitaram. Multimedia caching
strategies for heterpgeneous application and server
environments. Multimedia Tools and Applications,
4(3), May 1997.

[4] S. G. Dykes, C. L. Jeffery, and S. Das. Taxonomy
and design analysis for distributed web caching.
In Proceedings of the 32nd Hawaii International
Conference on System Sciences, Jan 1999.

[5] E. Frecon and M. Stenius. DIVE: A scaleable net-
work architecture for distributed virtual environ-
ments. Distributed Systems Engineering Journal,
1998.

[6] R. F. Mines, J. A. Friesen, and C. L. Yang. DAVE:
A plug and play model for distributed multime-
dia application development. In Proceedings of the
Second ACM International Conference on Multi-
media, 1994.

[7] P. Pan and G. Davenport. A community-oriented
system for sharing streaming video on the inter-
net. In Proceedings of the Ninth World Wide Web
Conference, 2000.

[8] J.R. Smith, R. Mohan, and C. Li. Scalable mul-
timedia delivery for pervasive computing. In Pro-
ceedings of the Seventh ACM International Con-
ference on Multimedia, 1999.

